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Abstract
A system of linear equations in [F}, is Sidorenko if any subset of F}, contains at least as many solutions to the
system as a random set of the same density, asymptotically as n — co. A system of linear equations is common
if any two-colouring of IF‘Z yields at least as many monochromatic solutions to the system of equations as a
random 2-colouring, asymptotically as n — oo. Both classification problems remain wide open despite recent
attention.

We show that a certain generic family of systems of two linear equations is not Sidorenko. In fact, we show
that systems in this family are not locally Sidorenko, and that systems in this family which do not contain additive
tuples are not weakly locally Sidorenko. This endeavour answers a conjecture and question of Kamcev—Liebenau—
Morrison. Insofar as methods, we observe that the true complexity of a linear system is not maintained under
Fourier inversion; our main novelty is the use of higher-order methods in the frequency space of systems which have
complexity one. We also give a shorter proof of the recent result of Kamc¢ev-Liebenau—Morrison and independently
Versteegen that any linear system containing a four-term arithmetic progression is uncommon.

1. Introduction
1.1. Context

In graph theory, Sidorenko’s conjecture [Sid93] predicts that if H is a bipartite graph, then among all
graphs G with n vertices and fixed average degree, the number of copies of H in G is asymptotically (as
|[V(G)| — oo) minimised when G is random. We will call graphs H which satisfy this property Sidorenko.
Sidorenko’s conjecture has been resolved for certain classes of bipartite graph (e.g., trees, cycles,
complete bipartite graphs [Sid91], see also [CFS10, Hatl0, LS11, Szel4, KLL16, CL17, CKLLI18,
CL21]) though the conjecture in general remains open, and is indeed of great interest. There is a related
colouring property which is also of interest: for which graphs H is it true that, among all two-colourings
of the edges of K,,, the number of monochromatic copies of H is minimised by a random two-colouring
(asymptotically as n — o0)? Such graphs H are called common. It is not difficult to see that if a graph
satisfies the Sidorenko property, then it is common. Goodman showed that K3 is common [Goo059].
Erdés [Erd62] subsequently conjectured that K4 is common and Burr—Rosta [BR80] that every graph is
common. Sidorenko [Sid89] showed that a triangle with a pendant edge is not common and Thomason
[Tho89] showed that in fact K4 is not common, together disproving both conjectures. In fact, any graph
which contains K4 is uncommon [JvT96]. It is not difficult to see that if H is not bipartite then it is
not Sidorenko, and so we have a conjectural classification of all graphs. Even a reasonable conjectured
classification of common graphs seems out of reach at the moment.
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2 D. Altman

There has been recent interest in obtaining analogous conjectures and results in arithmetic contexts,
initiated by Saad and Wolf [SW17]. Which systems of linear forms ¥ have the property that, among
all subsets S of FZ of fixed size, the number of solutions to ¥ in S is minimised when S is chosen
randomly? Such systems are called Sidorenko. Those systems with the property that random two-
colourings minimise the number of monochromatic solutions among all two-colourings are called
common. Again, Sidorenko implies common. In the arithmetic setting, neither property has a conjectured
classification.

One situation in which a classification is known is when the system of linear forms has codimension
one (i.e., its image is described by a single equation). Here, an equation is Sidorenko if [SW17] and
only if [FPZ21] its coefficients may be partitioned into pairs which sum to zero, and is common and
not Sidorenko if and only if it has an odd number of variables. For systems of higher codimension,
one makes the trivial observation that the union of two Sidorenko systems on disjoint variable sets is
Sidorenko. Kamcev, Liebenau and Morrison give a nontrivial method by which higher codimension
Sidorenko systems can be built from Sidorenko equations; see [KLLM23, Theorem 1.3]. There are also
a number of results in the negative direction [KLLM24, KLLM23, SW17, Ver21]. Finally, we note that
Kral’-Lamaison—Pach have reported on a partial classification of common systems comprising two
equations in F; [KLP22] and have since obtained a near-complete classification of these systems, which
is due to appear in forthcoming work (personal communications).

Lovasz [Lov1 1] showed that the graph-theoretic Sidorenko conjecture is locally true: for all bipartite
graphs H, there is no suitably small perturbation of the random graph G which increases the number of
copies of H in G. He subsequently classified locally Sidorenko graphs: a graph H is locally Sidorenko
if and only if it is a forest or has even girth [Lov12, Theorem 16.26] (see also [FW 17] to this end). The
study of local notions of commonness has also attracted recent interest: [CHL22, HKKV22, Lov12].
One of the purposes of this article is to introduce these local notions to the arithmetic setting. Finally, to
further motivate the study of these local properties, we note that [Alt23] uses a local Sidorenko property
of a particular linear system as a key ingredient in the main result there.

