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Abstract 

The standardized root mean squared residual (SRMR) is commonly reported to evaluate 

approximate fit of latent variable models. As traditionally defined, SRMR summarizes the 

discrepancy between observed covariance elements and implied covariance elements. However, 

current applications of latent variable models often include additional features like overidentified 

mean structures and covariates, to which the traditional SRMR definition is not applicable. To 

date, SRMR extensions for models with covariates have received limited attention. Nonetheless, 

mainstream software provides SRMR for models with covariates, but values differ based on model 

specification and differ across programs. The goal of this paper is to formalize SRMR definitions 

for models with covariates. We develop possible SRMR definitions corresponding to different 

model specifications with covariates, discussing advantages and disadvantages of each. 

Importantly, some SRMR definitions are susceptible to confounding misfit and model size such 

that SRMR values systematically decrease and suggest better fit when covariates are present, even 

if covariates have null effects. The primary conclusion is that there may not be a single unifying 

SRMR definition for covariates, but practically, researchers reporting SRMR with covariates 

should be aware (a) which definition is being used and (b) which information is and is not 

included in the particular definition.  

https://doi.org/10.1017/psy.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.10


SRMR WITH COVARIATES 1 

1. Introduction

The standardized root mean squared residual (SRMR) has been characterized as a 

standardized effect size for evaluating the discrepancy between a model-implied covariance matrix 

and the covariance matrix from the observed data in structural equation models (Maydeu-Olivares, 

2017; Maydeu-Olivares et al., 2018; Saris et al., 2009). Several recent sources have endorsed 

SRMR over competing fit indices like RMSEA or CFI based on advantages like a consistent 

interpretation that is less dependent on model characteristics (Shi et al., 2018; Ximénez et al., 

2022), strong performance with small samples or small degrees of freedom (Pavlov et al., 2021; 

Shi et al., 2022), and the ability to put an interval around to index to account for sampling 

variability (Maydeu-Olivares et al., 2018; Ogasawara, 2001; Shi et al., 2020). SRMR also tends to 

be the least redundant with other commonly reported metrics (Hu & Bentler, 1998; Browne et al., 

2002), and commonly cited resources for model fit evaluation have suggested a ‘two-index 

strategy’ of reporting SRMR in conjunction another index like RMSEA, CFI, Gamma Hat, or 

McDonald’s Centrality Index to minimize classification error rates (Hu & Bentler, 1999) 

Although recent and classical research has extolled several benefits of SRMR, a potential 

limitation is that SRMR has not been rigorously studied – or formally defined – for some common 

types of structural equation models. The original definition of SRMR is valid for factor analyses 

where the mean structure is saturated or absent and where no covariates are present (Jöreskog & 

Sörbom, 1981; Bentler, 1995); however, the classical version of SRMR is not suitable for models 

that are interested in aspects beyond the covariance structure. For instance, mean structure models 

are the norm in most current applications because accommodating common missing data 

techniques requires a mean structure (e.g., Enders, 2006, p. 329), the fit of which may not be 

perfect even if the mean structure is saturated (Asparouhov & Muthén, 2018, p. 6). The traditional 

SRMR definition is insensitive to potential mean structure misfit and only incorporates covariance 
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structure misfit (e.g., Leite & Stapleton, 2011; Wu & West, 2010). 

Previous work has extended definitions of SRMR to include mean structures such that 

discrepancies between the observed and model-implied means can be incorporated into the index 

(e.g., Asparouhov & Muthén, 2018). However, other model features have not received much 

attention. In particular, covariates are present in latent growth models, multiple indicator multiple 

cause models (MIMIC), and some measurement invariance models but there is little formal study 

of potential implications of covariates on SRMR definitions. Furthermore, covariates pose unique 

challenges related to specification of covariates (i.e., fixed versus stochastic) and which model-

implied moments are used (i.e., marginal versus conditional on covariates; Vonesh et al., 1996). 

As will be discussed shortly, these decisions impact which variables count as part of “the model” 

and can alter the numerator and/or the denominator of the SRMR calculation. Practically, this is 

relevant because different covariate specifications corresponding to the same conceptual model 

can have different SRMR values and implications for data-model fit.  

Despite limited formal examination of SRMR extensions for models that include 

covariates, latent variable model software like Mplus and lavaan currently output SRMR for 

models with covariates. As discussed in this paper, SRMR values in software output (a) do not 

agree across programs, (b) employ different SRMR definitions depending on which options are 

corrected, or (c) may attempt to correct out covariate information with varying success.  

The intention of this paper is therefore to (a) highlight the complexities of defining SRMR 

with covariates, (b) consider different possible SRMR definitions when covariates are present, and 

(c) better understand advantages and disadvantages of different definitions. The ultimate goal is to

help researchers make more informed and more accurate decisions when using SRMR to evaluate 

the approximate fit of their models. This issue is particularly timely because software programs 

are currently providing users with SRMR values even though such values are not well understood 
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or may not align with the user’s expectations.  

To outline the structure of the paper, Section 2 provides a brief example to motivate the 

nature of the issue. Section 3 overviews SRMR for covariance structure models and discusses 

recent extensions to mean structures. Section 4 reviews structural equation models with covariates 

and factors that complicate extensions of SRMR to these models. Section 5 outlines different ways 

that SRMR can be defined with covariates and how different model specifications impact what is 

included in different SRMR definitions. Section 6 provides an empirical application of a latent 

growth model with covariates to highlight how different versions of SRMR behave. A small 

simulation also demonstrates that the patterns in the empirical example hold when the population 

model is known. Section 7 concludes with limitations and future directions.  

2. Motivation

To motivate the nature of the problem, consider data generated in Mplus Version 8.10 from 

the following unconditional linear growth model with 4 repeated measures, 

( ) ( )
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    

+

ζ

e 0 (1) 

where ity is the outcome from person i at time t, 0i is a person-specific latent intercept, 1i is a 

person-specific latent slope, and tie is within-person error for person i at time t. Each of the 500 

simulated datasets, i = 1, …, 1000. 

Five models are fit to each generated dataset using homoskedastic error variances to 

underparameterize the model so that fit is not perfect. The first model correctly specifies no 

covariates. The remaining four models add 1, 2, 3, or 4 time-invariant covariates as predictors of 

the latent intercept and slope, but each covariate is known to have no effect in the population. 

Because the null covariates do not explain any variance, the model with and without covariates is 
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functionally the same and SRMR should seemingly not improve.  

Figure 1 shows SRMR averaged across replications with default settings in Mplus Version 

8.10 (Muthén & Muthén, 1998-2017) and default settings in lavaan Version 0.6.17 (Rosseel, 

2012). Importantly, SRMR values do not agree and fit appears to steadily improve as more null 

covariates are added, counterintuitively suggesting better fit even despite null covariates effects.  

3. Overview of Residual Fit Indices

3.1 Likelihood Ratio Test 

Consider a population of random variables with mean μ and population covariance Σ. A 

random sample of size N from this population has a data matrix Y with sample mean y  and 

sample covariance S. A structural equation model proposed to model relations between variables 

in Y has a model-implied mean structure ( )μ  and a model-implied covariance structure ( )Σ 

where   is the fundamental parameter vector containing the f freely estimated parameters featured 

in the model (Skrondal & Rabe-Hesketh, 2004). With maximum likelihood estimation, parameter 

estimates for   are found by minimizing the maximum likelihood discrepancy function,  

( ) ( ) ( ) ( ) ( )1 1

ML ( ) ln lnF tr P− − = + − + − − −       SΣ Σ S y μ Σ y μ      .  (2) 

P corresponds to the number of variables in the model, dimensions of S and ( )Σ  are each P P  , 

and the dimensions of y  and ( )μ  are each 1P .

To test whether the model-implied moments exactly reproduce the sample moments, a 

likelihood ratio test statistic can be defined by ( )ML ML
ˆT N F=   where N is the total sample size 

and ( )ML
ˆF  is the value of the discrepancy function evaluated at the maximum likelihood 

estimates of the parameters, ̂ . Under the assumption of multivariate normality, TML is 
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asymptotically distributed *

2

P f


−
 where ( )* 0.5 3P P P= + , the number of non-duplicated entries in 

the augmented covariance-mean matrix.  

Though valued for its clear definition and inferential nature, researchers have noted that 

satisfying an exact fit test like TML is not always a necessary condition for a model to be useful 

(Bentler & Bonett, 1980; Hu et al., 1992; MacCallum, 2003). That is, models are often intended to 

be approximations from the onset, so tests of exact fit may be expected to be false a priori (e.g., 

Browne & Cudeck, 1993). Consequently, approximate fit indices like RMSEA, CFI, and SRMR 

have become popular supplemental metrics to summarize the practical magnitude of 

misspecifications throughout the model (Jöreskog & Sörbom, 1982).  

