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Abstract

This paper studies the decentralized control and stabilization of two-input,
two-output finite dimensional linear systems. A representation result for
the system and a characterization of all stabilizing controllers are given in
terms of certain fixed polynomial matrices and a stability constraint.

1. Introduction

In the control of a number of physical systems the natural controller structure
is decentralized, the system is for some reason divided into a number of subsystems
with the control of the total system being achieved by the control of each of the
subsystems. However, even though the controllers are local, their design should
ideally be determined on a system-wide basis.

There has not been a great deal of analytical work on decentralized systems
carried out, though the amount is increasing. Perhaps the most significant result
known is contained in the paper of Wang and Davison [2] where it is shown that
a necessary and sufficient condition for the existence of a decentralized controller
(in fact, a proper decentralized controller) to stabilize the system is that the fixed
polynomial be stable. (These results are only applicable to finite dimensional
linear systems with finite dimensional linear controllers.) A great deal more work
is needed to understand the role of the fixed polynomial in the structure of the
plant and also what limitations, if any, it imposes on permissible controllers. The
paper [1] studies certain aspects of these questions, thereby extending the results
of [2].
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114 David J. Clements [2]

One problem of interest is the explicit parameterization of the class of all
decentralized controllers which stabilize the system, for such a parameterization
may possibly form the basis of some optimal design procedure.

In this paper a general two-input two-output plant is studied with respect to its
stabilizability by decentralized controllers. It is shown that if the plant is stabilizable,
there exists a decentralized controller which stabilizes the plant by moving all of
the non-fixed modes to oo, so that the only modes of the closed-loop system are the
fixed modes. The resulting closed-loop system is patently unsuitable for physical
implementation; however, for theoretical purposes it is important. This leads to a
complete description of the class of all stabilizing decentralized controllers in terms
of this improper controller and two arbitrary diagonal polynomial matrices
satisfying a stability constraint.

In Section 2, the relevant material of [2] is reviewed together with some results
on polynomial matrix representations of transfer functions and, finally, conditions
for the closed-loop stability of the system. In Section 3, the implications of the
stabilizability of the plant on the polynomial matrix representations of the plant
and the existence of an improper controller are considered. Then in Section 4, a
parameterization of the class of stabilizing controllers is developed.

2. Review

Let P(s) be a pxm rational matrix, and let A(s) and B(s) be pxp and pxm
polynomial matrices respectively such that

Then the pair [A(s),B(s)] is called a left factorization of P(s).
Next, the pair [A(s),B(s)] is said to be relatively left prime if there exist

polynomial matrices X(s) and Y(s) with dimensions pxp and mxp respectively
such that

A(s)X (s)+B(s) Y(s) = Ip, the pxp identity matrix.

Further, it can be shown that this is equivalent to the greatest common divisor of
all of the pxp minors of the augmented matrix [A(s) B(s)] being unity.

Some other results needed are:
1. If P(s) = Ais^B^s) = Ajfsy-iBjfs) and [A(s),B(s)] is a relatively left prime

pair of polynomial matrices, then there exists a pxp polynomial matrix V(s)
such that A1(s) = V(s)A(s) and B1(s)= V(s)B(s). If [A^s), Bx(s)] is also a
relatively left prime pair then V(s) is unimodular, that is, it has constant
nonzero determinant.
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2. For any mxp polynomial matrix K(s), the pair [A(s)+B(s)K(s),B(s)] is
relatively left prime if and only if [A(s), B(s)] is a relatively left prime pair.

3. If P(s) = Ais)-1 S(s) and [A(s),E(s)] is not a relatively left prime pair,
then there exists a nonsingular polynomial matrix U(s) and a relatively
left prime pair [A(s),B(s)] such that A(s) = U(s)A{s), B{s)= U{s)B{s) and
P{s) = A(s)-lB(s). In this case det U(s) is called the hidden polynomial and
the zeros of det U(s) are called the hidden modes of P(s).

