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GENERAL HEREDITY AND STRENGTH 
FOR RADICAL CLASSES 

A. D. SANDS AND P. N. STEWART 

1. Introduction. An H-relation, as introduced by Rossa and Tangeman [4], 
is a relation a on the class of associative rings with their subrings satisfying the 
following conditions: 

(1) IaR implies that / is a subring of R; 
(2) if IaR and/ is a homomorphism of R, then (If)a(Rf); 
(3) if IaR and / is an ideal of R, then (/ DJ)aJ. 
Puczylowski [3] imposes also the condition 
(4) if / is an ideal of R, then JaR. 
A further condition satisfied by many familiar //-relations is the following: 
(5) if/ is a homomorphism from a ring R onto a ring S and BaS, then there 

exists a subring A of R such that AaR and Af — B. 
Conditions (4) and (5) are both satisfied by the standard //-relations 'ideal', 

'left ideal', 'right ideal', 'accessible subring', 'left accessible subring', 'right 
accessible subring', and 'subring'. 

We refer to [1] and [10] for the standard definitions and results of radical 
theory. For a given class C of rings, LC denotes the lower radical class generated 
by C and HC denotes the homomorphic closure of C. The notation I <R means 
that / is an ideal of R, and GF{q) denotes the finite field of order q. Finally, if 
a is a radical class, Sa denotes the class of all a semisimple rings. 

Let a be a radical class and let a be an //-relation. In Section 2 we con
sider constructions for the largest cr-hereditary radical class contained in a and 
the smallest a-hereditary radical class which contains a. A construction of the 
smallest cr-strong radical class containing a is considered in Section 3 (an ex
ample of Sands [6] shows that the largest cr-strong radical class contained in a 
need not exist). Much of this work has been inspired by earlier results of E. R. 
Puczylowski. 

2. cr-hereditary classes. A class C of rings is a-hereditary if AaR G C 
implies A G C. 

THEOREM 1. The following are equivalent for any H-relation a and any class 
of rings C : 

(i) AaR e HC implies AeLC, 
(ii) LC is a-hereditary. 

Proof One implication is obvious. The other is only a slight generalization 

Received November 2, 1987. 

1410 

https://doi.org/10.4153/CJM-1988-064-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-064-5


A. D. SANDS AND P. N. STEWART 1411 

of Theorem 4 is Rossa and Tangeman [4] and the proof, using the Kreiling-
Tangeman construction [9], is similar to their proof. 

Let C be a class of rings such that AoR G C implies A G LC. If C is 
homomorphically closed, or if a satisfies (5), then (i) of the theorem is satisfied 
and so LC is <r-hereditary. However, the condition that AaR G C implies A G LC 
is not in itself enough to guarantee that LC is cr-hereditary even when a is an 
//-relation which satisfies (4), as the following example shows. 

Define G\ as follows: Ao\B if and only if A is a nonzero subring of B and 
B = GF(4). It is straightforward to check that a = G\ U 02 is an //-relation 
which satisfies (4), where 02 denotes 'ideal'. Let C be the class of all accessible 
subrings of (GF(4)[x])/(x2). Since no ring in C is isomorphic to GF(4), AaB G 
C implies that A <B and so A G C. However, GF(4) G HC and GF(2)aGF(4), 
butGF(2) <£LC. 

Let a be an //-relation and let a be a radical class. Define ao(a) = a and 
for integers n ^ 0, an+\(a) = {A: if # is a homomorphic image of A and ScrB, 
then 5 G a„0)} . We shall denote the intersection n{an(cr) : n ^ 0} by 0^(0-). 

Notice that if a satisfies (5), then the description of ocn+\{cr) can be simplified: 

an+\(a) = {A : S a A implies S G an(a)}. 

