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ABSTRACT. The problem of improving the spatial resolution of ice-sheet
elevations derived from satellite-altimeter observations is investizated theoretically
in two dimensions. An equation for the echo is described that allows the elevation to he
determined by linear operations on the echo. An approximate solution of the equation
is explored to illustrate the behaviour of the solution. The modifications necessary to
consider a regularly sampled solution are described and the effects of echo luctuations
on the reconstructed surface are considered. Numerical examples are described. It is
shown that, in general terms, the resolution may be limited by sampling or by echo
fluctuations but that in the case of current practical measurements it is the sampling
that determines the resolution. This resolution is smaller than has been considered
possible hitherto. Limitations of the method are discussed together with extensions to a
wider class of problems including three-dimensional reconstructions.

1. LIST OF SYMBOLS

c Velocity of propagation

E{.} Expectation operator

I Elevation of the surface above the xaxis
fi Sce Equation (25)

S See the first paragraph of section 1]

h Satellite altitude above the x axis

k Spatial radian frequency

K See Equation (5
[\.].‘

N Number of echoes summed by the altimeter

See Equation (10

P Echo power

P See Equation (16)

q Transmitted power envelope

gr  Filtered solution to Equation (2)

t Time

Ay Temporal sampling interval

A, Spatial sampling interval

(4 Angle subtended at the altimeter by illuminated area

See sentence [ollowing Equation (11)

@ See paragraph preceding Equation (18)

o See paragraph succeeding Equation (18)

Y Radius of area illuminated by the altimeter
I See Equation (19)

J Signal to noise ratio

w  Temporal radian frequency

2. INTRODUCTION

The
satellite altimetry has exploited a theoretical under-

measurement ol the elevation of ice sheets by

standing (Brown, 1977) and experimental design
(McGoohan, 1975) dating from the 1970s to determine
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the shape of the sea surface. Ice-sheet elevations.
however, have scales of fluctuation absent from the sea
surface. In consequence, the present methods of
deduction of point clevations from altimeter echoes
Brenner and others, 1983; Martin and other, 1983)
introduce errors that depend in a complicated fashion on
the shape of the surface and the instrument parameters,
and which have never been described in any general
way. It was observed a long time ago by Laughton
(1983) that these limitations might be overcome by
changing the way the elevation is deduced from the
echoes. In a recent paper (Wingham, 1995: herealier
referved to as (1)), I showed that it was possible with a
change in the method used to reduce the echoes to
determine the spatial average of the elevation of a region of
an ice sheet from satellite altimetry. In this paper, T turn
to a consideration ol the elevation itself,

The question this paper is concerned with is: what
limits the spatial resolution of ice-sheet surlace elevations
that may be derived [rom satellite altimeter observations?
In common with many geophysical problems, one may
suppose this is generally dependent on the spatial and
temporal sampling and on the magnitude of random
fluctuations. In the treatment here, a two-dimensional,
regularly sampled version of the problem is studied
theoretically, By restricting the investigation to this case.
analytic approximations are possible that allow a simple
discussion of the role of sampling and echo uctuations in
limiting the resolution. Some numerical calculations also
permit diflering surface geometrics to be investigated and
some idea can be formed of the likely limits of current
practical altimeter systems.

The paper introduces in section 3 an approximate
expression for the echo that allows a linear equation
between and the echo to be

the surface elevation

k13
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established. The character of the solution to this
equation is discussed in section 4, where it is illustrated
that, in the continuous case, the solution is limited by
random [luctuations. In consequence, in section 5, a
filtered solution is discussed that one anticipates will

reduce the effect of fluctuations at the expense of

resolution. The way in which sampling affects the
resolution is introduced in section 6. In section 7, some
simple expressions are given for the variation of the
filtered solution in the presence of echo fluctuations and
the balance hetween sampling-limited and fluctuation-
limited resolution is described. Some numerical exam-
ples are given in section 8 and it is illustrated that with
practical systems the resolution is sampling-limited at
around 500 m. This is a considerable improvement on
the situation hitherto. In section 9 the inability of the
simple treatment given here to account properly for the
accuracy of the reconstructed elevations is discussed.
Further limitations and extensions of both the model and
reconstruction method are described in section 10. A
brief discussion of how our method compares with
previous methods and how best these methods may be
tested with measurements is given in section 11. Finally,
in section 12, I draw some conclusions.

In this paper, detailed derivation of many results is not
given. This is partly for the sake of brevity but also
because these derivations follow standard routes in the
theory of signals and use only standard integrals. Good
texts on background signal theory can be found in Proakis
and Manolakis (1988) and Papoulis (1965). and a good
book of integrals is Gradshteyn and Rhzhik (1980).