Whereas TML is interested in the presence of misfit between the model-implied and 

observed moments, approximate fit indices are interested in quantifying the magnitude of the 

discrepancy between the model-implied and observed moments (e.g., McNeish & Wolf, 2023) and 

operate more like effect sizes for model misspecification (Kelly & Preacher, 2012). Commonly 

reported approximate fit indices like RMSEA and CFI are transformations of TML, but SRMR is 

unique in that it is based on the model residuals (Yuan, 2005) where a ‘model residual’ is the 

difference between a model-implied moment and an observed moment. SRMR can therefore have 

unique advantages relative to other indices and can provide non-redundant information. The 

remainder of this paper focuses on properties, clarifications, or extensions of SRMR.  

3.2 SRMR for Covariance Structure Models  

Jöreskog and Sörbom (1982) first proposed the root mean residual (RMR) index based on 

the model residuals, which summarizes the difference between S and ( )ˆΣ  with a single value.

RMR is unit dependent and can be unintuitive to interpret, so Bentler (1995) proposed the 

traditional classic definition of SRMR to standardize the RMR such that, 
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For ( )
1/2

diag=d S , P=D I d , ( )ˆˆ =Σ Σ  , and jkr is a correlation element jk j ks d d for j k . 

Equations 3b and 3c illustrate that the residuals, ˆ
jk jks − , are scaled according to the 

product of the sample variances ( jjs and kks ) such that the denominator always consists of 

elements of S, even when the numerator is an element of Σ̂ . Correspondingly, Equation 3e shows

that the minuend is a sample standardized metric (standardized covariance, jkr , or standardized

variance, 1) because the numerator is divided by diagonal terms from the same matrix. However, 

subtrahend of Equation 3e is the model-implied parameter estimate scaled by the product of the jth 

and kth sample standard deviation or the jth sample variance, respectively. Consequently, the 

model-implied elements are not necessarily completely standardized whenever the variances are 

not saturated because ˆ
jj jjs  and ˆ

kk kks  , which may occur in a growth model (e.g., if residual 
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variances are constrained to equality across repeated measures).1 The denominator in Equation 3 is 

( )0.5 1P P+ , which is the number of unique diagonal and off-diagonal elements of the covariance

matrix. 

The SRMR expressed in Equation 3 only considers elements from sample and model-

implied covariance matrix but includes no information about the mean structure. It is therefore 

suitable for factor analysis where mean structures are absent or saturated, but not for models with 

overidentified mean structures like latent growth models (Leite & Stapleton, 2011; Wu & West, 

2010). Structural equation model applications frequently feature an overidentified mean structure, 

so an extension of SRMR that incorporates the model residuals between the model-implied means 

and sample means (i.e., ( )ˆ−y μ  ) is desirable. Such an extension is described in the next section.

3.3 SRMR with a Mean Structure 

Define jy  as the jth element of y  and ˆ
j  is the jth element ( ) ˆˆ μ μ . The SRMR for a 

model with an overidentified mean structure therefore extends to 

( )
( )

2ˆˆSRMR , , ,
0.5 3 / 2P P


=

+
μSy Σ (4) 

where 

( )( ) ( )
2

21 1 1

2
ˆ ˆvech − − −= − + − Σ D yS d μD (4a) 

2 22
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    
    (4c) 

1 Note that Mplus uses a slightly different definition of SRMR than defined by Bentler (1995); see Equation 129 in 

Muthen (2004, p. 23). This is discussed in more detail in Section 3.4. 
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Importantly, Equation 4a adds a new term ( )
21 ˆ− − y μd to account for differences between the 

observed and model-implied means. The denominator in Equation 4 changes to ( )0.5 3P P+  to 

incorporate elements in the mean structure. Like Equation 3e, each residual in the minuend of 

Equation 4d is a sample standardized metric (rjk, 1, or zj) while the subtrahend is the model-

implied parameter estimate divided by the square-root of the product of the jth and kth sample 

variances, the jth sample variance, or the jth standard deviation, depending on the residual being 

standardized. In other words, the elements of Σ̂ and μ̂  are divided by diagonal elements of S.

Note that the third term in Equation 4d corresponding to mean structure residuals is 

unbounded. Conversely, the first term corresponding to the covariances is approximately 

standardized (depending on the congruence of diagonal elements in S and Σ̂ ) and will be bounded

by a value near 2 (e.g., its maximum value occurs when the observed correlation is 1 and the 

model-implied correlation is –1). When discrepancy for the covariance and mean structure is 

summarized by a single value, large unbounded misfit in the mean structure may overpower 

covariance structure misfit. Conversely, for large models, there can be many more covariance 

elements than mean elements and the covariance elements can wash out the contribution of the 

mean structure. It can therefore be prudent to separately examine the contribution of the 

covariance structure misfit and mean structure misfit (e.g., Yuan et al., 2019). The lavResiduals 

function in lavaan will provide separate SRMR values for all elements combined, only the 

covariance elements, and only the mean elements. 

3.4 Alternative Standardization Methods  

Whereas Equation 3 and 4 standardize with sample standard deviations (sometimes called 
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Bentler standardization), an alternative approach is to standardize model-implied moments by 

model-implied standard deviations rather than observed standard deviations (sometimes referred to 

as Bollen standardization; Bollen, 1989). With this standardization, the numerator in Equation 3 

would instead be ( ) ( )( )
2

1/2 1/2 1/2 1/2
1 1

ˆ ˆ ˆ
jk jj kk jk jj kk

j P k j

s s s   
−



−



− . This transforms the observed and 

implied covariance matrices to correlation matrices prior to taking the difference, which removes 

potential contributions of the diagonal terms because they will always be 1 in each matrix. 

Consequently, the index derived from this standardization is typically referred to as a separate 

index (the correlation root mean square residual; CRMR, Bollen, 1989) rather than SRMR. 

There are also proposed definitions that mix Bollen standardization for the covariance and 

mean elements with Bentler standardization for the variance elements so they are not excluded 

(this definition is employed by default in Mplus, Asparouhov & Muthén, 2018). Specifically, 
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Notice that the first and third terms of in Equation 5a are divided by elements of Σ̂  rather than S

as in Equations 3 and 4 but the middle term of Equation 5a continues to divide by an element of S. 

3.5 SRMR for Models with Covariates 

As shown in Equations 3 through 5, SRMR definitions heavily rely on the definition of P, 

which is prominently featured in the denominator of each definition. For models without 
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covariates, P is unambiguous. However, when covariates are present, the situation becomes more 

opaque because covariates may or may not count as part of P. Additionally, models with 

covariates will have marginal and conditional structure depending on how a researcher wishes to 

treat the variance explained by covariates, which may complicate SRMR definitions.  

Potential challenges of SRMR with covariates have been considered, but have yet to be 

more rigorously embraced. Section 4 overviews details and properties of models with covariates 

needed to discuss different possible SRMR definitions; definitions are then provided in Section 5. 

4. Structural Equation Models with a Mean Structure and Covariates

A general structural equation model with a mean structure and covariates can be written as, 

i i i i= + + +y ν Λη Κx ε (6) 

where iy is a P-dimensional vector of manifest outcome variables for person i ( )1, ,i N=  , ν is 

a P-dimensional vector of manifest outcome intercepts, Λ is a P M  matrix of factor loadings for 

M the number of latent variables, iη is an M-dimensional vector of latent variables, Κ is a P C

matrix of parameters associating the C-dimensional ix vector of manifest covariates for person i 

that directly predict to the manifest outcome iy , and iε is a P-dimensional vector of residuals for 

person i such that ( )~ ,i Pε 0 Θ .  

The structural model for the latent variables can then be written as 

i i i i= + + +η α Βη Γx ζ (7) 

where α  is an M-dimensional vector of latent variable means, B is an M-dimensional square 

matrix of structural paths between latent variables, Γ is an M C  matrix of parameters 

associating the C-dimensional ix vector of manifest covariates for person i to the latent variables 

iη , and iζ is an M-dimensional vector of disturbances for the latent variable for person i such that 
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( )~ ,i Mζ 0 Ψ .  

The fundamental parameters vector containing the unique parameters from Equations 6 

and 7 is ( ) ( ) ( ) ( ) ( ) ( ), vec ,vec ,vech , , vec ,vec ,v ech
      =

  
 ν Λ Κ Θ α β Γ Ψ , which is featured 

in the estimator in Equation 2 and is the basis for the model-implied means and covariances. 

