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Abstract. We investigate the function R(T, o), which denotes the error term in
the asymptotic formula for fOT |log ¢(o + it)|*dt. Tt is shown that R(T, o) is uniformly
bounded for o > 1 and almost periodic in the sense of Bohr for fixed o > 1; hence
R(T, o) = (1) when T — oo. In case % <o < 1 is fixed we can obtain the bound
R(T,0) K TO2/8+e,
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It is well known that the logarithm of the zeta-function may be written as the
absolutely convergent Dirichlet series

logz(s) = log [ [(1 =p™)™ =} Jlog(1 =p™) " = Zﬁ Q)
p p k=1 p

where henceforth p denotes a prime number. This expansion is valid in the half-
plane Res > 1, and therefore log ¢(s) is almost periodic in this region. In particular,
foro>1and —o0 < T < 400, let

T o0 1 1
N
/0 |log¢(o + it)|°dt = TkE 1 2 Ep 2kg+R(T, 0). 2)

The function R(T, o) may be thought of as the error term in the asymptotic
formula (2), and it is classical that R(T, o) = o(T) as |T| grows to infinity, for every
fixed o > 1.

The behaviour of log¢ is much more mysterious when s lies to the left of the
vertical line Res = 1. For instance, the Riemann hypothesis is obviously equivalent
to log¢ being holomorphic in the quarter-plane Res > %, Ims > 0, and it is an
important task to investigate this function there. A natural question is: does log¢
retain some kind of almost-periodicity in the half-plane Res > %, in spite of possible
singularities due to zeros of ¢ (and of course the pole s = 1)? This is, for instance,
dealt with in an important paper by Borchsenius and Jessen [4]. Our contribution to
this topic is the study of the mean-square of log ¢ on vertical lines in this half-plane.

We may consider only the values 7 > 0, since log {(s) = log ¢(5). Curiously we
were not able to find anything relevant in the literature concerning the estimation of
R(T, 0); (nevertheless, see A. Selberg [13], where the mean square of arg C(% + if) is
evaluated as well as moments of even order, A. Fujii [6], where the mean square of
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arg ¢(o + i(t + h)) — arg ¢(o + if) is evaluated for% <o <1 and F.T. Wang [16] for a
related problem). Our most precise result concerns the behaviour of R(7, o) in the
case in which o > 1 is fixed, and is contained in the following theorem.

THEOREM 1. The function R(T,o) is uniformly bounded for o >1 and
—o0 < T < 4+00. Moreover, if o > 1 is fixed, then the function R(T, o) is almost peri-
odic in the sense of H. Bohr.

COROLLARY. If o > 1 is fixed, then the function R(T,o) has no limit when
T — o0, hence R(T, o) = Q(1).

The corollary is an easy consequence of the theorem and the fact that R(T, o) is
not a constant (because |log¢(o + if)| is not a constant). For the theory of almost
periodic functions, we refer the reader to the book of H. Bohr [3]. One may wonder
if R(T, o) is uniformly almost periodic with respect to o > 1. We cannot answer this
question.

As we shall see, the proof of Theorem 1 follows from an application of Hilbert’s
inequality (in the version of Montgomery-Vaughan [12]) and the convergence of the
series

> 1

; PuPust — pu)’ 3)

where p, is the n-th prime.

Let us note that the definition of R(T, o) makes sense also if % <o < 1. The
double series in (2) is clearly convergent in this range. Furthermore log ¢(s) is ana-
lytic in the complex plane from which the countable union of half-lines (s — 00, sx]
has been removed, where s; runs through the zeros of ¢(s), or sy = 1. Further, when
o is fixed, the function log ¢(o + if) has discontinuities of the first kind or, at worst,
logarithmic singularities, and so R(7, o) is a well defined function of T for o >%
fixed. However, if % < o < 1 we are unable to obtain results as sharp as when o > 1,

and in this case we shall prove a weaker result, given by the following theorem.

THEOREM 2. Lel% < o < 1 be a fixed number. For every positive &, we have

R(T,0) <, T ¥, )

We remark that our theorems could be generalized to the mean square of
log F(s) for suitable Dirichlet series in the ranges ¢ > o, and ¢ > «, respectively,
where o, 1s the abscissa of absolute convergence of F{(s), and Res = « is the “critical
line” for F(s). An example of such a class of Dirichlet series is given by A. Selberg
[14]. His Theorem 1 on p. 373, specialised to the case F(s) = ¢(s), leads to the
asymptotic formula

T
/ |log ¢(5 + it)*dt = Tloglog T + O(T\/loglog T).
0

Finally if one wishes to evaluate the left-hand side of (2) for o < %, then this case can

be reduced to the case o > % by the use of the functional equation
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() = (5361 =), () =27 sin(Z S)m—s).