The transfer matrix P(s) is strictly proper (proper) if P(oo) = 0 (P(oo) is a finite
matrix). Otherwise it is called improper. A polynomial is termed Hurwitz or stable
if all of its zeros are in the open left half of the complex plane.

The following is a restatement of the main result of [2].

THEOREM 1. Suppose P(s) is a strictly proper transfer matrix with the input vector
divided into I disjoint sets and the output divided into I disjoint sets. Then there exists
a proper decentralized controller C{s) stabilizing the system if and only if the fixed
polynomial f{s) is Hurwitz, where

f(s) = g.c.d. {det [A(s) + B(s)K]: KeJf}

and Ctf is the class of all constant block diagonal matrices consistent with the
partitioning of the inputs and outputs.

REMARKS.

1. In [2], the plant P(s) is defined by

P(s) = H'(sI-F)-1G

for constant matrices H, F and G of appropriate dimensions and the fixed
modes of P(s) are then defined by

g.c.d.{det(.y/-F+G/i:#'): KeJf}.

It is then a simple matter to show that if (H', F, G) is a minimal realization
of P(s) in the sense that (F, G) is a completely controllable pair and (Hr, F) is
a completely observable pair, and if (A(s),B(s)) is a relatively left prime pair
of polynomial matrices satisfying P(s) = A~\s)B(s) then this definition of
fixed modes coincides with that given in Theorem 1.

2. For P(s) either proper or improper, Theorem 1 remains true. However, if P ( J )
is improper, there is no guarantee that there exists a proper controller C(s)
which not only stabilizes the system but also makes the closed-loop system
proper. As the following example shows, there exist improper P(s) such that
for all proper decentralized controllers the closed-loop system is improper.
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Example

Let

and let

where deg g^s) < degft(s) for i = 1,2. Then the fixed polynomial is f(s) = 1. A
little analysis then shows that the closed-loop transfer matrix (7+i>(i)C(j))-1P(j)
is improper for any proper decentralized controller C(s).

3. Remark 2 contrasts with the situation for centralized controllers where the
following holds. For any plant P(s), there exists a proper centralized controller
C(s) such that the closed-loop system is proper and stable, provided the plant
P(s) has no uncontrollable and/or unobservable modes.

3. Structure of two-input two-output system

Let P be a 2 x 2 rational matrix written as

Pn Piz
(1)

where p is the McMillan polynominal for P. (The argument for polynomials is
deleted unless it is specifically needed.) Further let (A, B) be any relatively left
prime pair of polynominal matrices such that

= A~1B
and where

<hx °22
B =

"21 "22

(2)

(3)

Any decentralized controller for the plant P is represented as a diagonal rational
matrix Cd. Write Cd = BiAd~

l where (A&Bz) is a relatively right prime pair of
diagonal polynomial matrices with

_ [ f u o i _ r /u o j
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[5] Two-input two-output control systems 117

The relative right primeness of the pair (Ad, B^ is clearly equivalent to

If the decentralized controller Cd is applied to the plant P, the rational matrix Pc

representing the closed-loop transfer matrix of the controlled plant is
Pc = [I+PC^P which can then be written as

Pc = Ad[AAd+BBd]-*B. (5)

From (2) and (3) the plant P can be represented by

(6)

where dti is the 2x2 minor formed from columns i and j of the augmented
polynomial matrix D = [A B]. Then comparison of (1) and (6) and recognition
of the fact that dlz = det (A) = p (because (A,B) is a relatively left prime pair)
implies that (6) is identical to (1). The representation (6) is used in the remainder
of this section.

Next, taking determinants of both sides of (6) and noting that dn = det (A)
and dM = det (B), there follows the important relationship

d13 du = d12d3i+du d^. (7)

Then, using Pc = [I+PC^^P in conjunction with (6) and (7) or using (5) with
the definitions of du, d12, etc., the closed-loop transfer matrix becomes

_ J £n(-4s#22+^544B) gn2iiw 1

with

Pc = d12g11g<t2-d23l11g2z+dlil22g11+d3ilnl22. (9)

The representation (8) is a general representation of the transfer matrix for the
controlled plant for any decentralized controller.