4.1 Model-Implied Means 

From the estimated parameters in ̂  , the model-implied conditional expectation for the

manifest outcomes in y given the covariates x can be expressed as   

( ) ( )

( )
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ˆ ˆ| ;

ˆ ˆ ˆ ˆˆ ˆ

ˆ E i

i i

i i
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μμ y x x
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 
(8) 

The i subscript on ˆ
iμ  indicates the expectation changes as a function of covariate values.

When fitting a model conditional on the covariates, the resulting output is typically the 

expected values given =x 0 . This results in a different conditional expectation such that,  

( ) ( )

( )

( )

1

1

0 0
ˆ ˆ| ;

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

ˆ E

−

−

=

 = + −


=

+ +

=

=



+ −

μ y x 0

ν Λ I β α Γ0 Κ0

ν Λ I β α

μ 

 (9) 

The “0” subscript denotes that the expectation is conditional on the covariate being equal to 0. 

Setting the covariate values to their respective sample means, =x x  marginalizes over the 

covariates to arrive at a model-implied marginal expectation for the focal outcomes where  

( ) ( )

( )
1

ˆ ˆ| ;

ˆ ˆ ˆˆ

ˆ

ˆˆ

E

−

=

 =

= =

+ − + +
 

μ y x x

ν Λ I β α Γx Κx

μ 
(10) 

i subscripts are dropped in Equation 10 to indicate a marginal expectation given that covariates are 

set to their respective sample means. 
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4.2 Model-Implied Covariance 

The P × P model-implied covariance for the manifest outcomes, conditional on covariates, 

can be expressed as 

( ) ( )

( ) ( )
1 1

ˆ ˆˆ | ;

ˆ ˆ ˆ ˆˆ ˆ

i i iCov

− −

= = =

 = − − +

Σ Σ y x x

Λ I B Ψ I B Λ Θ

 

(11) 

Like the model-implied conditional expectation, an i subscript indicates that the covariance is 

conditional. However, the conditional model-implied covariance does not vary as a function of 

covariate values (i.e., x does not appear in Equation 11), so 
0

ˆ ˆ
i =Σ Σ . Together, Equations 8 and 11 

define the conditional model-implied probability distribution such that ( )ˆˆ| ~ ,i i i iy x μ Σ or 

( )0 0
ˆˆ| ~ ,i =y x 0 μ Σ . 

Correspondingly, the model-implied marginal covariance matrix is 

( )

( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

1 1

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

x x

x x i

− − − −

− −

=

 
   = − − + + − − +


  = − − + +

Σ Σ

Λ I B ΓS Γ I B Λ ΚS Κ Λ I B Ψ I B Λ Θ

Λ I B ΓS Γ I B Λ ΚS Κ Σ



(12) 

Where xS is the sample covariance matrix for the covariates. Notably, the model-implied marginal 

covariance is calculated from the conditional covariance matrix ( ˆ
iΣ ) plus the proportion of 

variance in the outcomes that is explained through covariates. Together, Equation 10 and 12 define 

the marginal model-implied probability distribution such that ( )ˆˆ~ ,iy μ Σ .  

4.3 Special Case of Continuous Outcomes 

When y is continuous and all covariates are exogenous, the model can be simplified based 

on LISREL notation. Namely,  
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i v v vi vi

vi v v vi vi

= + +

= + +

v ν Λ η ε

η α Β η ζ
(13) 

where ( ),i i i
 =v y x  stacks all the variables into one vector and all variables are treated as outcomes. 

This notation does not permit direct paths from manifest variables to latent variables (e.g., 

manifest variables can only indicate latent variables, but they cannot predict them; Bollen, pp. 

395). Instead, single-indicator latent variables are created for each manifest variable that predicts 

or is predicted by another manifest variable where factor loadings are fixed to 1 and residual 

variances fixed to 0 for identification.2  

( ), ,vi i yi xi

  =η η η η  is then composed of three parts, (a) focal latent variables ( iη ), (b) 

dummy latent variables for elements of y that are predicted from elements of x ( yiη ), and (c) 

dummy latent variables for elements of x that predict elements of y or iη . All regression paths are

housed in the B matrix rather than being split amongst Γ, K, and B as in Equation 6 and 7 

(Skrondal & Rabe-Hesketh, 2004, p. 78). 

Mplus and lavaan rely on this notation for efficient computation with continuous variables 

(Muthen, 2004, p. 13; von Oertzen & Brick, 2014). Other notation systems like reticular action 

model notation (RAM, McArdle & McDonald, 1984) or Bentler-Weeks notation (Bentler & 

Weeks, 1979) can directly accommodate paths from manifest covariates to latent variables. 

Correspondingly, different specifications emerge for models with covariates. Section 4.4 reviews 

these different specifications and Section 5 discusses implications for how different specifications 

can have different SRMR definitions.  

2 If covariates have known imperfect reliability, residual variances could be fixed to a non-zero value that implies a 

particular reliability (Bollen, 1989, p. 312; Cole & Preacher, 2014). 
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4.4 Specifications for Models with Covariates 

There are two main dimensions along which model specifications with covariates can 

differ. The first is joint versus conditional, the second is fixed versus stochastic. The result is four 

possible combinations, though one combination (conditional and stochastic) is theoretically 

possible but seldom serviceable, so it is not considered here. Figure 2 illustrates the differences 

between model path diagrams for different specifications for a hypothetical conditional linear 

growth model with four repeated measures and two time-invariant covariates predicting the 

growth factors. Figure 2a shows the joint and fixed specification, Figure 2b shows the joint and 

stochastic specification, and Figure 2c shows the conditional and fixed specification. More details 

on each specification appear in dedicated subsections below.   

4.3.1 Joint and Fixed 

In the joint specification, a joint likelihood for the outcome variables and all covariates is 

built such that ( )~ ,Viv μ Σ . In Figure 2a, this is represented by the manifest covariates x1 and x2

being replaced with single-indicator latent variable models with factor loadings fixed to 1 and their

residual variances fixed to 0. These single-indicator latent variables then predict the latent growth 

factors. This specification is used by default in lavaan and Mplus by default. 

With a joint specification, all covariates become dependent variables in the model, which 

has ramifications for how P is defined within SRMR calculations. Because covariates technically 

become outcomes (i.e., a latent variable points into them), they are pulled into ‘the model’ such 

that P equals the sum of the T focal outcome variables in y and the C covariates in x predicting the 

latent variables or manifest outcomes. This sum is defined as V where V = T + C. The model-

implied moments correspond to Equation 10 and 12.  

With a fixed specification, the mean, variances, and covariances of the covariates are 
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constrained to their sample values rather than being estimated. Because there are no free 

parameters in the covariate portion of the model, full information maximum likelihood is not 

applicable with this specification and missing covariates must be imputed or listwise deleted.  

The full model equations for the joint and conditional specification in Figure 2a are, 

1 1
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3 2 3

4 3 4

1 4 5
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1 1
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0 1 0 0 0

0 1 1 0 0
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i i
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       
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 

      
            
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 
 
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  

0

ζ
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 
 
    

(14) 

4.4.2 Joint and Stochastic 

A joint and stochastic specification maintains the joint likelihood approach in Section 4.4.1 

but differs in how covariates parameters are treated. Namely, rather than fixing the covariate 

means, variances, and covariances to their sample values, these parameters are directly estimated. 

That is, the vector of latent variables means in Equation 14 would change to  1 2 3 4    

and the lower right triangle of the disturbance covariance matrix in Equation 14 would change to 

33 34

43 44

 

 
. This can be seen in Figure 2b where sample statistics 1x , 2x , ( )1var x , ( )2var x , and 

( )2 1cov ,x x from Figure 2a are replaced with freely estimated parameters. The model-implied 

moments are again the marginal moments from Equations 10 and 12. 

A main benefit of the stochastic approach is that the that missing data on the covariates can 
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be handled directly with maximum likelihood assuming a missing at random mechanism because 

there are free parameters and distributional assumption related to the covariates (Baraldi & Enders, 

2010). In lavaan and Mplus, this is specification is used whenever the mean or variance of a 

covariate is included in the code (or by using the fixed.x = FALSE option in lavaan). Similar to 

Section 4.4.1, the number of variables in the model is equal to V because all outcomes and 

covariates are both considered part of the model.  