3. A MODEL FOR THE ECHO FROM A
ONE-DIMENSIONAL SURFACE

The general arrangement is shown in Figure 1. A list of
symbols is given in section 1. An altimeter lies in the
plane y =0 at a height h above the raxis. It transmits a
pulse ¢(t) that travels out towards the surface at velocity
c. The pulse is spatially modulated by the antenna in
such a way that the incident power crossing the x axis at
the point # = s when the altimeter is at the point £ =v
varies as exp[—(v— 5)2/72]. The parameter -~y deter-
mines the spatial extent of the region illuminated by the
altimeter, which subtends at the altimeter an angle of
order

o=z 1)

The locus of points at which the power is a maximum as
the echo travels outwards is termed the boresight of the
antenna. With this particular description, the boresight is
normal to the xaxis. The intersection of the boresight
with the 2 axis is termed the nadir point. The surface is
assumed to vary only with z and the function f(z) is
termed the surface elevation. Power echoed from the
surface is returned to the altimeter, forming an echo p.
We assume the surface is homogeneous in its scattering
behaviour and that, within the range of angles illum-
inated by the altimeter, the scattering coeflicient is
constant. We ignore, lor simplicity, energy scattered
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Fig. 1. The geometry of a pulse-limited altimeter

measurement over a topographic surface. The altimeter at
a point H and altitude h transmits a pulse that radiales as
a thin shell modulated by a beam function that has a radius
~ on the xaxis. As the shell interacts with the surface,
echoes are scallered and some of the energy returns lo the
salellite. The thickness of the shell is the range resolution
of the altimeter. The thickness is small compared with the
ranges of the surface illuminated by the beam and, as a
result, the echo duration is usually considerably longer than
the range resolution.

from beneath the surface although this extension is
touched on later.

In (I), T have discussed in considerable detail the
application of the Fresnel and related approximations to
a general expression for p in the three-dimensional case.
Applying these same arguments to the simpler case
considered here, one may obtain the non-dimension-
alized expression

1 t ca -}
pla.t) —p ! _:rr—\/a/ d“rf' ds oxp{— ;—;]

(2-r-ESTY 5 2

for the echo p at an altimeter location x and time ¢. In
Equation (2), the time origin is taken to be the instant an
echo reaches the altimeter from the nadir point. For cases
ol practical interest, Equation (2) is good to O(10 "J] n
the integrand.

The parameter g in Equation (2) is termed the signal-
to-noise ratio (SNR). The normalization of the echo in
Equation (2) is arranged to give it a maximum value of
unity when f = 0 (see Equation (22)), and therefore the
terminology SNR is consistent with that of altimeter
engineers, Because of this normalization, the back-
scattering coellicient does not appear explicitly in
Equation (2). The parameter j accounts only for
additive noise and not for the echo fluctuations (termed
speckle) which are dealt with in section 7.
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4. THE SOLUTION OF EQUATION (2); ITS
CHARACTER AND IMPLICATIONS

The elevation [ enters non-linearly in Equation (2).
However, the elevation may be determined in a linear
fashion in the following way. The pulse function g may be
defined in such a fashion that

/ dtq(t) =1 and f . dttq(t) = 0. (3)

O oc

The lefthand relation of Equation (3) is required for the
echo to bhe of order unity. With Equation (3), one has

x £ 4 .
flz) = —gf dttq T +M . (4)
20
Equation (2) is a linear integral equation for the function
q(7+2f/e). Il this equation can be solved, it can be
solved by a linear operation on the known function
p—put.
surface elevation may be found using Equation (4).
However, Equation (2) is an integral equation of the

With the function determined this way, the

first kind. In consequence, the problem is ill-posed; it is
not suflicient, for example, for p — ™' to be square-
integrable for a solution o Equation (2) to exist. This
remains true when one changes the problem in some way,
such as the extensions we discuss later; by, for example,
extending the analysis to three dimensions, particulariz-
ing it to discrete observations of the echo, or restricting

¢

the range of time integration in Equation (2). In short, it

is fundamental to the problem. This ill-posed nature of

the problem has the immediate consequence that, in any
practical situation, the error in the solution for f is
determined by {luctuations in the observations.

The ill-posed nature of the particular statement of the
problem considered here is exposed by developing a
formal solution to Equation (2). The kernel of Equation
(2) is temporally and spatially shilt-invariant and a
formal solution of Equation (2) may be developed very
simply using Fourier methods. Proceeding this way, one
has for the Fourier transform of the kernel in Equation (2)

exp [L" l ]

X 22\ 2
ch

Ahiniy? chy?k?
=————exp|-——|. (5)
(ch + iwy?) (ch + iwy?)

ik

l x Lo ol .
— dt daze™=
mveh Jy / ~

Much can be learned concerning the problem from the

character of the funcuon on the righthand side (RHS) of

Equation (5), which we now denote by K. One has

K (w. k)/K(0,0) ~ oxp{—(’yk)g] W <L ﬂ (6)
2

K (w.0)/K(0,0) ~ L w >> Lh (7)
w ek

e 1 5 ] chk\?* )