Next, an explicit definition of the fixed polynomial for decentralized control is
needed. Setting g u = 1, ga = 1, ln = kn and /^ = k^, (9) becomes

PK = dia-d&ku+diikn+dHknkto

with pK denoting pc for the special case of a constant decentralized controller
K = diagffcu.fcgj. Then, according to [2], the fixed polynomial/for decentralized
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control is

/ = g.c.d.{det(A+BK): K

= g.c.d. {d12, ̂ 23. du, rfsJ. (10)

This contrasts with the fixed polynomial for centralized control (that is, the
polynomial of the unobservable and/or uncontrollable modes) which is 1 because
(A, B) is relatively left prime pair. Equivalently,

g.c.d. {do, dw, du, d3itdi3,d24i=l, (11)

this being a simple restatement of the relative left primeness of the pair (A, B) in
terms of the 2 x 2 minors of D = [A B],

REMARKS.

(i) Note that the 2 off-diagonal terms d13 and dil in (6) do not appear explicitly
in (10); though they do implicitly via t/M and the relationship (7).

(ii) The closed-loop matrix transfer function for a constant decentralized
controller K [from (8)] is

'K

indicating that the 2 off-diagonal numerator terms are unaffected by the
constant feedback.

From (10) and (7), it is clear that/2 divides d^d^, the product of the off-diagonal
numerator terms of P. However, more than this can be shown.

LEMMA 1. Given (7), (10) and(II), there exist coprimepolynomials fx andf2 such
that

(ii) fl divides d^,
(iii) / | divides d^.

PROOF. (See Appendix A.)

This lemma enables the fixed polynomial part of the closed-loop transfer matrix
Pc to be separated from Pc in a prescribed manner as follows.

Define the polynomials d{3 and d"M by

02)
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[7] Two-input two-output control systems 119

and define the polynomials dll2, i^, c!u and <?M by

du=A» 4a=/4- (13)
These polynomials are well defined by Lemma 1 and the definition off. Finally,
set

/i 0/ i 0 "I
(14)

L 0 h J

Then, (8) can be written as

(15)
where

[ - 4 B £22+^34/22 - ^ 2 4 £22

d"l3ill ^ligll + ^Sih

Pc = ^12 £ l l ^22 - ^23 ' l l ^22 + ^14 2̂2 ill + ^34 1̂1

Further, since F and Ad are diagonal they commute. Therefore it is sensible to
consider the pair of polynomial matrices (F, NF).

LEMMA 2. The pair (F, NF) is a relatively left prime pair of polynomial matrices
if and only if{fx,g^ = 1 and (/2,gn) = 1.

PROOF. (See Appendix B.)

An immediate observation is that the pair (F, NF) is relatively left prime for any
constant decentralized controller K for in this case g u = g22 = 1.

In [2], it is shown that for any decentralized controller, the fixed polynomial is a
divisor of the McMillan polynomial of the closed-loop system. The next lemma
shows that there exists a decentralized controller for which the fixed polynomial
equals the McMillan polynomial of the closed-loop system and, moreover, that
for the resulting numerator matrix N, the pair (F, NF) is relatively left prime.

LEMMA 3. There exists a choice ofln, gn, l^ and g22 such that

pc=f, {thatispc=\)

if,g*> = 1,
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We denote this controller pair by Xd and Yd, where

0 1 r / u o

0 ft, J L 0 /,

PROOF. (See Appendix C.)