We also note that if a is reflexive, ao(cr) D oc\(&) 2 • • • is a descending chain. 
In the next theorem we show that ocu{a) is the largest a-hereditary radical 

class contained in a, and following that we give examples to show that when 
ocç)((j) 2 ûfi(o") 2 ••• is a descending chain it may stabilize at any point or 
not stabilize at all. When a denotes 'ideal', 'left ideal' or 'right ideal' this 
construction agrees with the one considered by Puczylowski [3] who shows that 
for these three //-relations a^ia) = or2(<j) for all radical classes a and that in 
general a\{&) ^ a2{a). 

THEOREM 2. If a is a radical class and a an H-relation, then a^icr) is the 
largest a-hereditary radical class contained in a. 

Proof. One checks, by induction, that each an(a) is a radical class and then 
the result follows easily. 

By Proposition 3 of [4], given any //-relation a and positive integer n, the 
relation an is also an //-relation where AanR if and only if there exists an 
ascending chain of subrings 

A = A\oAi(J... oAnoR. 

We use cr° to mean equality; that is, ACT°R if and only if A = R. Also à denotes 
the union 

Ik-
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1412 RADICAL CLASSES 

It is straightforward to check that if a is an //-relation and a is a radical class, 
then a is a-hereditary if and only if a is â-hereditary. For //-relations satisfying 
(5) we have the following more general result. 

THEOREM 3. If a is an H-relation satisfying (5), then for any radical class a 
we have an(cr) — oc\(crn) and OC^G) — ot\(d). 

Proof. It is easy to see that an satisfies (5) since a satisfies (5) and so we may 
use the simplified descriptions of both an(a) and a\(an). Clearly a0(a) = a\(a°) 
and a\(a) = a\(al). Assume that 

an-\(a) — a\(an~l) for some n ^ 2. 

Let R G an(a) and suppose that AanR. Then there is a subring B of R such 
that Aan~lBaR. Since R G ocn{a),B G an-i(cr) = a^tf1'1) and so A G a. Thus 
R G ax(o

n). 
Now suppose that R G oc\{an) and AaR. If Ban~xA, then BanR and hence 

B G a. Thus A G a\(crn~l) = an-\(a) and so R G 0^(0-). 
It follows that a„(cr) = a\(an). 
Finally, 

<*e» - n ^(a)=n a i^n>=ai ( u ^ ) =a i (^-
Assume that a and a are such that the radical classes an(a) form a descending 
chain. If ao(a) = oc\(a) we say that the construction (of the largest <7-hereditary 
radical class contained in a) stops at stage 0. If an^\(a) ^ an(a) = an+\(a) we 
say that the construction stops at stage n. Of course, if the construction stops at 
stage n, an(a) = au(a). 

If a is ^--hereditary, the construction stops stage 0. If a = a and a satisfies 
(5), then the construction stops at stage 1 or stage 0. This is the case when o 
denotes 'accessible subring', 'left accessible subring', 'right accessible subring', 
or 'subring'. As we mentioned earlier, if a denotes 'ideal', 'left ideal' or 'right 
ideal', Puczylowski has shown that the construction stops at stage 2, 1 or 0 and 
that all three cases can occur. 

We define an //-relation r by ArB if either A = B or A is a maximal subring 
of B. Conditions (1) and (2) are clear. Suppose that ArB and that K <\B. Let C 
be a subring of K strictly containing AHK. Then A Ç A + C and so A + C = B. 
Thus 

K = (A + C)nK = (AHK) + C = C. 

It follows that (AnK)rK and so r satisfies (3). Clearly r is reflexive and satisfies 
(5). Let a — T\JG\ where a\ denotes 'ideal'. Then a is a reflexive //-relation 
which satisfies (4) and (5). 
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Let p be a prime number and 

a = L{GF(p2\ GF(p4), GF(ps),..., GF(pr)}. 

We now show that, for 0 ^ / < n, 

ai(a) = L{GF(p2M),...,GF(p2")} 

and that an(cr) = {0}. 
The result is true when / = 0. Assume that it is true for / = k. Let k+l <j è n 

and let CaGF(p2J). Since a field has no proper ideals and since a subring of a 
finite field is a field, either C = 0, C = GF(p2J) or C = GF(p2M). It follows 
that C G ock{a) and so 

GF(p2J) G aM(a) for all k + 1 < j è n. 