1.2. Results

After Fox—-Pham—-Zhao [FPZ21] completed the classification of codimension one systems, the next
natural goal ought perhaps to be a classification of codimension two systems.

Codimension one systems are Sidorenko/common if and only if they are locally Sidorenko/common.
Therefore, the classification of these properties for codimension one systems is also complete, and local
notions are only interesting when the codimension is at least two.

We study two different notions of locality. Loosely speaking, the weaker notion (‘weakly locally
Sidorenko/common’) allows the radius of perturbation to depend on the function by which we perturb,
and the stronger notion (‘locally Sidorenko/common’) asks that the radius is uniform in the choice of
function.

One of our main theorems shows that a certain generic family of systems of codimension 2 is not
Sidorenko, and (nearly) classifies this family by whether they are weakly locally Sidorenko or locally
Sidorenko. We direct the reader to Subsection 2.1 and in particular Definition 2.2 and Definition 2.3 for
formal definitions of the weak local Sidorenko property and the local Sidorenko property. We note that
Sidorenko implies locally Sidorenko, which in turn implies weakly locally Sidorenko. We note also that
in fact all proofs in the literature listed above which show that a particular system is not Sidorenko in
fact show the stronger property that it is not locally Sidorenko.

Let p be an odd prime and let ¥ = (1, . . ., ;) be a system of linear forms, each mapping }FILJ’ o Fp,
whose image is determined by a 2 X ¢ system of linear equations with coefficients

b1 b1z - by
M = .
(bzl by -+ bZt)
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We will call ¥ linearly generic if every 2 X 2 minor of M has nonzero determinant.! An additive k-tuple
is a tuple (x1,x2, . ..,xy) satisfying the equation x| — X2 +x3 — x4 + - - - + (=1)¥*1x; = 0. We say that ¥
contains an additive k-tuple if a vector of the form (0,...,0,1,-1,1,..., (—1)"”) lies in the row span
of M, up to reordering of columns.

Theorem 1.1. Let ¥ be a codimension two system of linear equations in t variables which is linearly
generic. Then ¥ is not locally Sidorenko (and so not Sidorenko). If t is even then ¥ is not weakly
locally Sidorenko. Furthermore, for p sufficiently large in terms of t, if t is odd and ¥ is weakly locally
Sidorenko, then ¥ contains an additive (t — 1)-tuple.

Thus, in the situation that p is large in terms of #, we have classified all linearly generic systems by
whether they are Sidorenko, locally Sidorenko, or weakly locally Sidorenko, except for those systems
with ¢ odd and which contain an additive (¢ — 1)-tuple. We note that the condition of containing a
(¢ — 1)-tuple is more than a reflection of the limitation of our methods: there does exist a linearly generic
system with ¢ odd, which contains an additive (¢ — 1)-tuple, and which is weakly locally Sidorenko (see
Example 4.2).

As a consequence of Theorem 1.1, we answer the following conjecture and question of Kamcev—
Liebenau—Morrison.

Conjecture 1.2 [KLLM23, Conjecture 5.1]. Let ¥ be a system of 5 linear forms whose image has
codimension 2. If ¥ is linearly generic then ¥ is not Sidorenko.

Question 1.3 [KLLM23, Question 5.3]. Let r > 7 be odd. Does there exist a system of ¢ linear forms ¥
whose image has codimension 2, which is linearly generic and which is Sidorenko?

We note that the above conjecture and question as they appear in [KL.LM23] do not refer directly to
the linearly generic condition, but the formulation there is equivalent. We have the following corollary
of Theorem 1.1.

Corollary 1.4. Conjecture 1.2 is true and the answer to Question 1.3 is no.

Define the complexity of ¥ = (1,...,¥;), where each i; is a linear map from ]F? to Fp,, to be
the smallest positive integer s such that the functions (¢7)!_, are linearly independent over F,. Loosely
speaking, if the complexity of a system is 1, then its analysis should be controlled by Fourier analysis,
and one ought not require the higher-order theory. We direct the reader to [GW 10, GW11la, GW11b],
for relevant definitions, discussions and results to this end. One may easily compute that for ¢t > 5
and p sufficiently large, systems whose images have codimension two generically have complexity one.
Where it is not difficult, using higher-order constructions, to contrive systems of complexity at least 2
which are weakly locally Sidorenko but not Sidorenko, the situation is less clear for complexity one
systems (we will justify this claim in Subsection 4.2). We believe therefore that the following corollary
of Theorem 1.1 is also worth noting.

Corollary 1.5. Among complexity one systems, the weak local Sidorenko property is not equivalent to
the local Sidorenko property.