With Xd and Yd as defined in Lemma 3, it follows that

AXd+BYd = F, (16)

where the polynomial matrix F satisfies

det ( / • )= / (17)

This can be checked by either straightforward evaluation of the determinant of
AXd+BYd or by recognizing that in (8), pc = dtt^AA^BB^. Now from (5)
it follows that

However, from Lemma 3, (15) becomes

where pc = 1 and the fact that Xd and F commute have been used. Therefore the
pairs (F, B) and (F, NF) are left polynomial factorizations of the same rational
matrix X^P,.. From Lemmas 2 and 3, (F,NF) is a relatively left prime pair, so
there exists a polynomial matrix V such that

B = VNF,
(18)

F= VF.

From (17) and the definition of F, dztiV) = 1 so V is a unimodular matrix.
Substitute (18) in (16) to give AXd+VNFYd = VF. Then noting that Fand Yd

commute this becomes

AXd=V[NYd-I]F. (19)

In Appendix C, Xd is chosen so that the pair (Xd, F) is relatively left (and right)
prime. Thus, there exists a polynomial matrix M such that

A = VMF,

and so, collecting the above results,

MXd+NYd = I. (20)
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In centralized control theory, if (A, B) is a polynomial pair such that P = A~lB then
there exists a relatively right prime pair (Ac, B,) such that

AAC + BBC = H,

where H is the greatest common left divisor of A and B. Then dividing out H, we
obtain

AAC+BBC = I

for the relatively left prime pair (A, B), and d = det(//) is the fixed polynomial of
the plant. Therefore, (20) might be thought of as an extension of this result.

As is well known, H can be constructed by column operations on the matrix
[A B]. That is, there exists a unimodular matrix U such that

[A B]U=[H 0]. (21)

Then U is partitioned as

£/ =

so that

Ac

Now consider again the decentralized control case. It can be shown (see
Appendix D) that there exist diagonal polynomial matrices %d and ¥d which are
relatively left prime and satisfy

[ 0 d'u 1 f Xd td
where G = . Moreover, the polynomial matrix W =

L d'a 0 J
is unimodular. Therefore,

[A B]W=V[F GF] (22)

so that, in the sense that the right side of (22) contains the fixed quantities of P, (22)
is an extension of (21).

4. Parameterization of all stable controllers

Qiven the structural results of the previous section it is relatively straightforward
to parameterize all decentralized controllers Cd which stabilize the plant P. The
parameterization presented here may be thought of as an extension of the results
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in [3, Lemma 3] where all stabilizing controllers for a plant are parameterized in
terms of an arbitrary stable transfer matrix.

Let Cd = Bd A^1 be a decentralized controller that stabilizes the plant P. Then
the closed-loop transfer matrix is

and d= det(AAd+BBd) is stable.
From (22),

where Xd, Yd, Yd and Xd are all diagonal and the composite matrix formed from
them is unimodular. It is then not difficult to show that

[A B] = V[F GF]

where each of Tu, T12, T21 and T22 is diagonal and the composite matrix so formed
is unimodular. Therefore with the controller (Ad, Bd),

AAd + BBd=V[F GF]

where St and S2 are diagonal matrices with S1 = TnAd+T12Bd and
5*2 = 721/4d + r 2 25d . Also note that the various diagonal matrices commute. Then,

AAd + BBd = V [Si + GS2] F (23)
and so

(AAd+BBd)-i = F-is-^

where s = det (Sx + GSz) and 5^ is simply 5X with the diagonal elements inter-
changed. Taking determinants of both sides of (23) gives h = sf, and s is stable.
However, det (5X + GS^ equals det (S^ — GS2). Thus, altogether, there exist diagonal
matrices §x and S2 such that

det (§! - GSJ = det (5^ - det (G) det (SJ

is stable.
Conversely suppose that there is given 5^ and S2 diagonal such that

det (S\)-det (G) det (5a) is stable. Then define
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Thus Ad, Bd are diagonal, and relatively prime provided S1 and 52 are relatively
prime and

AAd + BBd= V& + GSJF

and det(AAd + BBd) is stable, provided/is. This completes the characterization
of all stabilizing decentralized controllers.