4.4.3 Conditional and Fixed 

A conditional specification aligns more closely with models from the regression or mixed 

effect tradition and the likelihood is conditioned on the covariates such that ( )| ~ ,i i T i iy x μ Σ . In 

the conditional likelihood, the effects of covariates are removed from the model-implied moments 

correspond to the conditional moments in Equations 9 and 11. The mean, variance, and covariance 

of covariates are fixed to sample statistics as in Section 4.4.1. Consequently, P is defined only as 

the number of focal outcome variables T rather than V. The corresponding model equations are,  

( )

( )

( )

( )

1 1 2 1

2 1 2 1 2
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ζ

I θ0

(15) 

The path diagram corresponding to this specification is shown in Figure 2c. With a conditional and 

fixed specification, there are no distributional assumptions placed on the covariates, so missing 

covariates must be dealt with imputation or deletion (Sterba, 2014).  The conditional and fixed 

specification is conceptually similar to the joint and fixed specification and the parameter 

estimates will closely correspond (and may be identical) even though there are different 
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ramifications for defining SRMR.   

Slope structures are not present in joint specifications but become relevant in conditional 

specifications (Muthén, 1984, pp. 49-50). The slope structure refers to possible pathways from the 

covariates in x to the outcomes y (possibly through latent variables in η) and corresponds to the 

covariance attributable to covariates (which is conditioned out). If the slope structure is saturated 

such that every covariate predicts every outcome (i.e., there are T C covariate paths in the model), 

then the observed covariance attributable to covariates will equal the model-implied covariance 

attributable to covariates. However, in the more common case where the slope structure is 

overidentified (i.e., there are fewer than T C covariate paths), then there may be slope structure 

residuals in addition to the mean and covariance residuals for conditional specifications.  

4.5 Covariate Specification Affects Fit 

Despite the conceptual similarity among specifications (especially without missing data 

where specifications yield identical parameter estimates), the choice of specification—whether 

made explicitly or implicitly by software— has implications for calculating SRMR because 

definitions of P are different. For the model in Figure 2, joint specifications are 6-dimensional, but 

the corresponding conditional specification is only 4-dimensional. Additionally, the conditional 

specification has different residuals because the variance attributable to covariates is removed 

whereas a joint specification yields marginal moments.  

Section 5 provides different possible SRMR definitions that emerge from different 

covariate specifications and standardization methods. An empirical example and simulation follow 

in Section 6 to demonstrate complexities of defining model fit in complex models.   

5. Defining SRMR with Covariates

Sections 5.1 and 5.2 describe different SRMR definitions depending on the model 

specification. Key properties are summarized in Table 1. Section 5.3 discusses relevant properties 
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to consider when choosing among different SRMR definitions for a model with covariates.  

5.1 Conditional Specification 

The likelihood for a model with conditionally specified covariates is  ( )0 0|  ~ ,T=y x 0 μ Σ  

where ( )0 cond
ˆμ  is the model-implied conditional means and ( )n0 co d

ˆΣ   is the model-implied 

conditional covariance. The observed conditional means are then  ( ) ( )1

0| yx xE −= = = + −y x 0 y y S S 0 x  

and the observed conditional covariance is ( ) 1

|| y x y yx x yxCov − = = −y x S S S S S . 

These conditional sample and model-implied moments can produce a residualized SRMR: 

 ( ) ( )( )0 | 0 cond 0 cond
ˆ ˆSRMR SRMR , , ,R y x= y S μ Σ   (16) 

SRMRR provides an index of the standardized discrepancy between the sample and model-implied 

conditional means and conditional covariances of the T focal outcomes given all covariates are set 

to 0. This is most meaningful when covariates are centered or have natural zero points and when 

the interest is evaluating the discrepancy after removing variance explained by covariates.  

Importantly, because SRMRR is conditional, changing the scaling of the covariates will change the 

value of SRMRR (e.g., centered versus uncentered covariates will have different values of 

SRMRR ). This can be useful if the fit at specific values of the covariates is desired because the 

scaling of the covariates can be adjusted so that the specific values of interest are set to 0.  

 SRMRR in Equation 16 uses Bentler standardization from Equation 4, but it could use a 

mix of Bentler and Bollen standardization as in Equation 5 such that 

( ) ( )( )* *

0 | 0 cond 0 cond
ˆ ˆSRMR SRMR , , ,R y x= y S μ Σ  . 

Regarding the slope structure, the observed covariance attributable to covariates is 

1

x yx x yx

−

•
=S S S S  and the model-implied covariance attributable to covariates is 
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( ) ( )
1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ
x x x

− −

•


  = − − +Σ Λ I B ΓS Γ I B Λ ΚS Κ . The slope structure residuals are then equal to 

ˆ
x x• •−S Σ . The slope structure residuals are implicitly present in Equation 16 because they are one 

source of misfit such that |y xS is based on removing all covariance attributable to covariates 

whereas 
0Σ̂ only removes covariance based on the specified, possibly overidentified slope 

structure. Separating the contribution of the slope structure residuals can help identify if misfit is 

potentially due to covariate-related covariance not being fully conditioned out.  

5.2 Joint Specification  

Let  ,  =v y x and VS be the sample mean vector and covariance matrix for all V variables 

in a jointly specified model whose model-implied mean and covariance are ( )joint
ˆμ   and ( )joint

ˆΣ 

. These quantities could be used directly such that 

 ( ) ( )( )V joint joint
ˆ ˆSRMR SRMR , , ,V = v S μ Σ   (17) 

SRMRV  uses the marginal model-implied and sample moments for all V variables in the model 

(i.e., the variance explained by covariates is not factored out). Essentially, SRMRV captures how 

well the model reproduces the means, variances, and covariances of focal outcomes and covariates 

simultaneously. SRMRV  is applicable when covariates are treated as fixed or stochastic. Equation 

17 uses Bentler standardization, but a corresponding 
*SRMRV  could also be defined by using the 

hybrid Bollen-Bentler standardization from Equation 5.  

Asparouhov and Muthén (2018) note that SRMRV  may be problematic with a fixed 

covariate specification because elements related to the covariates are included in the SRMR 

calculation, but they are constrained to sample values rather than being estimated. Therefore, these 

elements will not have misfit and cannot contribute to the SRMR numerator, but they will 
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contribute to the denominator. Therefore, Asparouhov and Muthén (2018) describe a covariate 

adjustment for 
*SRMRV where 

( ) ( )( )
( ) ( )

* 3
V joint joint

ˆ ˆˆˆSRMR , , ,
0.5 3 0.5 3

VC
V V C C


=

+ − +
v S μ Σ  (18) 

The denominator removes the ( )0.5 3C C +  elements associated with the covariates whose model-

implied values are constrained to sample values (which will necessarily have no misfit). Elements 

corresponding to covariates are factored out of the denominator to avoid artificially reducing the 

index by inflating the denominator. If C = 0, 
*SRMRVC  reduces to 

*SRMRV because none of the 

model-implied elements will be constrained to sample value. There is also a corresponding 

SRMRVC that corrects the denominator of SRMRV  when Bentler standardization is used. 

In Mplus Version 8.10, specifying a model with stochastic covariates (e.g., by including the 

mean or variance of the covariate in the model) will result in 
*SRMRV  being reported in the 

output; the Mplus default specifies fixed covariates and results in 
*SRMRVC  being reported in the 

output. The INFORMATION = EXPECTED option in Mplus can yield  SRMRV and SRMRVC in the 

output but has ramifications beyond the calculation of SRMR. Specifically, it can affect the 

consistency of standard errors if missing data are present and not missing completely at random 

(Kenward & Molenberghs, 1998) and it can impact the effectiveness of robust estimators (Savalei, 

2010). This may be particularly problematic for SRMRV with a stochastic specification because a 

common motivation for this specification is accommodating covariates with missing values.   

To extend the idea of SRMRVC , the scope of SRMR can be refined further by subsetting 

the mean vector and covariance matrix to only include elements related to the T focal outcomes. 

This way, all means, variances, and covariances related to covariates are not counted in either the 

numerator or the denominator. Namely,  
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 ( ) ( )( )T T T joint T joint
ˆ ˆSRMR SRMR , , ,M = y S μ Σ   (19) 

where ( )T joint
ˆμ   and ( )T joint

ˆΣ   are the marginal mean vector and marginal covariance that only 

contain elements involving the T focal variables. After subsetting, SRMRM uses the same 

information regardless of whether covariates are fixed or stochastic. Because it uses marginal 

moments, SRMRM corresponds to the fit of unconditional growth model. SRMRM and SRMRR

will be equivalent for mean-centered covariates that explain no variance because they will have 

the same dimension and the same moments. 
*SRMR M  can be defined similarly but uses the hybrid 

Bollen-Bentler standardization (equivalence between 
*SRMR M  and 

*SRMR R  exists under the same 

conditions as equivalence of SRMRM and SRMRR ). 

