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1. Introduction

The usual technique for dealing with an abelian W*-algebra is to consider
it, via the Gelfand theory, as the algebra of all continuous complex-valued
functions on an extremally disconnected compact Hausdorff space with a
separating family of normal linear functionals. An alternative approach, outlined
in [2] and [10], is to develop the theory within the framework of Riesz spaces
(linear vector lattices) where the order properties of the self-adjoint operators
play an important and natural role. It has been known for a long time that the
self-adjoint part of an abelian W*-algebra is a Dedekind complete Riesz
space under the natural ordering of self-adjoint operators, but it is only relatively
recently that a proof of this fact has been given that is independent of the Gelfand
theory, and the interested reader may consult [2] or [10] for the details. This
approach is essentially foreshadowed in [6] and provides a very satisfying
introduction to the theory of commutative rings of operators. From this point
of view, the spectral theorem for self-adjoint operators falls naturally into place
as an easy consequence of the spectral theorem of H. Freudenthal. In this paper,
the line of approach via Riesz spaces is developed further and several well known
results are shown to follow as elementary consequences of the order structure
of the algebra.

The author would like to express his gratitude to Professor W. A. J.
Luxemburg for many helpful suggestions relating to the subject matter of this
paper.

2. Preliminary information

We shall adhere to the notation and terminology from the theory of Riesz
spaces as developed in [2], [3] and [4]. If L is a Riesz space, we write/+ =/v o,
/ • = ( - / ) v o , | / | = / v ( - / ) , from which / = / + - / " , | / | = / + + / - for
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every feL. Elements f,geL are called disjoint if | / | A |ff| = 0 and this
is denoted by jLg. If D is an arbitrary subset of a Riesz space L, we set
Dd = {feL :flD}. The Riesz space L will be called Dedekind complete if
every non-empty subset of L which is bounded above has a least upper bound.
A Riesz subspace K of a Riesz space L is called an order ideal whenever, given
f eK, geL with 0 ^ |g | g j / | , it follows that geK. An order ideal K is called
a band whenever it follows from 0 ^ / ^ J, fxeK for each T, that / e X . If D is
an arbitrary subset of L, <D> (respectively {£>}) will denote the order ideal
(respectively band) generated by D. If K is a band if a Dedekind complete Riesz
space L, then L = K ®Kd.

The real linear functional <f> on the Riesz space L is called order bounded
if for each 0 £L ueL, the number sup( | $ ( / ) | : | / | <; u) is finite. The set of all
order bounded linear functionals is denoted by L~. Under the natural defini-
tions, L~ is always a Dedekind complete Riesz space. The functional 4> e L~ is
said to be an integral if 0 ^ wn>[,0 implies <p(un) -»0 as n-» oo. The collection
of all integrals is a band in L~ and is denoted by L~. The element <j> e L is
called a singular functional if ^-Li/' for all \//eL~. We have L~ = L7 ©i-7
A functional <j) e L ~ is called a normal integral if ur,|,r0 implies inft| (j>(ur) \ = 0.
The set of normal integrals is a band in L~ and we set L~ = L~sn © L^. For
any 0 e L ~ , set JV̂  = {feL : \<$>\{\f /) = 0}, iV^is an order ideal in L.If L is
Dedekind complete, then <peL~ iff N^ is a band. If L is Dedekind complete
and 0 ^ (/>, \\i e L~, then {i/'} s {^} iff N^ s N^ and in this case t^= supn(n<£ A "A).