K(w. k)/K(w,0) ~ exp|— 7?-) (1 + [E)
1

S (H)
A
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For small w, one sees from Equation (6) that K is
independent of w and is simply the Fourier transform of
the illumination function. For large w. one sees from
Equation (7) that K decreases as w ', From Equation
(8), for fixed w, one sees that K is a Gaussian function
modulated with a quadratic phase. The width of this
Gaussian function depends on the angle € in Equation
(1). I' one regards an exponential and any product
containing one as negligible if the real part of its
argument is less than 4, then an error of O(10 °) is
introduced which is consistent with the approximation of
Equation (2). With this approximation, K may be
regarded as negligible outside the region defined by

—|—| < 8. (9)

K is restricted to a limited region of the {w, k} plane
lying between the lines given by Equation (9). Energy in
the function g(ft+2f(x)/c) that transforms to regions
outside this line will be strongly attenuated in the echo
field p. If one excludes this energy from a solution, one
may suppose the error due to fluctuations will be smaller;
however, the solution for g(t + 2f(x)/c) will now contain
an error as a result of the exclusion, i.e. the solution will
approximate a filtered version of ¢(t + 2 f(x)/e), which we
shall denote g;.

It is worth pointing out that the limiting of the
function K has a simple physical explanation. A plane
wave, travelling with velocity ¢, whose wave front makes
an angle # with the x axis maps to a point in the {w, k}
plane lying on one of the two lines given by Equation (9).
The limiting of K arises from the limited angular
illumination of the altimeter; one supposes. then, that
the (albeit non-linear) effect on the echoes of variations of
elevation making angles larger than @ with the 2 axis will
be strongly attenuated, We shall illustrate later that this is
indeed the case.

5. A FILTERED SOLUTION FOR g(t + 2f(z)/c)

The problem is therefore one of filter design. Were one to
treat it as a problem of optimal design, then it is a
complicated one, partly because Equation (2) is non-
linear in the unknown, and partly because a principal
luctuation contaminating altimeter echoes is non-linear
in the known, as we discuss later. However, my purpose
here is to explore the problem, and I wish to keep the
treatment simple and analytic as far as possible. There-
fore, I shall introduce a known filter which serves at least
for the purpose of illustration. More general approaches
will be discussed later.

Rather than operate on p — ;1"1

with the inverse of K,
I shall use instead a filter Ky defined to satisfy
W 2% R4

Ky differs from the inverse K=' by the lunction on the
RHS of Equation (9). This function is the filter that.
acting on q(t + 2f(x)/¢) results in the function ¢. With
our approximation concerning exponentials, it makes

415
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negligible the spectrum of gy in those regions of the {w, kj
plane lying outside the region defined by Equation (9)
and

|u.-‘

< 20. (11)

The parameter ¢ is a [ree parameter that determines the
temporal band width of gp. Its value we shall discuss in the
next section.

In broad terms, it is apparent from our discussion of
the behaviour of K that Ky attenuates energy of the
spectrum of g(t + 2f(x)/e) that is poorly represented in
the echoes.

6. THE CONSEQUENCES OF SAMPLING

We now consider the consequences on the reconstruction
of regularly sampling the echo in time and space. An
advantage of restricting the treatment to two dimensions
is that this may be a reasonable approximation to the
practical situation. Sampling has two consequences: it
introduces the possibility of non-uniqueness into the
reconstruction and it determines the importance of echo
fluctuations on the calculation of g In this section, we
deal with the first of these; in the next section we deal with
the fluctuations.

As is well known from sampling theory, a function
may be reconstructed exactly from its regularly sampled
form, provided it satisfies Shannon’s sampling theorem.
In the present case, one may state this as follows: if the
echo is sampled with temporal and spatial sampling
intervals A; and A, respectively, it may be determined
uniquely provided its spectrum falls entirely in the box
centred on the origin in the {w.k} plane defined by the

equations
7l_ &
fre=ck X (12)
and
s
k=+—. 13
7. (13)

For most practical purposes, the temporal behaviour of
the function ¢ can be regarded as satisfying this theorem.
Since Equation (2) describes a temporally shift-invariant
operation on ¢, this is true of the echo too.

The echo spectrum is the product of the spectrum of
the function g(t+2f(x)/¢) with the function K, and
therefore the echo spectrum is also limited by the
behaviour of K, in addition to that of g. We have
determined that K is limited to the region falling between
the lines described in inequality (9). One may therefore
also assume that the spectrum of the echo is negligible
outside the region defined by Equation (12) and

Y (14)

2l m

Thus, were one to choose the spatial sampling interval to

satisfy A, < eA;/(26), the echo may be regarded as
satisfying Shannon’s theorem in both dimensions.

Practical altimeter systems satisfy this requirement. In
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addition, however, an altimeter sums cach group of N
consecutive spatial samples and desamples the result. (In
fact, the altimeter summation introduces time shifi
between each spatial sample in the sum. We assume
here the effects of these shifts are negligible.) The
desampled spatial sampling interval NA, is typically
larger than c¢2;/(26) and the situation arises that is
illustrated in Figure 2. Generally, it will not he possible to
determine the echo spectrum uniquely. However, as
Figure 2 illustrates, there remains in this case a region of
the {w, k} plane defined by inequalities (9) and

in which the echo spectrum may be uniquely determined.
This region is shown hatched in Figure 2. A numerical
example may help to illustrate this, For the parameters
given in section 7, taken as describing the ERS-I
altimeter in its ice mode ol operation, the parameter
e /(20) ~ 100, while A, equals 3, and one could take
Shannon’s criteria as satsfied. On the others hand, NA,
equals 250 and, in general, the desampled echo field will
be aliased.