Proof of Theorem 1. We begin by proving that R(7, o) is uniformly bounded for
o>1and —o0 < T < +o00. Simple continuity and parity arguments show that it is
enough to consider the case o > 1 and T > 0. By (1) we have

o0
) 1
logg’(a + lt) = Z ZW
k=1 p
In order to evaluate the integral of |log ¢(o + it)|*, we use the following lemma, due
to Montgomery and Vaughan (see [11, (28) p. 140] and [12]).

LeMMA 1. Let {a,}2 | be a sequence of complex numbers and {r,};2 | a sequence

of real numbers such that Z la,| < +o0 and 6, = mf (A — Anl > 0, for every n. Then

; |, |*
/ ‘Za el dt TZ|a,,|2+O(Z ‘;n >,

1

where the O—constant is absolute.

We remark that the theorem of Montgomery and Vaughan is formulated for
finite sums, but the hypotheses made in Lemma 1 permit this straightforward gen-
eralization. Hence

%0 |
R(T, 0) < ;;W ¥

where (p, ¢ denote primes)

8(p. k) = mln [log ¢* —log p1. (6)

On the right-hand side of (5) the terms with k& > 2 will be obviously convergent.
When k = 1, (6) gives (p = p,,, the n-th prime)

8(py, 1) = min |10gq€ — log p,|
qt,e>1

Z
— Fn + n 'n — DPn
log( [r;”) Pr| g It pal

Pn

= min
qte>1

where r, = ¢* is the prime power closest to p,. Hence we have to estimate
o 1

_. 7
”2:1: Pulfn — Pal ( )

Observing that p,|r, — p,| > r,, we see that the portion of the sum in (7) for which
r, 1s not a prime is clearly convergent, and the remaining portion is convergent by
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the convergence of (3). In fact the convergence of (3) follows from the upper bound
in the following estimate:

X 1 xloglogx
— L Sx) = < . 8
®x ) ,;Pnﬂ — Dn log® x ®)

The lower bound in (8) follows easily from the Cauchy-Schwarz inequality; namely

1/2
logx ~ Z 1 = Z(anrl _pn) S(X)) < (XS(X))I/z'

Pn=X

For the upper bound we need a sieve estimate (see e.g. Halberstam—Richert [6]). We
have that

3 1<<]_[< p)

p=x.p—h=p' plh log X

Thus, using this estimate we have

S(x) = Z > 1+Z >

h<H pn<wn+1 —pn=h h>H pn<\pn+1 —pn=h

X
< Z o * Hiogx

h<H p<‘<p —h=p’

X X
<
Zhﬂpm(l — 1) logx " Hiogx

h<H
1 X X xlog H X xloglog x

R D p— < +
Zeh) log’x  Hlogx ~ log’x  Hlogx log® x

with the choice H =logx. The bounds in (8) are given as (38)—(39) on p. 123 of
Erd6s—Rényi [5], but our proof is different from theirs. Nothing better than (8)
seems to be known, and so improving (8) seems to be another interesting problem,
which is indirectly related to the mean square of log {(o + if).

Now we turn to the proof of the second part of the theorem. We consider
separately the cases 0 > 1 and o = . In the first case, the function R(7, o) is the
primitive of a function almost periodic in the sense of Bohr, and the fact that it is
bounded ensures its Bohr almost-periodicity, according to a well known theorem of
Bohr (see [2, p. 123]). In the second case, the function |logz(1 + if)]* is no longer
Bohr almost-periodic (in fact, it is not even bounded). Nevertheless this function is
almost periodic in the sense of Stepanoff (L') and the theorem of Bohr mentioned
above is still valid in this case, as is easily seen by inspection of the proof; (for the
definition and main properties of almost periodicity in the sense of Stepanoff, see
[15]; Bochner [1] is also relevant, especially p. 251). To see that |log (1 + if)|? is
almost periodic in the sense of Stepanoff (L!), it suffices to prove that log z(1 + if) is
almost periodic in the sense of Stepanoff (L?). This last fact is a consequence of the
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following lemma, essentially due to Wiener and Wintner (cf. [17]) and suggested to
us by the reading of a recent paper of J.-P. Kahane [10].