It is thus apparent that in the study of two-input two-output systems the two
fixed matrices F and G play a central role. The matrix F contains information
about the modes of the plant which are invariant with respect to the class of all
decentralized controllers. The matrix G contains information about the cross-
coupling zeros of the plant and, as the above analysis shows, these zeros are
directly related to the stability constraint.

Finally, recall that in Remark 2 in Section 2 it is noted that there exist improper
plants which cannot be made proper by any decentralized controller. It is not
clear whether the above analysis is of any help in determining precisely when this
situation may occur.

5. Conclusions

This paper presents a detailed analysis of decentralized controllers for a two-
input two-output finite dimensional linear plant. In particular, a structural result
involving the fixed polynomial and certain fixed off-diagonal terms is given. This
structural result is then used to parameterize all decentralized controllers that
stabilize the plant, when the fixed polynomial is stable.

The major question arising from this paper is whether these results can be
extended to more general systems. There are two directions in which these results
might be extended. The first is to the case of / inputs and / outputs with each output
being used to control only one input. Probably, the methods of this paper are
applicable to this case though the analysis would quickly become prohibitive. The
second possible direction of research is the case of two vector inputs and two vector
outputs. Here it appears that the methods used in this paper, with their reliance on
individual polynomials, are not suitable for such a generalization. A new character-
ization of the F matrix would be a major requirement. Finally, the connections,
if any, between the results of this paper and the ideas in [1] need to be explained.
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Appendix A

PROOF OF LEMMA 1. First, suppose that d13du = 0. If both d13 and d2i are zero,
then /= 1 and the lemma holds for/j = 1 and/2 = 1. Now assume d13 j= 0. Then
(f,d13) = 1, so set/i = 1 and/2 = / . Again the lemma holds. Similarly, if du ^ 0,
set/i = / a n d / 2 = 1.

Second, assume d-^d^ ¥= 0. I f / = 1, set/! = 1 and/2 = 1. I f / i s not constant,
let a be any non-trivial irreducible factor of/ Then a2 divides d13d2i. This then
implies that either a2 divides d13 or a2 divides d^. For, if not, then a divides d13, d^
and/which contradicts the fact that g.c.d. {d13, dM,f} = 1. Consequently,/can be
written as/ i / 2 for some polynomials/x and/2 where/2 divides d13 a n d / | divides
dM. Finally, fx and f2 must be coprime otherwise there exists a non-trivial
irreducible polynomial which divides d13, d2i and / which is again a contradiction.
This completes the proof of the lemma.

REMARK. It is obvious that if d{3 and d'2i are defined by d13=f\d"X3 and
4a =fld'U, then ( A , ^ ) = 1 and (f»d& = 1.

Appendix B

PROOF OF LEMMA 2.

_ r / 2 o /j(-4*22+4/22)

0 /2

which is column equivalent to

r / i 0 0

10 /, flti'ugn 0

Thus, (F,NF) is a relatively left prime pair if and only if C/i,/2^4£22) =

(/2,/id^gu) = 1. From Lemma 1, CA,/2) = 1 and from the remark in Appendix A,
(A'^24) = * a n d (A>dl3) = 1- Therefore, the pair (F,NF) is relatively left prime
if and only if Ui,g^ = 1 and (J2,gii) = 1- This proves the lemma.

Appendix C

PROOF OF LEMMA 3. Recall that

Pc = 4 £11S22 ~ 4 l-a 822+4 '22 £11+4 îi '22
and so

Pc = ( 4 £ I I - 4 / I I ) S 2 2 + ( 4 £ I I + 4 W42-
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Then, there exist gZ2 and 1& such that pc = 1 if and only if there exist gu and / u

such that 312gix — dlwln and 3ltgu+^34/11 are coprime.
For the moment assume that the polynomial <712 <?34 +^14^23 is n o t identically

zero, and note that this is equivalent to d\%d\\ not being identically zero. Then, in
this case, the polynomials i-a—i^kxx

 an (* ^14+^34*11 a r e coprime for all but a
finite number of values of the constant klv To see this, suppose that for a given kix,
there exists s such that J12(s)- 3a(s)ku = 0 and 3li(s)+J3i(s)k11 = 0. Then s must
be a zero of the polynomial <712 JM+3-^3^ which is not identically zero by hypo-
thesis. Thus, there are at most a finite number of s for which the polynomials
<?12—<?23̂ n and <?14 +^34*11 can fail to be coprime. However, for each such s, the
corresponding ku is uniquely defined by kix = 312(s)/3Si{§) and/or