This behaviour may be described using the results of
sampling theory. One has that the function

A,

2NA:

pl & | ¥ o

-TA
A, mNA,) O

T/(NA,) k A,

Fig, 2. The effect of sampling on the spectrum of the
altimeter echo. In practice, the echo spectrum may be
regarded as negligible outside of the box in the {w, k}
plane bounded by the Nyquist [requencies in time and
space. This is because the spectrum is negligible outside the
region described by inequality (9) and is limited by the
transmitled pulse lo lie within the temporal Nyquist
Srequency w/ 2. The spatial desampling of the altimeter
echo will lead generally to aliasing about the spatial
Sfrequency (w/NA,). For example, the energy in the
triangular region A will be mapped to energy in the
triangle A, rectangle B to B' and triangle C to C and so
on. However, a limited region of the plane, shown hatched
in the figure, remains unaffected by aliasing. If the echo
spectrum &5 limited to this region, with a filter that
attenuates temporal frequencies outside the region
|w| € en/(2NA,H), Shannon’s resampling theorem
may be applied to the filtered spectrum. Note that the
Sgure is not o scale.
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Bt ) = A, Y Barle—ndo)/A;)

i m(x —nd,;)
= ’ o sin(w(x — mdy) [ Ay) ,
,"ij)(fff.ﬂ,. nd,) T (16)

has a spectrum negligibly different to that of p in the
region centred on the origin and bounded by inequalities
(9) and (15

We have noted that the spectrum of g is limited by the
parameter o to the region described by inequalities (9)
and (11). If one chooses the parameter o to satisfy

CT

< RS S
7>1INA8 (17)

then on substituting Equation (17) into Equation (11)
and comparing the result with Equation (13). one sees
that the spectrum of ¢ is limited to the same region
bounded by inequalities (9) and (15) on which the
spectra ol p and p may be regarded equal. It then follows
that the result of filtering p with Ky is negligibly different
from that of filtering p with K.
Equation (17). then, one may replace p with p in
determining the filtered solution gy.

One does not have to acknowledge explicitly the
desampling in determining p via Equation (16). This is
because, with the restriction of Equation (17), Kp
spatially filters the echoes. In doing so, it accounts (with
minor dillerences from the practical situation) for the
summation of the echoes and makes the spectrum of g
negligible outside the region |k| < 7/(NA,). With the
latter accomplished,
whether one uses p(t, A,) or p(t. NA,) 1o reconstruct p.
We use p(t, A,) because it is then unnecessary in the next

it is then theoretically immaterial

section to treat the fluctuation reduction resulting from
the summation of the echoes separately from the
reduction resulting from filtering the echoes with Ky

7. THE CONSEQUENCES OF NOISE

An altimeter echo is a random Nuctuation. The expression
given in Equation (2) is the expectation of this
fluctuation. The interpolated function p is also the
expectation of a process ¢ derived from replacing the
mean ccho p with the random fluctuation in Equation
(16); that is

E{p} =p. (18)

Il one determines a function ¢ by operating on ¢ — !
with the filter K¢, it too will luctuate randomly. Since iy
is linear, one has from the result of the previous section
that the expectation of ¢ is the filtered solution gp. T'he
magnitude ol the [luctuations of ¢ can be characterized
by the number 1 defined by

2
qr

s = (19)
E3 (¢ - E{@})‘}

https://doi.org/10.3189/50022143000016282 Published online by Cambridge University Press

With the proviso of
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A small value of i tells one that the operation of Ky on
¢—p' will teach us little concerning gp; it will be
submerged in fluctuations.

To determine the number 7, one needs the correlation
function of the sampled echo. In practice, the sampling
intervals of an altimeter
1982) to make

are chosen by design (Walsh,

E{p(zi,t;) (2, tm)}

= (P, 7)) (w1 ) (1 + 8181 ) (20)

a good approximation to the correlation lunction when
@—p
echoes from ice sheets have statistics that are closely
exponential. The difficulty of determing 1 (or any other
measure of the fluctuations of ¢) is exposed by Equation
(20): the fluctuations of

is exponentially distributed. and the altimeter

which depend on the
correlation function in Equation (20), are non-linearly
dependent on p (since, [rom Equation (16), p=p at the
sample instants), which is, in turn, non-linearly depen-
dent on the elevation f. This makes a general theoretical
exploration of the behaviour of 5 difficult.