Now let 0 T̂  A G c^+iO). Then A<M implies A G Û ^ O ) and so A has a nonzero 
accessible subring which is a homomorphic image of one of the fields GF(p2J), 
k+l Ikjlkn. Since a nonzero homomorphic image of a field must be the field 
itself, and an idempotent accessible subring is an ideal, it follows that one of 
the fields, say K, is an ideal of A. Then K is a direct summand and hence a 
homomorphic image of A. Therefore K G a^+i(a). Since 

GF(p2k)aGF(p2M) and GFip2") £ ak{a\ 

GF(p2M) <£ ak+i(a). Thus K = GF(p2J) for some j with k + 1 < j ^ n. It 
follows that 

aM(a) = L{GF(p2k+2\ . . . , GF(p2")}. 

In particular, we have an-\{a) = L{GF(p2")} and from this it is easy to see that 
<xn((T) = {0}. 

Thus, in this situation, the construction stops at stage n. If we now let 

a = L{GF(p\ GF(p\ GF(p\ . . . } , 

then, as above, we can show that 

cck(cj) = L{GF(p2M ) , . . . } . 

So in this case an(a) ^ an+i(a) for any n and so the construction does not stop 
at any finite stage. 

We now consider the smallest cr-hereditary radical class containing a given 
radical class. It is clear that such a radical class exists because an intersection 
of cr-hereditary radical classes is a-hereditary. 
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For each class C of rings let o°(C) = C and define, for n ^ 0, 

crn+l(C) = {A : there is an R G an(C) with AoR}. 

It is routine to check that, for «, m ^ 0, 

a ^ n o = on{om{C)). 

For a radical class a the class cr(a) need not be a radical class: let a0 = a, a1 = 
La(a), a2 = LaCa1),.. .,a r t+1 — Lo(an), We have the following relation 
between the various classes defined above. 

THEOREM 4. / / oc is any radical class and o is an H-relation which satisfies 
(5), then an = Lon(a) for each n^O. 

Proof. Of course, La0(a) = La = a = a°. Assume that cT — Lom(a). Since 
(/"(a) Ç cT^^ia) Ç aÇoT) and so 

Lom+\a)ÇL<j(am) = am+l. 

Recall from [4] that a class C of rings is a-transfer hereditary to a class D of 
rings if AaR G C implies A G D. Note that a™(a) is cr-transfer hereditary to 
(f^iot). Let R G Ho"1 (a) and suppose SaR. By (5) there is a ring A G a™ (a) 
with a subring B satisfying Bo A and such that there is a homomorphism / 
with Af = R and Bf = S. Now A G om(a) implies B G o^+1(a) which in 
turn implies S G Hom+l(a). Thus Hom(a) is a-transfer hereditary to //o /n+1(a) 
and so it follows from [4, Theorem 9] that LHom(a) = Lom(a) is a-transfer 
hereditary to 

LHom+l(a) = Lom+l(a). 

Let R G o{oT). Then there exists a 7 such that RoT and T G cT = La"1 (a). 
Therefore fl G Lom+l(a). Hence o^a"1) Ç La""1 (a) and so 

or+l =Lo(am)CLom+l(a). 

It follows that a™"*4 = La/w+1(a), as required. 

THEOREM 5. For any H-relation o and any radical class a the smallest o-
hereditary radical class containing a is L(U{an : n ^ 0}). 

Proof Clearly U{an : n ^ 0} is homomorphically closed and a-hereditary, 
so L(U{an : n ^ 0}) is a-hereditary by Theorem 1. Also, it is clear that any 
a-hereditary radical class containing a must contain an for all «, so the result 
follows. 