3. Integrals which are singular normal

We take as our starting point an abelian W "-algebra M of operators acting
in a complex Hilbert space Jf. Re M shall denote the real linear space of self-
adjoint elements of M; with the natural definition of partial order, Re M is a
Dedekind complete Riesz space with a separating family of normal integrals.
The operator norm is a Riesz norm on Re M, under which Re M is an abstract
L^-space. Moreover if Az^ ZA in Re M, then the system Ax converges to A in
the strong operator topology. A linear functional <j) e M* (Banach dual) is called
self-adjoint if for each TeM, <f>{T*) = ^(T). The collection of all such <j> will
be denoted by Re(M*). Denote by Mn the closed subspace of M* which consists
of those linear functionals which are continuous in the ultraweak topology of
operators, and set (Re M)n = Mnr\ Re(M*). It is easy to show that RetjVf*)
= (Re M)* = (Re M)~ and that Re(Mn) = (Re M)7 and accordingly the proofs
are omitted. In this section, we examine (Re M)~sn and ask whether every integral
on Re M is in fact normal. It is clear that only positive functionals need be
considered. If 0 g <£ e (Re M)~, it is well known that </> is a normal integral
iff for each family {£,} of pairwise disjoint projections of M, it follows that
4>( S £;) = 2 4>(Et). From this it is clear that if every family of pairwise disjoint

https://doi.org/10.1017/S1446788700019868 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019868


[3] An Abelian Von Neumann algebra 155

projections of M is at most countable, then the notions of integral and normal
integral coincide. In particular, if 2F is separable then every integral is normal.

Suppose now that P is any projection of M. A decomposition of P is a collec-
tion {Pa}a e & of pairwise disjoint projections of M which satisfies supa Pa = P.
The cardinal of the index set sf is called the cardinal of the decomposition.
Recall that a set X is said to have a measurable cardinal if there exists a countably-
additive measure v on the collection of all subsets of X such that v{X) = 1, and
v(F) = 0 for every finite subset F of X. If such a measure v does not exist, then
X is said to have non-measurable cardinal.

THEOREM 3.1. Let <f> ^ 0 be an integral on Re M, and assume that every
decomposition of the identity of M has non-measurable cardinal. Then (p is
a normal integral.

PROOF. Let SS denote the family of all collections {Pfi} of pairwise disjoint
projections P$ such that <j>(Pfi) = 0. 38 is inductively ordered by inclusion, so
there is a maximal such collection {Pa}xes/ say. Let P = sup Pa; then <p(P) = 0. If
not, for A e 2J/ set v(A) = <f>(sup Px : a. e A), and observe that <j>(P) =£ 0 contradicts
the hypothesis that s/ has non-measurable cardinal. It now suffices to show
that the null ideal of <f>, N#, coincides with {P}, the band generated by P in Re M.
Observe that T e {P} iff there exists a positive integer k with | T | S kP, so that
{P} £ N+. Suppose T e N+. By the spectral theorem there exists a sequence
Sn = I ^ i ^ G i " ' in Re M, with a; > 0, Q\n) projections in M such that
S n | | T | in Re M. It follows that (KQS"') = 0 for each i, n. Thus Q\n) e {P} by
maximality of the system {?„}, so that S,, e {P} for each n; hence | T | e {P} since
{P} is a band. Hence {P} = iV^ and $ is normal.

We note that the above result is a consequence of [5], but that the proof
presented here is essentially quite simple. In passing, we observe that Theorem
3.1 answers a question concerning tr-states of von Neumann algebras raised by
R. J. Plymen in [8], since a state of a von Neumann algebra is normal iff its
restriction to each maximal abelian subalgebra is normal.

4. Singular functional

Following the discussion of the preceding section, we will write

(Re M)~ = (Re M)~ © (Re M)~.

LEMMA 4.1. (i) / / 0e (Re M)~ , then N%= {0}.
(ii) Let (Re M)a = {T e Re M: | T | ^ S n | 0=> | Sn \\ | 0} and let (Re M)a"

= {re Re Af: | T | ^ St J,0 => fl St 110}. Tften (Re M)" = (Re M)an = x[(Re M)~].
Consequently, (Re M)° ('s an order Wea/ in Re M.
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PROOF. The proof of the lemma is contained in [4] Theorem 50.4 and
Theorem 53.7 (ii) of Note XV.