5.3 Choosing Among Different Definitions 

Among the definitions in Sections 5.1 and 5.2, SRMRV and 
*SRMRV are the most 

susceptible to overly optimistic assessments of model fit when covariates are present, especially 

when a fixed specification is used for covariates. Both definitions use all variables—focal 

outcomes and covariates—in the numerator and denominator. The means and variances of 

covariates as well as covariances among covariates will fit exceedingly well because they are 

either explicitly fixed to sample statistics with a fixed specification (and will fit perfectly) or are 

the full information maximum likelihood estimates of sample statistics with a stochastic 

specification (Little & Rubin, 2020).  

SRMRV and 
*SRMRV therefore capitalize on the perfect or near-perfect fit of the 

( )0.5 3C C +  elements involving covariates and are susceptible to deflation because elements 

involving covariates contribute to the denominator but do not contribute or contribute very little to 

the numerator. Good fit can be achieved by simply adding many covariates into the model, which 
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will increase the proportion of elements with 0 or near-zero residuals, which will attenuate 

SRMRV and 
*SRMRV .  

This mechanism motivates SRMRVC and 
*SRMRVC , which explicitly reduce the 

denominator by ( )0.5 3C C +  to account for elements that do not contribute to the numerator. This 

reduces – but may not entirely eliminate –SRMRVC and 
*SRMRVC  capitalizing on the presence of 

covariates and producing optimistic assessments of fit. In addition to the ( )0.5 3C C +  elements 

that will have perfect fit, there are C T model-implied covariances that are partially informed by 

covariates. For instance, in Figure 2a, 
1 1,

ˆ
y x  is implied (in part) by 1 13

ˆ
xs   and 

1 2, 14
ˆ

x xs  . The sample 

statistics will not have misfit and will limit the potential magnitude of misfit in 
1 1,

ˆ
y x . Partial 

embedding of sample statistics throughout the model makes the effectiveness of a denominator 

correction for covariates uncertain because it is unclear how or whether to account for elements 

that have partial covariate information. As a result, SRMRVC and 
*SRMRVC  remain susceptible to 

some deflation when more covariates are added to the model. Nonetheless, the situation is 

somewhat ambiguous because the model’s ability to reproduce covariances between covariates 

and outcomes may be relevant because—even if these residuals are tempered—they are not 

guaranteed to be exactly zero.  

SRMRR , 
*SRMR R  ,SRMRM , and 

*SRMR M  appear least susceptible to capitalizing on 

covariate information because they restrict focus solely to the T outcome measures. SRMRM  and 

*SRMR M  rely on the marginal mean and covariance, which preserves the interpretation as the fit 

of the unconditional model regardless of the number of covariates. This provides the most 

consistency by insulating the interpretation from the effect of covariates. However, as expanded 
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upon in Sections 6.2 and 7, this may not necessarily be a positive characteristic. SRMRR  and 

*SRMR R use the conditional mean and covariance, which is helpful to factor out explained 

variance. However, they are dependent on the scaling of the covariates and require a meaningful 

zero point for the covariates to have a meaningful interpretation. Essentially, SRMRM  and 

*SRMR M do not engage with the covariate information, which provides a constant interpretation. 

Conversely, SRMRR  and 
*SRMR R fully engage with covariate information, which results in a 

focused interpretation that is sensitive to changes in covariate scaling. The next section provides 

an empirical example to empirically demonstrate the differences between SRMR definitions.  

6. Empirical Example 

6.1 Model Description 

To demonstrate how SRMR can be affected even for modest and routine models, this 

section uses a subset of the 1979 National Longitudinal Survey on Youth (NLSY). These data are 

publicly available and were retrieved from the companion site to the popular multilevel modeling 

textbook by Hox et al., (2018). The data feature Peabody Individual Assessment test reading 

scores (PIAT; Dunn & Markwardt, 1970) for 221 children. These data are wave-based such that 

each child’s PIAT score is measured four times in two-year intervals. This subsample has no 

missing values and each child completed all four waves. 

For this example, a taxonomy of models were fit. Model 0 is an unconditional latent 

growth model. Model 1 includes mother’s age when the child was born (mom_age; M = 25.59, SD 

= 1.87, Range = 21 to 29) as a time-invariant covariate of the initial status and linear change 

growth factors. Model 2 adds a second time-invariant covariate, cognitive support provided at 

home (cog_home; M = 9.10, SD = 2.45, Range = 3 to 14). Both covariates were grand-mean 

centered to preserve the interpretation of the growth factor means. The models were fit with 
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maximum likelihood estimation in lavaan Version 0.6.17 (Rosseel, 2012) or in Mplus Version 

8.10 (Muthén & Muthén, 1998-2024). Because there was no missing data, parameter estimates are 

identical across specifications and programs.  

The model 2  and degrees of freedom are reported in Table 2 along with the estimated 

parameters for each model and SRMR values from each definition in Section 5. Parameter 

estimates are identical across all specifications. The data and code for this example are provided 

on an Open Science Framework page associated with this paper,  

(https://osf.io/sxp4g/?view_only=7041ee3c2a824c719a3889cd1b7d1d42). Software options yielding different 

SRMR definitions are provided in Table 1. SRMRM and 
*SRMR M are not currently available in 

either software and were computed manually.  

6.2 Model Results  

All three models have identical model 2  statistics for all specifications. The model 2  

values are larger than the critical value for any conventional significance level given the model 

degrees of freedom, indicating that the models do not recreate the sample moments exactly. 

Because the model 2 test can be seen as a severe test for data-model fit (Mayo, 2018), SRMR can 

help quantify the magnitude of the model residuals to help contextualize the practical amount of 

data-model misfit. Because there are no covariates in Model 0, the Bentler-standardized indices 

SRMRV , SRMRVC ,SRMRR , and SRMRM are identical. Similarly, the hybrid Bollen-Bentler 

standardized indices 
*SRMRV , 

*SRMRVC

*SRMR R ,and 
*SRMR M are also equal to each other, but 

they are not equal to the Bentler-standardized SRMRs because the variance structure is not 

saturated and ( ) ( )ˆdiag diagS Σ .  

As covariates are added, SRMRV , SRMRVC ,
*SRMRV , and 

*SRMRVC  systematically 
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decrease regardless of whether the covariates improve the model. That is, despite home_cog 

having no effect on initial status ( 1.32, .19Z p= = ) or linear change ( 1.42, .16Z p= = ), all four of 

these SRMR definitions suggest improvement between Model 1 and Model 2. This behavior stems 

from relying on V-dimensional moments, which rewards reproduction of covariate elements.  

To demonstrate, the Model 2 Bentler-standardized residual mean vector and residual 

covariance matrix for a joint covariate specification are 

( )( )1

joint

Read1 Read2 Read3 Read4 HomeCog MomAge
ˆ

.351 .164 .083 .147 .000 .000
−

 
− =  

− −  
d v μ   

( )( )1 1

joint

Read1 Read2 Read3 Read4 HomeCog MomAge

Read1 .327

Read2 .006 .076

ˆ Read3 .111 .097 .051

Read4 .193 .012 .010 .128

HomeCog .023 .009 .007 .011 .000

MomeAge .048 .031 .001 .010 .000 .000

− −

 
 

−
 
 −
 

− = − 
 − − −
 

− − 
 − − − 

D S Σ D



 

Notably, there are ( )0.5 3 27V V + =  unique elements across the mean vector and covariance 

matrix. The sum of squared standardized residuals is 0.374 (the numerator of SRMRV ) but notice 

that two rightmost elements in the mean residual vector and three elements in the rightmost lower 

triangle of the covariance residual matrix are necessarily zero because they only involve covariate 

information. Because there are no missing data, the model-implied elements are identical to the 

sample statistics regardless of whether a fixed or stochastic specification is used. This produces 

zero residuals for these elements, so they do not contribute to the numerator but they do add to the 

denominator, resulting in SRMR .374 27 .118V = =  for Model 2.  

 SRMRVC subtracts ( )0.5 3C C +  from the denominator to address deterministic zeroes. In 

Model 2, C = 2 so the denominator is lowered by 5 to account for values that are necessarily 0 

(i.e., SRMR .374 22 .130VC = = ). SRMRVC  continues to count the 8C T =  elements that are 
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partially based on the covariates (the 8 non-zero values in the last two rows of the residual 

covariance matrix above). These elements represent the discrepancy of the model-implied and 

observed covariances between the repeated measures and the covariates. 