If a is relexive we have an ascending chain of radical classes a = a0 Ç a1 Ç 
... C an Ç We shall say that the construction (of the smallest a-hereditary 
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radical class containing a) terminates at stage n if an~l ^ an = an+l. If a is 
a-hereditary so that a0 = a1 we shall say that the construction terminates at 
stage 0. 

We now give results which are dual to those of Puczylowski, showing that 
for 'ideal', 'left ideal' and 'right ideal' the construction terminates at stage 2. 

THEOREM 6. For any radical class a, the smallest left hereditary radical class 
containing a is the lower radical class generated by all rings A such A is a left 
ideal of a ring B which is a left ideal of a ring R in a. 

Proof. The radical class defined here is La2(a), where a denotes 'left ideal', 
By Theorem 4 this equals a2. By Theorem 5 it suffices to show that a2 is 
left hereditary, and since a2 = La2(a), it suffices to show that La2(a) is left 
hereditary. 

Suppose that DaAaBaR G a. Then (D +BA)crB and so D +BA G cr2(cc). Also, 
(D nBA)aBAaR, so D HBA G a2(a). Since BA <A it follows that (D HBA) <D. 
Now 

D/(DC\BA) 9* (D+BA)/BA G La2(a), 

and thus D G La2(oc) since it is an extension of D Pi BA (in a2(a)) by a ring 
in La2(a). We have shown that D G a(a2(a)) implies that D G La2(a) and so, 
since a satisfies (5), Theorem 1 implies that La2 (a) is a-hereditary. 

Clearly the corresponding result holds for right ideals. 

THEOREM 7. For any radical class a the smallest hereditary radical class 
containing a is the lower radical class generated by all rings A such that A is 
an ideal of a ring B which is an ideal of a ring R in a. 

Proof As in the proof of Theorem 6 it is sufficient to show that La2(a) is 
hereditary where a denotes 'ideal'. 

Suppose that D <B <A <R G a. Let E = D + AD +DA + ADA be the ideal of 
A generated by D. Then E3 Ç D. Let F = E + RE + ER + RER be the ideal of 
R generated by E. Then F3 CE and so F9 Ç D. Since F <R,F9 <R and hence 

F9 =DC\F9 ea(a)Ça2. 

It follows that F9 Ç a2(D), the a2 radical of the ring D. Now suppose that 
DDFm Ç a2(D) for some m ^ 2. Because DnFm<D nFm~l and 

(DnFm~l)/(D DFm) ^ ((D nFm~l) + Fm)/Fm 

is an ideal of Fm~l/Fm <R/Fm, 

(DnFm-l)/(D HFm) G a2(a). 

Thus 

(DnFm-{)/(DnFm)€a2 
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by Theorem 4. Since a2 is closed under extensions, DDFm l G a2 and so 

DnFm~l Ca2(D). 

It follows that D — D C\F Ç a2(D) and hence D G oc2. We have shown that 
D G <7(a2(o0) implies D G La2(a) and so, since a satisfies (5), it follows from 
Theorem 1 that La2(a) is hereditary. 

We now give examples to show that in these cases the construction need not 
terminate at stage 1 (see also [2]). 

Let Q denote the field of rational numbers, R be the matrix ring 

re Q] 
Lo o J 

and let a = L{R}. Since they admit premultiplication by 

lo oJ' *€G' 
the left ideals and the ideals of R are divisible. Hence, in each of these cases, 
all rings in a(a) and so all rings in a1 are divisible. Now 

"0 Z 
.0 0. 

< 0 Q] 
LO 0 J 

< \Q Q] 
LO 0 J 

Therefore, in each case, 

ro z i 
Lo o J 

is in a2, but it is not in a1 because it is not divisible. 
In what follows we give examples to show that, in general, the construction 

may terminate at any finite stage and an example where it does not terminate in 
a finite number of steps. We use the same //-relation a as before; namely, AoR 
if and only if A is a maximal subring of R or A <R. Let n be a positive integer 
and let a — L{GF(p2n)}. For m ^ n we have 

cT({GF(p2n)}) = {0, GF(p2n~m),..., GF(p2n-x\ GFip2")} 

and, as in the proof of Theorem 4, we can show that a™ is the lower radical 
class generated by these rings. Hence it follows from Theorem 1 that an — an+l. 
Since the field GF(p2n~m) is not an image of any ring in am~x{{GF{p2n)})^ it 
does not belong to a™-1. Thus a™-1 ^ am for m ^ n and so in this case the 
construction terminates at stage n. 