DEFINITION 4.2. A non-zero projection P of M will be called an atom if,
for any projection Q of M, 0 ^ Q g P implies either Q = 0 or Q = P.

LEMMA 4.3. Let P be an atom of M; then Pe (ReM)"".

PROOF. If S e Re M satisfies 0 ^ S g P, then S = IP for some real
A, 0 g A ̂  1. Since ABPj,Oiff An|0, it follows that AnPj,O for 0 ^ An ̂  1 implies

THEOREM 4.4. (i) Let P e (Re M f be a projection; then P = S"=iP,
where the P; are disjoint atoms.

(ii) T G ( R e M)"" if and only if T = E .^A,? , . , w/iere f/ie P ; , i = 1,2, -•-,

are disjoint atoms and | A , | - » 0 as i-yco.

PROOF, (i) Let P e (Re M)a" be a projection. Assume that P does not dominate
a single atom. By an inductive argument, there exists a sequence {Qn} of pairwise
disjoint non-zero projections majorized by P. Observe that P ^ Fm

— v ngm2ni nfi- Since | Fm = 1 for each m, this contradicts the fact that
P e (Re M)an. It follows that there exists an atom Pj with 0 ^ P t ^ P. If
P - P t ^ 0, there exists an atom P 2 satisfying 0 ^ P2 ^ P - Px. By the above
argument, this procedure breaks off after a finite number of steps, and (i) follows.

(ii) Let T = S^L^P; , where the Pt are pairwise disjoint atoms and
A; j -»• 0 as i -» oo . If 0 ^ S <; | T \, then S = E,™= i^P, with 0 g sf ^ | A, |,

and I SI = sup s;. It follows readily that T e (Re M)an = (Re M)a. Conversely,
assume 0 <; T e (Re M)an. By the spectral theorem and (i) it follows that
T = E,"=i A,P;, where 0 g A,- g | T |, and each P,, j = 1,2, •••, is an atom.
To show that )H -* 0 as i -» oo, assume limj A( > 0; choosing a subsequence if
necessary we may assume that for some d > 0, A, ^ ^ > 0 for ; = 1,2, •••.
Set Q = E™=1Pf. Let JV denote the positive integers, jSJV the Stone-Cech
compactification of JV and choose a e PN — N. For each S e Re M denote by
/ s the element of /^(N) defined by / s (n ) = (Sxn, xn) n = 1,2, •••, where xne^f
satisfies Pnxn = xn, || xn || = 1. Denote b y / s the extension of / s to a continuous
function on /JJV. Define 0 ^ 0 e (Re M)*, via (/)(S) = / s ( a ) for each S e ReM.
It is clear that <j>(T) ^ 5 > 0. Since r e (Re M)a = (Re M)a", it is sufficient to
show that 0 e(Re M)~. Observe that 0(Q) = 1 = 4>(I) so that 4>{l - Q) = 0.
Write $ = <ps + fa where 0 ^ &e(Re Af)~, 0 ^ </)ne(Re M)~. Since the P;are
atoms and by the definition of <t>, 0 = 0(P! + ••• + Pk) = 0 ^ -1 + Pk)

+ HPi + - + -P*) = W 3 1 + - + Pk) for fc = 1,2, •••. Thus 4>n{Q) = 0; also
0 = <KI - G) = </»s(/ - 2). Hence «£„(/ - Q) = 0 so that j| 0n | = </.„(/) = 0.
Hence <j) e (Re M)~ and the proof is complete.
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We note that the proof of (ii) above shows that if the dimension of M is
not finite, there exist non-zero elements of (Re M)~ . In fact, let {P,}, i = 1,2, •••,
be a system of pairwise disjoint non-zero projections of M. Let $ e (Re M)* be
defined via the P, as in the proof of (ii) above. Let Fm = vn g mPn. Observe that
(f>(Fm) = l for each m. Since Fmlm0, it follows that (j>$(Re M)~. so that the
singular part of <fi is non-zero.