The only way of making some analytic progress whilst
retaining a rough idea of the behaviour of the fluctuations
is to replace pin Equation (20) with a constant. Since p is
arranged by definition to be of order unity, we set this
constant equal to 1+ g ' With this replacement, the
correlation function in Equation (20) is stationary and
one has from well-known results in sampling and random
variable theory that

dw

LA (1 —p) /4

472

£fto- st}

(7 A
w4, _
4 / (Ui’](]‘(u.‘ A')]\'[ (w f\)

A4, (17; / (u[ oK (w, k) R (w, k)

AEAAM Iy (21)
1v/275(ch)’ P

where the first dppln\mmuon follows because we have
assumed that Ky is negligible outside the limits of the first
integral on the RHS, and the second uses the definition
Equation (10) of K and ignores terms in the stated small
parameter. This is a good approximation for practical
systems,

To give an expression for 7 one needs to determine
the filtered solution gr. This again is diflicult to do in
any general way because the elevation enters Equation
(2) non-linearly. Since we have approximated roughly
the denominator on the RHS of Equation (19), we will
deal with the numerator in the same spirit and consider
the value of  when the elevation f is identically zero.
How one may understand the result we then obtain for
11 a more general context will be discussed by example
later. In this simple case, Equations (2) and (16)
simplify to

417
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0 t<0
o 4 exp[_r-f_ﬂ £ (22)
=

The approximation of the second line assumes the
duration of pulse function g short in comparison with
that of the echo. This is characteristic by definition of
pulse-limited altimetry. With Equation (22) and the
definition Equation (10) of KF. one obtains

= —2 [ fz"z] (23)
(t) = ——————exp|— .
- 2(2m2chy?)’ : 4

When f = 0, the surface is plane and coincides with the
xaxis. Equation (23) describes a function independent of
x, symmetric about the zaxis. Its maximum coincides
with t = 0. Substituting from Equations (21) and (23)
into Equation (19) then yields

5 wch

T BV2rAiA (1 — ) oty

1

If Equation (17) is satisfied with equality, ¢ may be
eliminated from Equation (24), and the result given in
terms of altimeter-operating parameters alone.

Equation (24) is subject to an important proviso,
other than the limitations of the assumptions leading to its
derivation. In practice, spatial and temporal sampling
intervals are chosen by design to be the smallest possible
that allow the approximation Equation (20) of the
correlation function. One is not free to make Ay and A,
as small as one nceds to make 5 as large as one wishes,
which is the implication of Equation (24). In fact, for a
given altimeter design and orbit altitude, the only free
parameter available to increase the value of 77 is .

Making the parameter o smaller, however, does not
only change 7. As we noted in section 6, o also determines
the spatial band width. Generally speaking, the spatial
resolution is limited to the reciprocal of this band width.
Il Equation (17) is satisfied with equality, so that o takes
its maximum value, the reciprocal spatial band width is
INA,. If ¢ is made smaller, to reduce the effect ol echo
fluctuations on ¢ then one may anticipate the spatial
resolution will increase in proportion.

It is the character of the continuous problem that the
resolution is fundamentally limited by the echo fluctuations.
When the echo field is sampled, this view needs to be
modified, because the spatial-sampling interval also limits
the resolution. In the practical situation, one or other of these
processes may dominate. Il Equation (17) can be satistied
with a usefully large value of 7. one may regard the spatial
resolution as sampling-limited. On the other hand, il one
needs a smaller value of o to obtain an adequate value of 17,
one may regard the spatial resolution as fluctuation-limited.

https://doi.org/f]bl.ﬁ89/5002214300001 6282 Published online by Cambridge University Press

8. NUMERICAL RESULTS

The discussion of section 7 gives some insight into the
effect of echo [uctuations on the reconstruction. How-
ever, the problem dealt with there is trivial to the extent
that were it the case that f = 0 there would be no cause to
improve the spatial resolution. This is the case in practical
altimetry of the ocean surface and some limited areas of
ice sheets. When topography is present, one needs to have
a more general idea of the effect of sampling and
fluctuations, and in this section we look at some
numerical examples.

Satellite altimeters orbit the Earth at altitudes h of
around 1000 km. They illuminate an area with a radius 7
of 10km or so. The temporal sampling interval A, of the
radar may vary but we will take 10ns. The spatial
sampling interval A, varies but 3m is typical. It has
become customary to have designs with N equal to 50,
This selection of parameters may be taken as describing,
for example, the ERS-1 altimeter in its ice mode of
operation. In the following examples, we use these
numerical parameters.

Figure 3 shows the reconstruction gp of a square wave
surface. To obtain this figure and the next, Equation (2)
was used to calculate the echo, Equation (10) to define
Ky, Equation (16) to determine p and Equation (17) was
satisfied with equality. The surface has a wavelength of
10km and an amplitude of 20m. In this figure and
succeeding ones, the time coordinate has been converted
to an equivalent elevation. The overlap between the
upper and lower surfaces occurs over a kilometre or so.
The spatial resolution 2NA, is 500 m for this example.
For this illustration, the reciprocal spatial band width
underestimates somewhat the horizontal resolution. This
is not surprising since, as Iigure 2 illustrates, most of the
energy in the spectrum of g is limited to a spectral band
width rather less than 7/NA,.