Let piiPiT-iPni-— be an enumeration of the primes. Let 

C = {GF(p2"):A7=l,2,. . .} 
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and let a = LC. It is clear from the above results that in this case an ^ an 1 

for any n, and hence the construction does not terminate at any finite stage. 

3. a-strong classes. Wiegandt [11] defines a class M to be a-regular if 
0 ^ AaR G M implies that A has a nonzero homomorphic image in M. A 
radical class a is said to be a-strong if the corresponding semisimple class Sa 

is a-regular. The proof of the following theorem is straightforward. 

THEOREM 8. Let a be an H-relation. A radical class a is a-strong if and only 
if AaR, A G a, implies A Ç a(R). 

An example is given in [6] which shows that a radical class a need not contain 
a largest a-strong radical class when a denotes 'left ideal'. On the other hand, 
the following theorem shows that every radical class is contained in a smallest 
cr-strong radical class for all //-relations a. 

THEOREM 9. If a is an H-relation and at : / G / are a-strong radical classes, 
then a = n{(Xi : i € 1} is also a-strong. 

Proof. Let a, be a-strong and let AaR with A G a,. Let A* be the ideal of 
R generated by A. Then AaA* and so from Theorem 8 we see that A Ç a/04*). 
From the Anderson-Divinsky-Sulinski theorem we know that ai(A*)<R and so 
A Ç cti(A*) Ç A* implies that A* = a,-(A*) G a,-. 

Now let a = n{ai : i G / } where each a, is cr-strong. Let AaR with A G a. 
Then A G a, for each / G / and, as above, A* G oti for each / G /. Thus A* G a 
and since A* <R we have A* Ç a(/?). Therefore A Ç a(Z?) and, by Theorem 8, 
a is cr-strong. 

The fact that any radical class is contained in a smallest a-strong radical class 
has been previously observed by Puczylowski [3], who shows that any class C 
contains a largest a-regular class and that if C is a semisimple class then so too 
is this largest a-regular class contained in it. Also, he gives a construction for 
the largest a-regular class contained in a semisimple class. However, we believe 
that this construction need not terminate by taking an intersection over just the 
integers. We now give an example to justify this. 

We recall that the construction is as follows. Let M = Mo be a class of rings. 
Assuming that Mn has been defined, let Mn+\ = {A G Mn : 0 ^ PaA implies 
that P has a nonzero homomorphic image in Mn}. Let 

Mœ = H{Mn :n^0}. 

Let E be the algebraic closure of GF(p) and let F be the subfield of E which is 
the union of the subfields GF(p2"), n = 1,2, Let T be the ring of all finite 
rank linear transformations of a vector space V of countable dimension over F. 
We shall represent T as the ring of bounded row finite matrices with entries 
from F, indexed by the positive integers. Let Un be the subring of T consisting 
of all matrices with entries in position (w, n) taken from GF(p2n) and with all 
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other entries zero. Let U be the sum of the subrings Un. Note that 

Un *É GF(p2") and U ^ 0{GF(/?2") : n ^ 1}. 

We now define //-relations as follows: 
AG\B if and only if B is finite and either A is a maximal subring of B or 

A = B\ 
Ao^B if and only if either there is an isomorphism / from B onto T such that 

Af = U, or A =B = 0; 
Aa^B if and only if A <\B. 
That 02 is an //-relation follows because T is a simple ring. Now let a — 

<j\ U 02 U 03. Then a is an //-relation satisfying (4). 
Let M be the semisimple class generated by 

{T,GF(p2),GF(p4),...,GF(P2''),...}. 