The explicit example demonstrating Corollary 1.5 is Example 4.2 in Section 4.

Of independent interest is the observation and method underlying Theorem 1.1 and its corollaries.
We observe that although these systems have complexity one, their ‘dual’ system (i.e., the linear system
obtained in frequency space after Fourier inversion) need not have complexity one. The most involved
part of Theorem 1.1 utilises higher-order constructions in the frequency space (Theorem 3.5). More
broadly, the proof of Theorem 1.1 also utilises other combinatorics on the dual pattern of a linear system
(Theorem 3.1). Since the uploading of this document to the arXiv, the use of combinatorics on the dual

We note here that in [KLLM23] the same class of systems is considered, albeit in different language. A reader wishing to
compare the texts may find it helpful to note that our linearly generic condition is equivalent to the condition that a system has
codimension two and (in the notation of [KLLM23]) s(L) =1 — 1.
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pattern of a linear system has been called a Fourier template by [DLZ24], and is used in both [AL25]
and [DLZ24].

We also provide the first example of a system which is locally Sidorenko but not Sidorenko; see
Example 4.1.

Proposition 1.6. In the arithmetic setting, the Sidorenko property is not equivalent to the local Sidorenko
property.

This result is perhaps slightly less trivial than it sounds; for example, in the graph-theoretic setting, it
remains an open question whether local commonness (appropriately defined, see [CHL22]) is equivalent
to commonness. One of the reasons we have chosen to study these local properties is that all existing
proofs in the literature that systems are not Sidorenko [FPZ2 1, KLM?23, SW17, Ver2 1] prove the stronger
statement that in fact these systems are not locally Sidorenko.

Finally, we note that the linear genericity condition in Theorem 1.1 is necessary. For example, it has
been observed by Kamcev—Liebenau—Morrison [KI.M23] that the system

X1 +2xp—x3—2x4=0

3X1 +XQ—3X3 — X4 =0

is Sidorenko, and it clearly does not contain an additive tuple.

In another direction, it has been known for some time [JvT96, Theorem 12] that any graph containing
K, is uncommon. Saad and Wolf [SW17] asked whether the same is true for four-term arithmetic
progressions in the arithmetic context. This question was answered in the affirmative recently by
Kamcev-Liebenau—Morrison [KI.M24] and independently by Versteegen [Ver21]. Both proofs build
on a ‘quadratic’ construction of Gowers [Gow20]. In Section 5, we give (together with a lemma from
[KLLM?24]) a short proof of Saad and Wolf’s conjecture which does not rely on higher-order constructions.
Our proof is also more amenable to generalisation to rank two systems in 2k variables, which would be
a significant step in the classification of weakly locally common systems?. In fact, since this document
has been on the arXiv, both the author and Liebenau [AL25] and Dong, Li and Zhao [DL.Z24] have used
the method introduced in Section 5 below to achieve this generalisation.

We set up some notational and technical preliminaries in Section 2. We prove Theorem 1.1 in
Section 3. In Section 4 we give examples to prove Corollary 1.5 and Proposition 1.6. Finally in Section 5
we give a new proof of the answer to Saad and Wolf’s question [SW 17, Question 3.6].

2. Preliminaries
2.1. Definitions, basic properties

Throughout we let ¥ = (1, ..., ¢;,) be a system of F,-linear forms, each mapping F? to Fp,; we often
abuse notation and let them induce linear maps from (FZ)D to ¥, in the natural way. Define the operator
Ty acting on functions f : F), — C by the formula

Ty(f) :=Ex,. . xpers f(W1(x1,....xp)) - f(Ye(x1,...,xD)),

where throughout E is a normalised count, so here it is a shorthand for p,+D Y. We will always assume

that D < ¢ and that $~1(0) = 0 (it is clear that one may reduce to this case). At times it will be more
convenience to describe a system of linear forms by the equations which define its image. Suppose that
My is an F-valued matrix such that Im ¥ = ker My. Then we have

2We do not consider weak local commonness in this document and so we do not give this concept a formal definition here.
However, we hope that the enthusiastic reader may formulate a definition from that of the weak local Sidorenko property
Definition 2.3 and the common property Definition 2.4.
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T\I’(f) = ExekerM\yf(xl) e 'f(xt)7

where x = (x1,...,x,) € (F))".

Throughout this document we will deal with functional versions of the Sidorenko and common
properties in which we ask the following of all functions f : Fj, — [0, 1], rather than just restricting to
characteristic functions of sets.

Definition 2.1. A system of 7 linear forms ¥ is Sidorenko if, for all n > 1 and all f : F), — [0, 1], we
have

Ty (f) 2 (Bxem f(x))".