Let A denote the set of atoms in Re M. In general, the ideal generated by
the atoms of Re M is not equal to (Re M)a. However, we do have

COROLLARY 4.5. {A} = {(Re M)an}.

PROOF. {,4} £ {(Re M)""} trivially. On the other hand Ad s (Re M)ad by
the above theorem. Therefore {̂ 4} = Adi 2 (Re M)aii = {(Re M)0}.

We may write Re M = {A} © {A}d. {A} will be called the atomic part of
Re M, {A}d the non-atomic part.

THEOREM 4.6. (i) / / N is a band in Re M, then N is a maximal band
iff there exists an atom P in Re M such that N = {P}d.

(ii) {A}d = n (JV : JV is a maximal band)
(iii) {A} = Re M iff (Re M)~ = [(Re M)a~\x.

PROOF, (i), (ii) follow exactly as in [2], p. 57.

(iii) If (Re M ) ~ = [(Re Mff-, let P e {A}d be a non-zero projection.
Choose x e Jf such that Px = x and consider the normal integral </>(•) = (-x, x).
Since (freA1- it follows by normality that <f>e{A}x. In particular, 0e [ (Re M)"]-1"
so that 4> = 0. It follows that {A}d = {0}, hence {A} = Re M.

Conversely, assume {A} = Re M = {(Re M)a}. Observe that (Re M ) ~ s
([Re M)a]x. Assume 0 <; 0 satisfies </>(T) = 0 for all T e (Re M)a. Write
<p = <ps + <j>n where 0 ^ 0S e (Re M)~ , 0 ^ $„ e (Re M)~. Since </>s vanishes
on (Re M)a so also does </>„. By normality and the assumption that Re M =
{(Re M)"}, it follows that </>„ = 0. Thus (f> = <j>s and the proof is complete.

We conclude this section with some remarks on the case M is finite
dimensional.

THEOREM 4.7. The following conditions on M are equivalent:
(i) Re M = (Re M)an.
(ii) M is finite-dimensional.
(iii) M is a reflexive Banach space.

(iv) (Re M)~ = (Re M)~

PROOF, (I) => (iv) and (ii) => (iii) are obvious.

(iv) => (i). Since the only singular functional on Re M is the zero functional,
Re M = ^[(Re M)~] = (Re M)fln.
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(iv) => (ii). It has been noted above, that if the dimension of M is not finite,
then there exist non-zero elements of (Re M)^n-

(iii) => (iv). If M is reflexive, assume M* # M*. By reflexivity of M and the
Hahn-Banach theorem, there exists 0 # T e ReM with T e i M* . In particular,
for each x, yztf, (Tx, y) = 0. Hence T = 0 which is a contradiction. #

5. The band of normal integrals

That the normal integrals play a key role is clear from the fact that Re M is
precisely the (Banach) dual of the band of normal integrals on Re M. We show
that this follows from the fact that Re M is a perfect Riesz space. If x e $P, we
will denote by cox the normal integral given by T -*(Tx, x) for T e ReM.

For T e R e M , 0e (Re M)~ set v(T)(<£) = (f>(T). It is clear that
v : Re M -»(Re M)n, „ is linear, one to one and preserves partial order. Since
the Dedekind complete Riesz space Re M has a separating family of normal
integrals, it follows from [3] Theorem 28.4, Note VIII, and the uniform
boundedness principle that v(Re M) = (Re M ) ^ ~ . In the terminology of [3],
Re M is a perfect Riesz space. Further the mapping v is an isometry, which follows
by observing that, for T e Re M,

fl T I = sup{|(Tx,x)

g 1} = || T fl.
We will identify Re M with its image in (Re M)~,~ under the mapping v. These
remarks establish the first part of

THEOREM 5.1. (i) Re M = (Re M)~~ •

(ii) Re M = (Re M)~*.