As in previous examples, using the fact that 

GF(p2k-l)aGF(p2k), 

one may show that GF(p2 ) is in Mn for n <k, but is not in M„ for n^ k. Now 
0 ^ A0T implies that A = T or A = U. Since GF(p2") is a homomorphic image 
of U for each AZ ^ 1, it follows that T e Mn for all n and so T E Mw. Now 6^ar 
and the only nonzero homomorphic images of U are direct sums of subsets of 
{GF(p2n) : n ^ 1}. Let S be such a homomorphic image and let k be least 
among integers n such that GF(p2") occurs in the direct sum decomposition of 
S. If S E Mu, then S G Mk+U in which case GF(p2k)<S implies that GF(p2k) has 
a nonzero homomorphic image in Af*, which is false. Thus £/ has no nonzero 
homomorphic image in Mu and so Mu is not o^regular. 

We can show, using examples similar to those already presented, that this 
construction may stop at any finite stage, but we omit details since this does not 
cover all possible situations in this case. More positively, we shall show that if 
this construction is continued for all ordinals, then the largest 0--regular subclass 
is obtained. 

Let MQ = M and assume that MM has been defined for an ordinal /x. We 
i define M^+\ = { A G M / i : 0 ^ PaA implies that P has a nonzero homomorphic 
image in M^}. If MM has been defined for all ordinals \x less than a limit ordinal 
A, then we define 

Mx = (1{M^ : n < A}. 

Finally, let M* = DM^ where the intersection is taken over all ordinals /i. 

THEOREM 11. If M is any nonempty class of rings and a is an H-relation, 
then M* is the largest a-regular class contained in M. 
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Proof. It is straightforward to check that if C is a cr-regular subclass of M, 
then C Ç M*. 

It remains to show that M* is cr-regular. Let 0 ^ PoA G M*. Since P has 
only a set of ideals there exists an ordinal 8 such that the ideals of P may be 
indexed by the ordinals less than 8. Let 7 ,̂ /i < <5 be the ideals of P other than 
P itself. For each \x < 8, let T(//) be the class of ordinals v such that P/I^ is in 
Mv. If 7X//) is the class of all ordinals for any /i then P/I^ G M*, as required. 
If not, for each /z < <5, there exists an ordinal 77̂  such that v G T(/x) implies 
v ^ 77̂ . Since the ordinals fi < 8 form a set there exists an ordinal 77 with 
77 > 77̂  for all [i < 8. Since A G M* Ç M^+i we have P/I^ is in M^ for some 
ideal 7̂  of P. This implies that 77 G 7X/z), which contradicts 77 > 77̂ . It follows 
that M* is cr-regular. 

When M is a semisimple class it follows from the result of Puczylowski [3] 
that M* is a semisimple class. So if a is a radical class with semisimple class 
M, the radical class corresponding to M* is the smallest o-strong radical class 
containing a. 

Of course, every radical class is a-strong when a denotes 'ideal' so in this case 
M* = M0 for every semisimple class M. When a denotes 'subring', M* = M\ 
and the a-strong radical classes are precisely the strict radical classes (see [8]). 
Puczylowski [3] asks whether this construction stops at some finite stage when 
a denotes 'left ideal'. We have not even been able to show that it stops at Mw in 
this case, but we do not have a negative answer to his question. Indeed, we shall 
now show that, in this case, M* = M\ if a relatively weak hereditary condition 
is satisfied by the radical class corresponding to M. 

THEOREM 12. Let a be a radical class satisfying R G a implies R2 G a, and 
let M — Sa. Then, in the above construction, with a denoting 'let ideal, we 
have M* = M\. 

Proof. Let a\ be the upper radical class determined by M\, and let 0C2 be 
the upper radical class determined by Mi. Since M D M\ D M2 we have 
ocQoc\ Ç «2, and as Puczylowski [3] has shown that M\ and Mi are semisimple 
classes it suffices to show that a\ — c*2- Now R G OL\ if and only if R has no 
nonzero image in M\ and this is so if and only if every nonzero homomorphic 
image of R has a nonzero left ideal in a. Similarly, R G «2 if and only if every 
nonzero homomorphic image of/? has a nonzero left ideal in OL\. 