One perspective of these elements is that these elements should count towards SRMR 

because reproducing the covariance between the outcome and covariates is relevant information to 

consider. From this perspective, reproduction is the main interest and the decrease in SRMRVC  is 

warranted because it indicates that the model is adequately reproducing the covariances between 

repeated measures and covariates.  

An alternative perspective is that the model should not be rewarded for small residuals that 

are partially composed of sample statistics. Although these elements are not deterministically zero, 

their magnitude is moderated – for instance, these elements represent 8 of the 11 smallest non-zero 

residuals in the model. From this perspective, counting elements that are partially dependent on 

covariate sample statistics artificially deflates SRMRVC because there is not a substantive interest 

in reproducing these covariance elements and counting them drives down the SRMRVC without 

providing substantively useful information. From this perspective, determining whether the 

covariates improve the model is the main interest and the decrease in SRMRVC is less warranted 

because it does not speak to whether the covariates are useful or whether the model-implied 

covariances of the repeated measures more closely reproduce the observed covariances after 

covariates are included. This is particularly prudent for researchers intending to use SRMRVC for 

model comparisons or fit index difference evaluation because there is a distinction between a 

model reproducing the covariances between outcomes and covariates and the covariates 

explaining variance in the outcome.   

Regarding other definitions, SRMRM  and 
*SRMR M do not change across the three models. 
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This stability is due to these definitions marginalizing over the covariates, so SRMRM  and 

*SRMR M  will be constant whether covariates are present or not. For these data, the Bentler-

standardized residual mean vector and residual covariance matrix used for SRMRM  and 
*SRMR M  

only include the T-dimensional elements related to the four repeated measures: 

( )( )1

T joint

Read1 Read2 Read3 Read4
ˆ

.351 .164 .083 .147
−

 
− =  

− −  
d y μ   

( )( )1 1

T T T joint T

Read1 Read2 Read3 Read4

Read1 .327

ˆ Read2 .006 .076

Read3 .111 .097 .051

Read4 .193 .012 .010 .128

− −

 
 

−
 
 − = −
 

− 
 − − − 

D S Σ D   

where ( )
1/2

T Tdiag=d S and T T T=D I d . There are only, ( )0.5 3 14T T + =  unique elements, 

resulting in a sum of squared residuals of .369 and SRMR .369 14 .162M = = . The calculation 

involves no covariate information and focuses purely on fit of repeated measure elements.  

SRMRR  and 
*SRMR R happen to mirror SRMRM  and 

*SRMR M , respectively, in this 

example but this will not be the case generally. Covariates in the example are grand-mean centered 

and explain little variance, so the marginal and conditional definitions converge. But if Model 2 is 

refit using uncentered covariates,SRMR .116R =  and 
*SRMR .105R =  and conditional moments no 

longer correspond to the marginal moments because SRMR is now conditional on the covariates 

equaling 0 on their original scales. Similarly, if the interest was fit of Model 2 for people 

simultaneously at the maximum values of the two covariates, the model could be refit centering 

the covariates around their maximum values. This yields SRMR .191R =  and 
*SRMR .113R =  

suggesting that the model fits less well for people at the upper extreme of the covariates. Other 

SRMR definitions are based on marginal moments and are unaffected by covariate centering.  

This reinforces the point made earlier: although SRMRM  and SRMRR are both resistant to 
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artificial deflation when adding covariates and can converge in some cases. However, resistance is 

gained through two opposing mechanisms. SRMRM is not deflated by covariates because its 

interpretation is insensitive and oblivious to the presence of covariates. Conversely, SRMRR is not 

deflated by covariates because its interpretation is entirely dependent on the covariate information 

and its value changes within the same model as a function of covariate scaling.  

6.3 Expanding Figure 1 

 Data in Section 6.2 were empirical and the truth is not concretely known. All SRMR 

definitions from Section 5 were therefore applied to the same simulated data from Section 2 that 

were used to create Figure 1. The results are shown in Figure 3 where Panel A shows Bentler 

standardized definitions and Panel B shows Bollen-Bentler standardized definitions. 

Results in Figure 3 mirror those in the empirical example. Namely, when truly null 

covariates are added to the model,  SRMRM  maintains a consistent value, SRMRR is mostly 

consistent with small variation due to variance explained by random chance, SRMRV sharply 

decreases as more null covariates are added because a larger proportion of elements are 

deterministic zeroes, and SRMRVC decreases but less sharply because it filters out the 

deterministic zeroes but still includes elements that are partially based on sample statistics. 

Patterns are the same for either standardization method.  

7. Discussion 

The traditional definition of SRMR is appropriate for covariance structure models, but 

many structural equation model applications include additional features, which can alter the 

appropriate definition of SRMR. The current paper focused on the context of models with 

covariates. Despite mainstream software reporting SRMR values for models featuring covariates, 

there has been little formal methodological work exploring how to suitably extend SRMR when 

https://doi.org/10.1017/psy.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.10


SRMR WITH COVARIATES  29 

 

covariates are present.  

The primary finding in this paper was that some SRMR definitions were susceptible to 

being systematically deflated if covariates are present (SRMRV , 
*SRMRV ,SRMRVC , and

*SRMRVC ). Other definition were less susceptible (SRMRR ,
*SRMR R ,SRMRM , and 

*SRMR M ), 

but had properties and interpretational caveats that may be undesirable. This is primarily due to 

joint covariate specifications, which can complicate counting which variables are “in the model” 

and which model residuals should contribute to the numerator and denominator of SRMR.  

Consequently, this paper does not definitively solve the issue of properly defining SRMR 

with covariates and it may raise more questions than answers. It also only considered the situation 

with continuous outcomes and did not explore contexts where outcomes are discrete (see Section 

2.7 of Asparouhov & Muthén, 2018 for SRMR considerations with discrete outcomes). 

Nonetheless, the hope is that this paper at least raises awareness of these potential issues and 

encourages more thoughtful consideration of how to interpret SRMR when models feature 

covariates.  

Regarding specific limitations of definitions that did not systematically decrease when 

covariates were included, SRMRM  and 
*SRMR M  mirror evaluating fit with no covariates because 

covariates are marginalized out, which does not differentiate between explained and unexplained 

variance. SRMRM  and 
*SRMR M  are essentially oblivious to covariates because the variance is 

pushed around to different sources, but the marginal amount of variance is unchanged. Essentially, 

SRMRM is not deflated with covariates because it simply is not sensitive to covariates. SRMRR  

and 
*SRMR R are conditional, which seems more useful because the variance explained by 

covariates is removed. However, its interpretation depends on how covariates are scaled.  

In essence, a meaningful SRMR with covariates may require a better developed sense of 
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what the model-implied moments should reproduce. This is closely related to the ambiguity when 

interpreting SRMRVC  and
*SRMRVC  where it is unclear whether elements corresponding to 

covariances between outcomes and covariates are part of the model and whether reducing them 

meaningfully corresponds to what fit should be capturing.  

Moreover, it is unclear which values of any SRMR definitions for covariates indicate 

acceptable approximate fit. The traditional guideline from Hu and Bentler (1999) is that SRMR 

 < .08 indicates acceptable fit. However, this guideline is known not to generalize well beyond the 

confirmatory factor models from which it was derived (e.g., Fan & Sivo, 2007; Hancock & 

Mueller, 2011; McNeish & Wolf, 2024). Models with covariates differ in meaningful ways from 

Hu and Bentler’s simulation, so it is unclear which SRMR values indicate substantively important 

misfit when covariates are present. This is especially true for models with an overidentified mean 

structure because the mean and covariance structure may be weighed differently.  

This also raises questions about whether combining mean structure residuals and 

covariance structure residuals into a single index is meaningful. As noted earlier, mean residuals 

and covariance residuals can be split with separate SRMR values for each submodel to make the 

index more interpretable and to better identify the location of misfit. Nonetheless, the same issues 

discussed in this paper are relevant even if using separate SRMRs for the mean and covariance 

structure because there are still ambiguities about which elements should and should not be 

counted in each (though mean structure is less opaque than the covariance structure).  

Of course, SRMR may simply have too many interpretational challenges to productively 

assess approximate fit for models with covariates. Whereas lack of dependence on TML can be a 

helpful property of SRMR in covariance structure models, SRMR’s reliance on model residuals 

may convolute calculation of SRMR in situations where there is ambiguity regarding which 

variables and corresponding residual elements should be counted as part of “the model”. If a 
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concise summary of residuals with SRMR may be too difficult, local fit may offer another option 

for those looking to evaluate fit of models with covariates.  