~5.0 —25 0.0 25 50
300 L . ! 300
041
B ¢-20.
200 a 4200
£ 100 i 10.0
§ ¥ 08 :
B 0.0 e 00
é ' 0.8 ’
S 0.6
£ 10,0 - ——10.0
> 0.4
~200-5 T 20,
5 o
-30.0 T T T =30.0
-50 —-25 00 25 50

Horizontal Distance (km)

Fig. 3. The function gp reconstructed from a square-wave
surface with an amplitude of 20m and a wavelength of
10km. The instrument parameters used for this illustration
are given in the text. The amplitude of qr is normalized to
a maximum value of unity and the scale is linear. The
igure illustrates that the edges of the reconstructed square
wave are more gradual than the 300 m spatial band width
suggests.
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With the wvalues we have assumed, the range of
illumination angles is 0.57". As we remarked at the end
of section 4, one may anticipate that surfaces with
gradients larger than this angle will be poorly imaged.
In Figure 4 we show the result of migrating a sinusoidal
surface with an amplitude of 20m and a wavelength of
10 km. The maximum gradient of the surface is 0.72°. The
parts of the surface with highest gradients are not imaged

in Figure 4. The contours in the region of higher gradients
break up due to interference from the reconstruction of
the lower-gradient regions.

25 50
! 300
-20.0
E ~10.0
8
c
&
B 00 ~0.0
x|
S 0.1 N
£ —10.0 -—10.0
2 02
P _
~20.0- . —-20.0
o8
-30.0 T | T -30.0
~5.0 -25 0.0 25 50

Horizontal Distance (km)

Fig. 4. The function qp reconstructed from a sine-wave
surface with an amplitude of 20m and a wavelength of
10 km. The instrument parameters used for this illustration
are given in the text. The amplitude of gy is normalized (o
a maximum value of unity and the scale is linear. The
JSigure illustrates how the elements of the surface with
gradients larger than half the range of illuminated angles
are poorly imaged by the altimeter and ave lost in the effecls
Srom the parts of the surface with lower gradients.

The failure to image higher gradients is not a result of’
the procedure. Pulse-limited altimeters are fundamentally
insensitive to slopes outside their range of illumination
angles. 1l any method is used (o generate continuous
surfaces from alumeter echoes, the location of the surface
when its gradient is larger than the range of illumination
angles is an assumption of the method.

Figures 3 and 4 were computed by taking the spatial
resolution to be sampling-limited. s this in fact the case
for these examples? Taking ¢ as 3 x 10%ms ' and the
SNR as oo (that is, assuming the speckle [luctuations are
the dominant source of randomness). the simple calcul-
ations of section 7 give a value of ) of 33 from Equations
(24) and (17). Figure 5 shows the result of an exact
calculation of the function 1 for the square-wave surface
whose reconstruction is shown in Figure 3. The peak
value of 7 in Figure 5 is 42 whereas our approximation is
33. The contours of i are similar to the contours of the
signal in Figure 3. except that in Figure 3 the negative
cycles ol the signal are hidden. The noise is approximately
stationary but in detail one notices that the higher parts of
the surface have higher values of . The signal term in
Figure 3 does not show this dependence and so it is
associated with the fluctuations. It is not hard to explain.

3
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Fig. 5. The function 1) for the reconstruction of the square
wave shown in Figure 3. The paramelers used for this
illustration are the same as in Figure 3. The negative cyeles
of lhe migration are suppressed in Figure 3 but appear
positive in the function . With this difference, comparison
of this figure with Fiewe 3 illustrates that the noise is
approximately stationary. although a small dependence on
vertical elevation Is apparent.

The echoes from lower elements of the surface have higher
levels of fluctuation than our simple estimate assumes,
because they have additional contributions from echoes
[rom higher elements of the surface. The converse is true
for the echoes from the higher elements of the surface.
Thus, we may anticipate that higher elements of the
surface have rather higher values of 7 than our simple
expressions describe and lower parts of the surface rather
lower values of 7. This is what we sec in Figure 5. In the
case of the square-wave surface, the resolution is
sampling-limited.

However, the approximations of section 7 describe a
situation where the surface has low gradients in regions of
extent horizontal he
function i decreases rapidly as the slope increases due
to the signal loss that is illustrated in Figure 4 and here
the approximations of section 7 are less uscful, Figure 6

greater than the resolution.

shows the result of an exact calculation of the [unction 5
for of the The
contours of 7 coincide approximately with the signal
contours of Figure 4 and the

the reconstruction sinusoidal surface.
high-low asymmetry of
Figure 5 is also apparent. However, the maximum value
of 7 in Figure 6 is around half’ that of Figure 5. The
higher-slope regions of the surface disappear into the noise
at slightly smaller slopes than thev disappear in Figure 4.
I'or this example, the ability to image slopes is
fluctuation-limited. One sees then that the importance
of sampling and fluctuations in determining the resolution
is not quite straightforward in the practical situation; it
will depend on the character of the surface,