Let 0 7̂  R G ai. Then there exists a nonzero left ideal A of R with A G ct\ 
and so a nonzero left ideal B of A with B G oc. Then AB is a left ideal of 
R and AB <B. We claim that AB G a. Let a G A and consider the mapping 
x —* ax +B2 from B to AB/B2. This mapping is a ring homomorphism and so 
B € a implies aB/B2 is in a. Since AB/B2 has trivial multiplication, summing 
these ideals over all a G A shows that AB/B2 is in a. By our assumption on a, 
B E ot implies B2 G a and so it follows that Ai? G oc. 

If AB ^ 0 we have a nonzero left ideal of R belonging to a, as required. 
Otherwise we may assume that AB = 0 for all left ideals B of A with Z? G oc. 
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Then for each such left ideal B and each a E A the mapping x —> xa from B to 
Ba is a ring homomorphism and so Ba E a. Summing over all a E A we have 
2M E a. Now B and #A are ideals of B + £A which are in a and hence B +BA 
is in a. Since B + BA is an ideal of A, 

B ÇB+BA Ca(A). 

Thus we have shown that if B is a left ideal of A with B E a, then 5 C a(A). It 
follows that A/a(A) has no nonzero left ideals in a and so, since A E a i , a(A) = 
A. Thus in both cases R has a nonzero left ideal in a. It follows that R € a\. 
Thus «! = a2 and the proof is complete. 

We conclude with a theorem about upper radical classes which is related to 
results of Sands [5] and Wiegandt [11]. Recall that if A is a «-regular class of 
rings, 

UA = {R : R has no nonzero homomorphic images in A} 

is the upper radical class determined by A. 

THEOREM 13. Let A be a ^-regular class of rings, let a be any H-relation 
and let B be any class of rings. Suppose that 0 ^ SaR E A implies that S has 
a nonzero homomorphic image in B. If a — UA, then 0 ^ SaR E Sa implies 
that S has a nonzero homomorphic image in B. 

Proof As has been pointed out in [7] the upper radical construction of [5] 
still produces the smallest semisimple class Sa containing A when starting from 
a «-regular class A = A\. This construction proceeds as follows: if \x ̂  1 is any 
ordinal, A^+i = {R : R has an ideal I G A^ and R/I is in AM}; if A is a limit 
ordinal, A\ = {R : R contains a descending chain of ideals // such that f¥/ = 0 
and each R/U is in some AMi., /x/ < A}; Sa is then the union of all the AM. 

We prove the result by transfinite induction. Suppose that 0 ^ AaR E AM 

implies that A has a nonzero homomorphic image in B. Let 0 ^ SaT E A^+i. 
Then there is an ideal K of T such that K and T/K are both in AM. If 5 Ç # , 
then SaK and so 5 has a nonzero homomorphic image in B. If S $Z K, then 

0 ^((S+K)/K)CT(T/K) 

and so (5 +K)/K, and hence 5, has a nonzero homomorphic image in B. Now 
suppose that A is a limit ordinal and 0 ^ AaR E AM implies that A has a nonzero 
homomorphic image in B holds for all ordinals p, < A. Let r E A\. Then 7 
has a descending chain of ideals // such that n// = 0 and T/U E A .̂ for some 
\ii < A. Let 0 ^ 5(77. Since Pi// = 0 there is some y such that S £ /,-. As above 
it follows that S has a nonzero homomorphic image in B. 

The result now follows by transfinite induction. 

COROLLARY 14. If A is a <-regular class of rings, then UA is a-strong if and 
only if A is a-regular. 
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Proof. Taking B — A in the theorem we see that if A is a-regular, then UA 
is a-strong. The converse is due to Wiegandt [11, Proposition 3]. 
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