Broadly, local fit refers to evaluating some smaller portion of the overall model 

(Thoemmes et al., 2018). This can include structural versus measurement portions (Anderson & 

Gerbing, 1988; Zhang & Hao, 2024) or can be as narrow as elementwise inspection of each 

individual residual element to identify elements that were not closely reproduced by the model 

(McDonald & Ho, 2002; West et al., 2023). Elementwise local fit is essentially the most extreme 

version of splitting SRMR into subcomponents and can help locate areas of local strain and to 

ensure that misfit is not attributable to a few outlying elements that are poorly reproduced 

(Appelbaum et al., 2018; Kline, 2023). 

 Elementwise local fit is commonly recommended as a supplement to global fit metrics 

like SRMR. However, reviews of empirical studies suggest that few studies report or examine 

model residuals and elementwise local fit and instead rely on global summary measures like 

SRMR (Ropovik, 2015; Zhang et al., 2021). As models become more complex, it may be more 

straightforward to simply look at each residual in isolation rather than debate merits of different 

possible aggregated summaries of the residuals.   

Similar to global fit, elementwise local fit can be exact or approximate. In exact 

approaches, inferential tests are built to assess whether the individual residual element is equal to 0 

(Maydeu-Olivares, 2017; Ogasawara, 2001). With approximate local fit, the intent is to identify 

whether the amount of misfit for an individual element is acceptably small. Typical 

recommendations for elementwise local approximate fit are that standardized residuals are 

between [–0.10, 0.10] (Hu & Bentler, 1995; Goodboy & Kline, 2017; Schreiber, 2008). However, 

this recommendation is motivated by factor analysis and may not apply to models with 

overidentified mean structures where residuals are not bounded. Additional work that refines 
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understanding of elementwise local fit in models that extend beyond factor analysis would be 

beneficial.  

In sum, hopefully this paper has illuminated potential issues and open problems when 

extending approximate fit indices like SRMR that were originally developed for the narrower 

context of covariance structure models. Even though there are few definitive conclusions, 

hopefully researchers will have greater appreciation for nuance required when using any SRMR 

definition to understand the data-model fit when covariates are present. 

https://doi.org/10.1017/psy.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.10


SRMR WITH COVARIATES 33 

References 

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and 

recommended two-step approach. Psychological Bulletin, 103(3), 411–423. 

Appelbaum, M., Cooper, H., Kline, R., Mayo-Wilson, E., Nezu, A., & Rao, S. (2018). Journal 

article reporting standards for quantitative research in psychology: The APA Publications 

and Communications Board task force report. American Psychologist, 73(1), 3-25. 

Asparouhov, T., & Muthén, B. (2018). SRMR in Mplus. Technical Report, Los Angeles, CA: 

Mplus. Retrieved from http://www.statmodel.com/download/SRMR2.pdf 

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of 

covariance structures. Psychological Bulletin, 88(3), 588-606. 

Bentler, P.M. (1995). EQS structural equations program manual. Multivariate Software. 

Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing data analyses. Journal 

of School Psychology, 48(1), 5-37. 

Bollen, K. A. (2014). Structural equations with latent variables. Wiley. 

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & 

J. S. Long (Eds.), Testing structural equation models (pp. 136-162). Sage. 

Browne, M. W., MacCallum, R. C., Kim, C. T., Andersen, B. L., & Glaser, R. (2002). When fit 

indices and residuals are incompatible. Psychological Methods, 7(4), 403-421. 

Cole, D. A., & Preacher, K. J. (2014). Manifest variable path analysis: potentially serious and 

misleading consequences due to uncorrected measurement error. Psychological 

Methods, 19(2), 300-315. 

Dunn, L. M., & Markwardt, F. C. (1970). Peabody individual achievement test. Circle Pines, 

MN: American Guidance System. 

Enders, C. K. (2006). Analyzing structural equation models with missing data. In G. R. Hancock, 

& R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 315-344). 

Information Age Publishing 

Fan, X., & Sivo, S. A. (2007). Sensitivity of fit indices to model misspecification and model 

types. Multivariate Behavioral Research, 42(3), 509-529. 

Goodboy, A. K., & Kline, R. B. (2017). Statistical and practical concerns with published 

communication research featuring structural equation modeling. Communication Research 

Reports, 34(1), 68-77. 

Hancock, G. R., & Mueller, R. O. (2011). The reliability paradox in assessing structural relations 

within covariance structure models. Educational and Psychological Measurement, 71(2), 

306-324.

Hox, J. J., Moerbeek, M., & Van de Schoot, R. (2018). Multilevel analysis: Techniques and 

applications (3rd ed.). Routledge. 

Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to 

underparameterized model misspecification. Psychological Methods, 3(4), 424-453. 

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: 

Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. 

Hu, L. & Bentler, P. M. (1995). Evaluating model fit. In R. Hoyle (Ed.) Structural equation 

modeling: Issues, concepts, and applications, (pp. 76 – 99). Sage . 

Hu, L. T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be 

trusted?. Psychological Bulletin, 112(2), 351-362. 

Jöreskog, K., & Sörbom, D. (1981). LISREL V: Analysis of linear structural relationships by 

maximum likelihood and least squares methods. International Educational Services. 

https://doi.org/10.1017/psy.2024.10 Published online by Cambridge University Press

http://www.statmodel.com/download/SRMR2.pdf
https://doi.org/10.1017/psy.2024.10


SRMR WITH COVARIATES  34 

 

Jöreskog, K. G., & Sörbom, D. (1982). Recent developments in structural equation 

modeling. Journal of Marketing Research, 19(4), 404-416. 

Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137-152. 

Kenward, M. G., & Molenberghs, G. (1998). Likelihood based frequentist inference when data are 

missing at random. Statistical Science, 236-247. 

Kline, R. B. (2023). Principles and practice of structural equation modeling (5th ed.). Guilford.  

Leite, W. L., & Stapleton, L. M. (2011). Detecting growth shape misspecifications in latent 

growth models: an evaluation of fit indexes. The Journal of Experimental 

Education, 79(4), 361-381. 

Little, R. J. A., & Rubin, D. B. (2020). Statistical analysis with missing data (3rd Ed.). Wiley 

MacCallum, R. C. (2003). 2001 presidential address: Working with imperfect 

models. Multivariate Behavioral Research, 38(1), 113-139. 

Maydeu-Olivares, A., Shi, D., & Rosseel, Y. (2018). Assessing fit in structural equation models: A 

Monte-Carlo evaluation of RMSEA versus SRMR confidence intervals and tests of close 

fit. Structural Equation Modeling, 25(3), 389-402. 

Maydeu-Olivares, A. (2017). Assessing the size of model misfit in structural equation models. 

Psychometrika, 82 (3), 533–558. 

Mayo, D. (2018). Statistical inference as severe testing: How to get beyond the statistics wars. 

Cambridge University Press. 

McDonald, R. P., & Ho, M. H. R. (2002). Principles and practice in reporting structural equation 

analyses. Psychological Methods, 7(1), 64-82. 

McNeish, D., & Wolf, M. G. (2023). Dynamic fit index cutoffs for one-factor models. Behavior 

Research Methods, 55(3), 1157-1174. 

McNeish, D., & Wolf, M. G. (2024). Direct discrepancy dynamic fit index cutoffs for arbitrary 

covariance structure models. Structural Equation Modeling, advanced online publication. 

Muthén, L. K., & Muthén, B. O. (2017). Mplus User’s Guide (8th ed.). Muthén & Muthén 

Muthén, B.O. (2004). Mplus Technical Appendices. Los Angeles, CA: Muthén & Muthén 

Muthén, B.O. (1984). A general structural equation model with dichotomous, ordered categorical, 

and continuous latent variable indicators. Psychometrika, 49(1), 115-132.Ogasawara, H. 

(2001). Standard errors of fit indices using residuals in structural equation 

modeling. Psychometrika, 66, 421-436 

Pavlov, G., Maydeu-Olivares, A., & Shi, D. (2021). Using the standardized root mean squared 

residual (SRMR) to assess exact fit in structural equation models. Educational and 

Psychological Measurement, 81(1), 110-130. 

Ropovik, I. (2015). A cautionary note on testing latent variable models. Frontiers in 

Psychology, 6, 163271. 

Rosseel, Y (2012). lavaan: An R package for structural equation modeling. Journal of Statistical 

Software, 48(2), 1–36.  

Saris, W. E., Satorra, A., & Van der Veld, W. M. (2009). Testing structural equation models or 

detection of misspecifications?. Structural Equation Modeling, 16(4), 561-582. 

Savalei, V. (2010). Expected versus observed information in SEM with incomplete normal and 

nonnormal data. Psychological Methods, 15(4), 352-367. 

Schreiber, J. B. (2008). Core reporting practices in structural equation modeling. Research in 

Social and Administrative Pharmacy, 4(2), 83-97. 