LEMMA 2. Let F(s) =Y .2, ayn~* be a Dirichlet series with nonnegative coeffi-
cients (a, > 0) and abscissa of convergence 1. Let § > 0 be such that F(o + it) has a
limit in L*(—8, 8) when o — 1. Then F(o + it) has a limit in the Stepanoff L>-metric
when o — 1.

Proof of Lemma 2. Recall that the Stepanoff Z?>-norm of a function fis given by

x+1
IR = sup / o).

—00<X<+00

Suppose first that § = % By the completeness of the Stepanoff norm, it is enough to
prove that

X+ % 2
/1dﬂm+M—H@+Mdz
X— z

can be made arbitrarily small if 1 <o <o, <1+ «, where « is small enough,
uniformly in x. Due to the nonnegativity of the @,’s and an estimate of H.L. Mont-
gomery ([11, Theorem 3, p. 131]), this integral is less than

1
2 2
3fﬂﬂm+M—H@+Mdn
)

and the result follows immediately. If § # %, we obtain the same result for the metric

X+8
Ifl5;= sup (28" / |f()dt,
x—68

—00<X<+00

which is known to be equivalent to the one with § = %

Now the fact that log (o + ir) converges in L*(—1,1), say, follows by the ana-
lyticity of ¢(s) and the Lebesgue dominated convergence theorem. The function
log ¢(1 + it) is thus almost periodic in the sense of Stepanoff (L?), as a Stepanoff-
limit of Bohr almost-periodic functions, as was to be shown.

Proof of Theorem 2. The method that we shall use bears analogies to the one
employed in [9] to investigate large values of ¢(s) near the line o = 1. Suppose that
I <o <lisfixed and T > Ty > 0. Choose § such that 1 < § < o, and let

[7.27] = A(T) U B(T),

where A(7) consists of ¢e€[T,27] such that ¢(w)#0 for Rew >3,
[Imw — | < log” T. We start from the Mellin inversion integral (see (A.7) of [8])

1 C+i00
e’ = —/ x*T'(s)ds (¢, x>0)
2mi ¢—ioo
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and the Dirichlet series representation (1). For T<t<2T,s=o0+it and X = T/
with suitable 4 > 0 we have that

2+-i00

1 ) & 1 pr
- log (s + W)X " T(w)dw = kzz; ; e exp (— Y)' 9)

2mi 2—ioco

Let t € A(T), choose « such that § < « < o, and replace the line of integration
in (9) by the contour L consisting of [a¢—o— %log2 T, a—o+ %log2 7],
[« —o+ élog2 T2+ %log2 T, 2+ %log2 T, 2 4 ico). Then the integrand will be reg-
ular on £, and the only pole of the integrand that is passed is w = 0, which is a
simple pole with residue log ¢(s). Note that the singularity w = 1 — s lies to the left of
L, and thus need not be considered. We have

loge¢(s+w) < logT (we L). (10)

This follows by integration from the formula (see (1.52) of [8] or (2.9) of [9])

==y Lp+0(1ogz), (11)

pllmp—r]<1®

where ¢(p)=0,s=o0+it,—1 <o <2,t>1ty>0. Thus using (10) and Stirling’s
formula for the gamma-function we obtain

L, / log ¢(s + w) X" T(w)dw < X* ? logT.
27i J,
It then follows from (9) and the residue theorem that

loggs) = D am "+ 0(X*logT) (1€ AT)), (12)

n=1

where a, = +p~*° exp(—p—;) if n = p*, and a, = 0 otherwise. We have

27
[ |log ¢(o + it)|dt = </ +/ )Ilog Ho+inPdi=1+ b,
T A(D) B(T)

say. To evaluate I; we shall apply the mean value theorem for Dirichlet polynomials
in the form given by Lemma 1. We obtain

27 00 2 00 00
/ ‘Z ann_il‘ dt = TZ lan|> + O(Z n|an|2>.
T n=1 n=1 n

=1

We have
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e | —2ko 2p
|l :ZPZP exXp Y

i[]e

e 2p
DX p‘”‘“exp( )+0(Xf—")
k=1 k> p<X /20
=1
== > » 2"“(1 + 0( )) + O(X7°)
k=1 k p<X /2K
> 1 i
— Zﬁzp—ﬂm + O(XE_”),
k=1 4
and
S 2 o | k(1—=20) 2Pk 2-2
Zn|an| :Zﬁ Z p 7 exp<—7>+0(l) L X7,
n=1 k=1 p<XlogX