This follows because d^is) a n d 3^(3) cannot both be zero, otherwise a contradiction
to g.c.d. {312, ^g, 3U, J3J = 1 is obtained.

Now assume that 31233i+3u32a = 0. Then choose gu and / u such that
1̂2̂ 11 ~ 2̂3 'ii = (̂ i2> 2̂3)- [In general, neither g u nor / u will be constants in contrast

to the case ^ d ^ + ^ u ^ / 0-1 Define <?12 and ^3 by <?12 = (<?i2, 2̂3) ̂ 12 an<^
2̂3 = (^12.43)43- T h en d12 d^+Ju <4, = 0 and since, (^,^23) = ! . t n i s implies that
1̂4 = ^ 1 2 and <?34 = - ^ 2 3 f°r s o m e polynomial p. Therefore,

However, /? and (<?12,<?23) are coprime; otherwise, there exists a common factor
of 312, J^, 3U and 3^. Finally, there exist g12 and /22 such that (312,323)g22+£/22 = 1 •
Again, g^ and /^ are generally not constant polynomials.

The proof of the lemma is then a simple consequence of the following

LEMMA Cl. Let p and q be two real polynomials which are coprime, and let e be
any fixed polynomial. Then there exist polynomials r and t such that pr+qt = 1 and
(e,t) = \.

PROOF. Suppose f and i are any polynomials satisfying pf+qi= 1. Then if
pr+qt = 1, it follows that for some polynomial /}, r = f+f!q and / = i—fip. Now
since (t,p) = 1, it is clear that there exists a constant j3 such that i(so)—fip(sQ) ^ 0
for all 50 satisfying e(s) = 0. This proves Lemma Cl.

To complete the proof of Lemma 3, use Lemma Cl to choose g u and g^ each
coprime with/.
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Appendix D

Define A = V~XA and E= V~XB. Then from the choice of gn and lu in
Appendix C and noting that AXd+BYd = F, there follows

h
L «2i hi 1 \ hi J L 0 J

where

Since {gji'UO = »̂ there exist g12 and /12 such that

[ in £12 1

In '12 J
is unimodular with determinant equal to 1. Thus

[ dn hi 1 I" Sn Sin 1 _ f / i Mii

«2i hi \ I In /i2 J L 0 n12

for some » u and «22. Taking determinants of both sides of this equation gives
d13 =fxnVi and so «12 =fxd{z. However, since B = iVFand A = MF, then/x divides
du and bxl and hence/i divides nu. Then finally,

Al 'l2-«ll 'll J I 0 /WJ

where MU =f1nlv With /^ = £i2-ni igu and g^ = /12-nu^u» the matrix

Sn 4Sn 4a "I

4l 3̂3 J
is unimodular.

Similarly, there exist gM and lu such that

f ? r 1 ]T M = f ! /2I241
L ^22 *22 J J 42 #44 J L H 0 J

and again
r £22 '44

42 #44
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is unimodular. Thus,

127

^12

Jm

& '33 0 0 1

'11 S33 0 0

0 0 ?a /«

0 0 /.a £44

and rearranging rows and columns:

fo 0 '33 0

0 & 0 /„

hi 0 fa 0

. 0 '22 0 gti .
where

0 "24

0

/1 0 0 ftd'u

0 Ad'u h 0

k 0 0

0 /, A ^

Finally Xd, Yd, Xd and jPd are obviously defined to give

[A B] I | = K[F GF].
Yd Xd
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