9. A SOLUTION FOR THE HEIGHT; A LIMIT-
ATION OF THE PRESENT TREATMENT

One is principally interested in the elevation f. Thus far,
we have only considered an approximate solution for the

function (74 2f/c). What is the relationship between
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the elevation f and the approximate solution f; resulting

from the approximation ¢ Ignoring the effect of

fluctuations, this relation can be obtained by replacing
g with g in Equation (4):

c

o0 e} N

(TS oy e = / e
81 —x —ac
2f(x — g

T Qo E O )
@il =T =i He=s) / dwe ™7 / U
¢ e s

-Kp(w, k) K(w, k)

1 - & e
= lsfle—s —[——
5 _211_7/1( sf(az — s)exp oo
(25)

This equation shows that the mean filtered solution fy is
the result of smoothing the elevation f with a filter whose
spatial extent is larger by a factor 2v/2% than the region
illuminated by the altimeter (cf. the description of the
antenna modulation in the paragraph preceding Equat-
ion (1)). This would mean, for example, that in the case
of the illustrations of the previous section, the spatial
resolution of the elevation derived [rom the functions
shown in Figures 3 and 4 was 28 km. Yet, Figures 5 and 6
clearly show the function gr can be resolved to a kilometre
or so. Why is the spatial resolution implied by Equation
(25) so much larger than that deduced from the spatial
band width?

-5.0 -25 0.0 25 50
300 ———— L 300
10

200 ~20.0
- AE—
9 10.0 o 10 —10.0
& 0 25
w — b
Z o0 0.0
g
< —10.0 ~—10.0
>

—20.0] ~—20.0
-30.0 T T T —-300

=50 -25 0.0 25 50
Horizontal Distance (km)

Fig. 6. The function 0 for the reconstruction of the sine
wave shown in Figure 4. The paramelers used for this
illustration are the same as in Figure 4. The negalive cycles
of the migration are suppressed in Figure 4 but appear
posilive in the function n. Comparison of this figure with
Figure 4 shows that the visibility of the poorly imaged
gradients of the surface is further vestricted by the
Suctuations.

The answer to this question lies in the range of

integration of the tdt operator in Equations (4) and (25).
We have assumed this infinite and we have done this o
allow the use of simple Fourier techniques. Figures 3 and
4 show the function g over a finite interval. but in fact it
is not zero outside this interval and, when this energy is
included into the integral over ¢ in Equation (25), the
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result is to reduce the resolution. (This argument can be
made quantitative by considering the inverse transform of
the RHS of Equation (10) but we shall not pursue this
here.)

It is perfectly clear that one may determine the
surface elevation in Figures 3 and 4 with a resolution
better than implied by Equation (25). The reason this is
the case is that one is prepared to make an a priori
assumption concerning the approximate location of the
surface. Mathematically, this assumption can be
included by restricting the time interval in Equation
(2) on which g(7 + 2f/¢) is defined, that is, restricting
the domain of the operator K. This done, the problem
can no longer be diagonalized using Fourier methods
and one needs to revert to a more general linear method.
This is the approach taken in Wingham (in press; (1)
here) for determining the average height. The analytic
simplicity and insight afforded by the simple approach
taken here is then lost. However, this extension seems to
be necessary to determine the accuracy of a reconstruc-
tion of f but this will not be pursued here.

10. OTHER LIMITATIONS AND EXTENSIONS

We now comment on other limitations and possible
extensions of the method. Some of these have been
discussed at length in (1) and we simply mention them
here. The forward model is subject to a number of
assumptions concerning the geometry and scattering
behaviour. An extension of K to include simple volume-
scattering would follow from a straightforward carry
over from (I). The theory in (1) does not consider in any
detail the relation between the electromagnetic surface
and the physical one and this weakness carries over here.
This will certainly lead to difficulties in regions of
seasonal melting. One could also carry over from (1) the
extension to the case where the antenna boresight is not
normal to the datum plane. Both these extensions could
be dealt with by the Fourier methods used here but one
would need, particularly in the case of a non-normal
horesight, to reconsider the choice of Ky because K will
be significantly different, and one should expect
significantly different behaviour of 7).

One may also extend slightly the range of surfaces
considered here by introducing a plane datum that
includes a finite slope across the satellite track (that is, in
the y direction ol our coordinate svstem). In fact, the
analysis is very similar to that of a non-normal
boresight.