PROOF OF (ii). Observe that the norm of the Banach space (Re M)~ is a
Riesz norm which is additive on the positive cone of (Re M)~ and so (Re M)~ is
an abstract L-space. It is well known that every bounded linear functional on
an abstract L-space is a normal integral so that

(Re M)~* = (Re M ) ~ ~ = (Re M)~n~ = ReM. #

It has been shown by R. Pallu de la Barriere [7] that every normal integral
on Re M is of the form T -> (Tx, x) for some x e JP. We now proceed to an
elementary (i.e. non measure-theoretic) proof of this result.

It has been noted earlier that if 0 g <j> e (Re M)~, then N^, is a band in Re M.
Writing Re M = N^ ® JV ,̂ denote by E^ the component of the identity in the
band JV^. The projection E$ will be called the carrier projection of <j). It is easily
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shown that if <f> = cox for some x e #F, then £^ = E% where M' denotes the
commutant of M, and E^ denotes the orthogonal projection (in M) onto the
closure in Jf of the linear subspace {M'x}. It follows from some earlier remarks
that if 0 ^ & t^e(Re M)~ then $ e {</)} iff£^ g E+.

The next lemma is well known (see for example [9]).

LEMMA 5.2. Let 4>, \j/ be positive normal integrals on Re M which satisfy
0 ^ ^ ^ 0. T/im; exists tfe ReM wif/j 0 ^ H <? I such that \p{T) = 4>{TH)
for all TeM.

If y, ze Jtf, we shall write wv~ coz if (Ty, y) = (Tz, z) holds for each TeM.
£ f will denote the projection (in M') onto the closure of the linear subspace
{Mz} in Jf.

LEMMA 5.3. Let xeJH?. Then

£ f = sup{£f : coz ~ wx}

where the supremum is taken in the complete lattice of projections of the
W*-algebra M'.

PROOF. If z e ^ f satisfies a>2~ <ox, then E^' = Ex". Since M is abelian,

any projection of M' which satisfies F ^ £ f for each zeJf with coz~ cox. For
each unitary operator ^ s M ' , co^^co^. Thus FC/x = Ux for each unitary
£/eM' SO E^'-^F and the lemma follows.

We now describe the band of normal integrals on Re M.

THEOREM 5.4. (R. Pallu de la Barriere) Let <j> be a positive normal integral
on Re M. There exists yeJti? such that <j> = cay.

PROOF. Let E^ be the carrier projection of <j>. By [1] p. 19, there exists x e /
such that E^' = E^. It follows that 4> belongs to the band generated by cox in
(Re M)n so that (j> = sup(0 A na>x), n = 1,2, ••-. Note that the sequence
\j/n = (p f\ncox has the following properties: (i) (j)^„, (ii) 0 ^ <j>n ^ ncox,
(iii) for each O ^ T e M , ^(T) = l i m ^ ^ ^ T ) . By lemma 5.2, there exists a
sequence {//„} of positive operators of M, which we may assume satisfy
HJJ-Ef) = 0, such that 4>n{T) = (THnx, Hnx) for each TeM and each
n = 1,2, — . Let z e / satisfy ft>z~wJc. Then also 0n(T) = (THnz, Hnz). Since
^nf „ it follows that Hn£f ^ Hm£f for n ^ m, so that by lemma 5.3
#„££*' ^ HmEf for n ^ m. Thus Hnf „. From < (̂/) = lim,,.^ | Hnx \\2, it follows
that the sequence of real numbers {| Hnx |2} is a Cauchy sequence. We now
show that the sequence {Hnx} is a Cauchy sequence in Jf. In fact, for n ^ m,
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I Hnx - Hmx |2 = | Hnx f + 1 Hmx j]2 - 2(Hnx, Hmx)

= \\Hnx-Hmx\\2

-> 0 as n, m -* oo .

Let y = limn_00Hnx. For each TeM,

<KT) = \im(THnx, Hnx) = (Ty, y)

and the proof is complete.
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