Shi, D., Maydeu-Olivares, A., & DiStefano, C. (2018). The relationship between the standardized 

root mean square residual and model misspecification in factor analysis 

models. Multivariate Behavioral Research, 53(5), 676-694. 

https://doi.org/10.1017/psy.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.10


SRMR WITH COVARIATES 35 

Shi, D., Maydeu-Olivares, A., & Rosseel, Y. (2020). Assessing fit in ordinal factor analysis 

models: SRMR vs. RMSEA. Structural Equation Modeling, 27(1), 1-15. 

Shi, D., DiStefano, C., Maydeu-Olivares, A., & Lee, T. (2022). Evaluating SEM model fit with 

small degrees of freedom. Multivariate Behavioral Research, 57(2-3), 179-207. 

Skrondal, A., & Rabe-Hesketh, S. (2003). Some applications of generalized linear latent and 

mixed models in epidemiology: Repeated measures, measurement error and multilevel 

modeling. Norsk Epidemiologi, 13 (2), 265–278. 

Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling. Chapman & 

Hall/CRC. 

Sterba, S. K. (2014). Handling missing covariates in conditional mixture models under missing at 

random assumptions. Multivariate Behavioral Research, 49(6), 614-632. 

Thoemmes, F., Rosseel, Y., & Textor, J. (2018). Local fit evaluation of structural equation models 

using graphical criteria. Psychological Methods, 23(1), 27-41. 

Vonesh, E. F., Chinchilli, V. M., & Pu, K. (1996). Goodness-of-fit in generalized nonlinear 

mixed-effects models. Biometrics, 52 (2), 572-587. 

von Oertzen, T., & Brick, T. R. (2014). Efficient Hessian computation using sparse matrix 

derivatives in RAM notation. Behavior Research Methods, 46, 385-395. 

West, S. G., Wu, W., McNeish, D., & Savord, A. (2023). Model fit in structural equation modeling. 

In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.), pp. 184–205). 

Guilford Press. 

Wu, W., & West, S. G. (2010). Sensitivity of fit indices to misspecification in growth curve 

models. Multivariate Behavioral Research, 45(3), 420-452. 

Wu, W., West, S. G., & Taylor, A. B. (2009). Evaluating model fit for growth curve models: 

Integration of fit indices from SEM and MLM frameworks. Psychological Methods, 14(3), 

183-201.

Ximénez, C., Maydeu-Olivares, A., Shi, D., & Revuelta, J. (2022). Assessing cutoff values of 

SEM fit indices: Advantages of the unbiased SRMR index and its cutoff criterion based on 

communality. Structural Equation Modeling, 29(3), 368-380. 

Yuan, K. H. (2005). Fit indices versus test statistics. Multivariate Behavioral Research, 40(1), 

115-148.

Yuan, K. H., Zhang, Z., & Deng, L. (2019). Fit indices for mean structures with growth curve 

models. Psychological Methods, 24(1), 36-53. 

Zhang, M. F., Dawson, J. F., & Kline, R. B. (2021). Evaluating the use of covariance‐based 

structural equation modelling with reflective measurement in organizational and 

management research: A review and recommendations for best practice. British Journal of 

Management, 32(2), 257-272. 

Zhang, X., & Wu, H. (2024). Investigating structural model fit evaluation. Structural Equation 

Modeling, advance online publication.

https://doi.org/10.1017/psy.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.10


SRMR WITH COVARIATES  36 

 

Table 1 

Comparison of primary features of different possible SRMR definitions for models with covariates 

Label Moments Covariate Specification Numerator Denominator lavaan Mplus 

SRMRV  Marginal Joint Fixed or Stochastic δ2 V(V+3)/2 Default 

(srmr fit measure) 

covariate mean or variance in MODEL, 
INFORMATION = EXPECTED 

*SRMRV
 Marginal Joint Stochastic δ3 V(V+3)/2 srmr_mplus fit measure covariate mean or variance in MODEL 

SRMRVC  Marginal Joint Fixed δ2 V(V+3)/2 –  

C(C+3)/2 

NA INFORMATION = EXPECTED 

*SRMRVC
 Marginal Joint Fixed δ3 V(V+3)/2 –  

C(C+3)/2 

NA Default 

SRMRR  Conditional Conditional Fixed δ2 T(T+3)/2 conditional.x=T, 

srmr fit measure 

NA 

*SRMRR
 Conditional Conditional Fixed δ3 T(T+3)/2 conditional.x=T,  

srmr_mplus fit measure 

NA 

SRMR M  Marginal Joint Fixed or Stochastic δ2 T(T+3)/2 NA NA 

*SRMRM
 Marginal Joint Fixed or Stochastic δ3 T(T+3)/3 NA NA 

 

Note: V = number of total variables in the model including covariates, T = number of focal outcome variables, C = number of 

covariates in the model. V = T + C. SRMR labels without a “*” are based on Bentler standardization that divides by sample standard 

deviations; SRMR labels with a “*” standardized using model-implied standard deviations for covariance and mean elements and 

sample standard deviation for the variance elements. Mplus column refers to Version 8.10, lavaan column refers to version 0.6.17 
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Table 2 

Parameter estimates from three latent growth models fit to the empirical reading assessment data 

 

    Parameter   Model 0   Model 1   Model 2 

    Joint Conditional   Est  SE   Est  SE   Est  SE 

Mean Structure            

 Initial Status 1  
 2.83 0.06  2.83 0.06  2.83 0.06 

 Linear Change 2  
 1.05 0.02  1.05 0.02  1.05 0.02 

 Initial Status on mom_age 13  11  
    0.09 0.03  0.08 0.03 

 Linear Change on mom_age 14  12  
    0.03 0.01  0.03 0.01 

 Initial Status on cog_home 23  21  
       0.03 0.02 

 Linear Change on cog_home 24  22  
       0.01 0.01 

             
Covariance Structure            

 Var(Initial Status) 11  
 0.48 0.08  0.45 0.08  0.44 0.08 

 Var(Linear Change) 22  
 0.04 0.01  0.04 0.01  0.04 0.01 

 Cov(Initial, Linear) 21  
 0.07 0.03  0.06 0.03  0.06 0.02 

 Wave 1 Res. Var 11  
 0.55 0.07  0.55 0.07  0.54 0.07 

 Wave 2 Res. Var 22  
 0.26 0.03  0.26 0.03  0.26 0.03 

 Wave 3 Res. Var 33  
 0.21 0.03  0.21 0.03  0.21 0.03 

 Wave 4 Res. Var 44  
 0.36 0.06  0.36 0.06  0.35 0.06 

             
Model Fit            

 
2     124.11  124.38  125.32 

 df    5  7  9 

Bentler Standardized         

 
SRMRV  

   .163  .136  .118 

 SRMRVC     .163  .144  .130 

 
SRMRR     .163  .165  .163 

 
SRMRM     .163  .163  .163 

Bollen-Bentler Standardized         

  
*SRMRV     .112  .093  .080 

 
*SRMRVC     .112  .098   .089 

 
*SRMR R     .112  .113  .112 

 
*SRMR M        .112  .112  .112 

Note: Est = parameter estimate, SE = standard error, df = degrees of freedom, Res. Var. = 

Residual Variance, Cov = Covariance, Var = Variance   
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Figure 1. Average SRMR values across replications for a latent growth model with four repeated 

measures fit with default options in lavaan and Mplus. The population model has no covariates, 

but null covariates were added. The SRMR value systematically decreases as a function of 

covariates, even though the covariates explain no variance and have no effect.  
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Figure 2. Hypothetical path diagram of conditional latent growth model with two time-invariant 

covariates and four repeated measures. Panel (a) shows a joint and fixed covariate specification 

where the covariates are converted to latent variables whose moments are constrained to sample 

statistics. Panel (b) shows a joint and stochastic specification where the covariates are converted 

to latent variables whose moments are free parameters. Panel (c) shows a conditional and fixed 

specification where the manifest covariates directly predict the latent growth factors. The 

difference between panels (a) and (b) is subtle and is related to whether the means, variances, 

and covariances of η3
 and η4 are fixed or estimated.  
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Figure 3. Simulation results showing average SRMR value across replications  

as the number of null covariates increases. Panel (a) shows the Bentler-standardized 

SRMR definitions and panel (b) shows the Bollen-Bentler standardized SRMR 

definitions. Patterns in simulated data match those in the empirical example where

SRMRR and SRMRM are stable and unaffected when null covariates are added whereas 

SRMRV  decreases sharply and SRMRVC decreases but more moderately. 
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