However, one properly needs to deal with the three-
dimensional reconstruction of two-dimensional surfaces.
In three dimensions, however, one has to accept that, in
any case of practical interest, the spatial sampling is
irregular. While it is at least possible that in some
circumstances the method described here may be
practically useful, this would not be the case were one
to extend the present calculations to a rectangular grid
of samples, although this is casily done. The presence ol
irregular sampling alters the case theoretically and
practically. Theoretically, it introduces a uniqueness
problem that we have avoided here by restricting the
spectrum of the echoes to satisly Shannon’s theorem. It
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also remains possible to retain in a formal way the
distinction between sampling-limited and noise-limited
resolution, although no longer with Fourier techniques,
but it is arguable whether such measures can be
practically interpreted simply; at the least. the resolu-
tion will become position-dependent. In practice,
irregular sampling alters the case considerably and one
needs more general linear methods, such as least-squares
or minimum-norm methods. These considerably in-
crease the computations needed, because the problems
cannot be a priori diagonalized. It remains to find a
theoretically acceptable but practically sensible three-
dimensional implementation. However, I anticipate that
the two-dimensional analysis here will greatly aid an
understanding of a three-dimensional reconstruction
from irregular samples.

We have not considered here the consequences of the
truncation of the cchoes by the altimeter-recording
system. Once one has restricted the domain of K along
the lines discussed in section 9. it is a simple matter to
include a restriction of the range of K, which has the
effect of truncating the echoes. In fact, as showed in (1),

this modification is essential for a proper consideration of

the uniqueness of any reconstruction, although this is not
pursued further here,

11. RELATIONSHIP TO OTHER METHODS;
EXPERIMENTAL VERIFICATION

Techniques that have been applied previously to
altimeter echoes from ice sheets are separable. that is,
they proceed by functionals that are respectively
independent of x and independent of ¢, termed the
“retracker”™  (Martin and  others, 1983) and “slope-
induced error correction”™ (Brenner and others. 1983).
the result fi(x) of which is supposed to describe the
surface f(x). There is not general agreement concerning
the detailed implementation of these procedures (see e.g.
Remy and others, 1989; Bamber, 1994). However. as
was pointed out in some detail in (1), there is no
theoretical basis for using a separable procedure and one
must therefore generally suppose that the solution f,(x)
generated by such a procedure is not in fact equal to the
J(x). This observation is probably of greatest practical
importance in determining changes in the surface with
repeated observations, since generally the function fi(x)
has dependencies on instrument parameters and atti-
tude. However, these dependencies will also be present
in a derived topography.

Remy and others (1989) have considered the
interpolation problem, that is, creating a two-dimen-
sional surface from a finite set of erroncous point
observations of the function fi(). In their weatment,
Remy and others did not distinguish between the
functions fi(x) and f(z).
procedure as an inversion is therefore erroneous. Were

Their description of the

continuous observations of the function f,(z) available,
their treatment would leave only an estimation problem
to be solved; with the distinetion between f(z) and f,(x)
acknowledged, the inversion problem still remains. |
would also speculate, on the basis of the results here, that
the limiting resolution will not be achieved with a
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separable procedure — Equation (25), for example, can
be taken as describing a separable procedure and we
have noted the poor resolution that results. To be clear.
however, T do not wish to suggest that the three-
dimensional interpolation problem is not an essential
component of the problem or that the sampling density
is not at present a limiting-error source in the use of
existing altimeter observations.

Turning to considering the experimental confirma-
tion of our results. It is casy enough to take a section of
altimeter echoes and migrate them with the methods
described here. Indeed, this has already been reported
on (Wingham and others, 1993 ). However. this exercise
must necessarily produce a surface consistent with the
echoes and it does not follow that the reconstructed
surface coincides with the ice surface, At the kilometre-
length scales at which solving the inversion problem
may be practically important (i.e. at which f(z) and
Jelx) may differ significantly), the topography of ice
sheets is three-dimensional. One generally needs to
solve the problem fully to make a comparison with
ground observations and these need o be accurate
high-density observations in  two-dimensions of the
surface elevation coincident with the altimeter observa-
tions. The equipment to make such geodetically
accurate surveys is now becoming available in the
United States and Europe with the use of GPS-tied
airborne-laser altimeters. The data provided by these
instruments should permit an opportunity to verify the
results presented here.

12. CONCLUSIONS

This paper provides a theoretical description of a method
improving the spatial resolution of ice-sheet elevations
derived from satellite-altimeter echoes from ice sheets,
with a view 1o determining the fundamental limits on this
resolution. It shows that, in two dimensions at least, there
is sullicient information content in successive echoes that
their spatial resolution may he improved without a
catastrophic degradation due to echo fluctuations. The
method shows that the spatial resolution may theoret-
ically be limited either by the echo sampling. In present
practical circumstances, it is the spatial sampling that
limits the resolution. although this conclusion may not
carry over to a three-dimensional treatment. The spatial
resolutions indicated by the numerical calculations here
are ol the order of 500m. which is very considerably
smaller than thought possible hitherto. Since much of the
local topography of ice sheets is at horizontal scales of 1
20 km, this is a useful advance. A practical demonstration
of the method has been given (Wingham and others,
1993) and this paper justifies the statements made (here
concerning the method.

Important issues remain 10 be dealt with, Principal
among these are the determination of the accuracy of the
retrieved elevations, which in my view requires an
investigation of solutions that limit the vertical range of
the elevations. A three-dimensional implementation that
is practically sensible is also needed and is probably
necessary before making useful comparisons of the results
with ground observations.
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