It follows that
‘ a,n "\dt < T/ ‘ a,n "
T n=1 T n=1

Hence, in view of |a + b|> = |a|* + |b|*> + 2Re ab, (12) yields

12
dt) < T+ TX'"°.

o0
11:/ ’Zan ! X logT)
AD ' =1 13
2T 00 ) ( )
= a n_” / ann (TX* % logT),
[ [ ] z :
provided that
X < 1Y%, (14)

If N(o,T) denotes the number of complex zeros p= 8+ iy of ¢(s) such that
B> o, |yl < Tand u(-) denotes Lebesgue linear measure, then

w(B(T)) < N6, T+1log® T)log? T < T log' T« T %log T, (15)

where we used the classical bound of A.E. Ingham for N(o, T). See (11.26) of [8].
The crucial fact is that the exponent of 7 in (15) is less than 1. We obtain

fol Sl 5 o

n<Xlog~ X
" » 1/2
< ( / ldt) / ) S aeilar] +oa)
B(D) B(T) ngXlog2 X
172
2T 12
< u(B(T)) / ] S en i ar] 41
r n<X?log* x
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with 0 < ¢, < d(n), where d(n) is the number of divisors of n. Applying again the
mean value theorem for Dirichlet polynomials we see that the last integral above is

LT+ Y dmn'™
n<X?log*x

L TH(X*log" Xy ™ log® X « T+ X** log’ T.

Thus we obtain

2
dt < TVHT 4+ X ) log’ T. (16)

0 .
L3 an
B(T) " =

Consequently from (13) and (16) we obtain, provided that (14) holds,

- 1 —2ko
h=T) z2r
k=1 V4

(17)
+ O(TX%*" £ TX " log T+ THITH + X2)log’ T).
It remains to estimate
L= / |log ¢(o + it)|*dt < / (log? 1¢(o + it)| + arg? &(o + it))dt
B(T) B(T) (18)

< / log2 |2(o + it)|dt + T8 log9 T,
B(T)

since arg {(o + it) < logt. We use the formula

logle)l = ) logls—pl+0(ogn (p=p+iy.s#p~1<0<2. (19

pilt=yI=1

One obtains (19) by integrating (11) over [o + it, 2 + if] and then taking real parts
of the resulting expression. Moreover the contribution of p = 8+ iy in (19) such
that B <§ is < logt. Then the last integral in (18) is, by the Cauchy-Schwarz
inequality,

< LlogT+ T %1og’ T

with

I; = / Z log2 |s — pl|dt
B j1—y|<1.p25

= ) / log |1 — yldi
T—1<y<2T+1,p=8 Y B(DNy—Ly+1]

1
< N8, 2T + 1)/ log? luldu < T °log’T.
—1
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Therefore it follows that
LT o’ T (20)

Finally from (17) and (20), given that 1 <8 <o <o < 1 we have
< (TXO‘_” + T 4 T%—§X2—2<r> 10g9 T <, T%“‘z{

if we choose X = T''/2 (so that (14) holds), § =$+1 — 2¢, « = § +  + 26. Replacing
Tby T/2,T/2%,...,eby % and adding the resulting estimates we obtain the assertion
of the theorem.

The optimal value of the exponent of 7 in Theorem 2 is not easy to determine,
since it depends on bounds for the zero-density function N(o, T) (see Chapter 11 of
[8] for a discussion concerning bounds for N(o, T)). If the Riemann hypothesis (that
all complex zeros of ¢(s) have real parts equal to %) holds, then the above discussion
may be considerably simplified. Taking o = % (0 <& <20 —1) we obtain

RQT,0) — R(T, 0) < TH(TX 7 + TiX7% 4 x22),
Hence choosing X = 7?3729 we obtain, on the Riemann hypothesis,
R(T,0) <. TF5Te,

Note that we have shown that R(T,o0) = (1) as T — oo for o > 1 fixed. It
would be interesting to obtain an Q-result for R(7, o) when % < o < 1is fixed, which
would perhaps give some indication as to what the true order of magnitude of
R(T, o) might be.
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