Note that any function can be written as the sum of a constant function and a function with zero
average, whence the inequality in Definition 2.1 can be written as Ty (a + f) > @', where the condition
musthold forall @ € [0, 1] andall f : F}, = [-a@, 1-a] with Ey f(x) = 0. A system is locally Sidorenko
if the above inequality is satisfied for all sufficiently small perturbations of the constant function.

Definition 2.2. A system of ¢ linear forms W is locally Sidorenko if for all a € [0, 1] there exists € > 0
such that foralln > 1 and all f : F}, — [-a, 1 — @] with Ey f(x) = 0, we have

Ty(a+ef) 2 a.

We remark that that this notion of locality considers small perturbations of the constant function with
respect to the £ norm on the space of functions. One may also consider analogous notions of locality
for different norms. We do not do so in this document, but note that, for example, considering the local
Sidorenko property with respect to the £ norm on the Fourier side was an important part of the main
result of [Alt23].

Above, the size of the neighbourhood of the constant function is fixed independently of n, f. If the
size of the neighbourhood is allowed to vary with these parameters, then we will say that the linear
system is weakly locally Sidorenko.

Definition 2.3. A system of ¢ linear forms W is weakly locally Sidorenko if for alln > 1, forall @ € [0, 1]
andall f: F), — [-a,1 - a] with E, f(x) = 0, there exists £7 > 0 such that for all £ < £ we have

Ty(a+ef) > a'.

Definition 2.4. A system of ¢ linear forms ¥ is common if, foralln > 1 and all f : ]F; — [0, 1], we have

Ty (f)+Tw(1-f) 22",

Local commonness and weak local commonness may be defined analogously.

Let ¥ = (¢1,...,¢:) be a system of  linear forms. Let @ be a constant and f a function on F},
with E, f(x) = 0. For a subset S C [¢], we denote the corresponding subsystem of ¥ by ¥(S) (i.e., the
restriction of W to the coordinates in S). Then, by the multilinearity of the operator 7 we have

Ty(a+f)= Z o' BTy ) (/). (1)

Sclt]

Note that if f has E,f(x) = 0 and if the image of W(S) contains a coordinate hyperplane then
Ty(s)(f) = 0. It follows from the linear genericity condition (recall: every 2 x 2 minor of the matrix
defining its equations has nonzero determinant), then for all nonempty S C [¢] with |S| < ¢ — 2, the
subsystem ¥(S) contains a coordinate hyperplane and so yields Ty (s) (f) = 0. Thus for linearly generic
systems we have
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Ty(a+f)=a' +a Y Tus(f)+Tu(f). @)

|S|=t—1

Furthermore, for such systems, if |S| = 7 — 1 then the image of ¥(S) has codimension one (i.e., its image
is described by a single equation).

2.2. Fourier inversion
The reader is directed to [Zha23, Chapter 6.1] for further background on the basics of Fourier analysis
in F”.
P
Recall the Fourier transform defined by
f(h) = Exe]Fﬁf(x)ep(_h - X),

2mi-
p . Recall also the Fourier inversion formula:

where e, () = e
Fy= D" fey(h-x),
heFy

and Parseval’s identity

EdfGP =) 1f ().
h

For a linear system W, let M = My have Im ¥ = ker M. We will make use of the following consequence
of the Fourier inversion formula:

Te(f)= > f(m)--f(h), 3)

helmMT

where kb = (hy, ..., k) € (F))".

2.3. Tensoring

Definition 2.5. Let f; : F,' — Cand f; : F;> — C. Then the tensor product f := fi ® f» : F,"™ — C
is the function defined by f(x) = fi(m1(x))f2(m2(x)), where m; is the projection onto the first n;

coordinates of F))' 2 and mr, is the projection onto the last n, coordinates.

It is clear that ® is an associative operation and so one may naturally define the tensor product of a
finite collection of functions.

Observation 2.6. For a system of linear forms ¥, we have

Ty(fi ® f2) = Te(f1)Tw(f2). 4)
Note that there is a slight abuse of notation here: we interpret Ty as an operator on F) M F)' and

IF};? as it appears respectively. The equation above is easily verified by direct computation.

3. Proof of Theorem 1.1

Recall that we call a system of two equations linearly generic if the 2 X ¢ matrix

bi1 bip -+ by,
M =
(b21 by -+ bzz)

which defines the equations has the property that all of its 2 X 2 minors have nonzero determinant.
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3.1. Systems without additive tuples are not weakly locally Sidorenko

We first work towards proving the following theorem, which is one of the statements in Theorem 1.1.

Theorem 3.1. Let ¥ be a system of two linear equations in t variables which is linearly generic. If t is
even or if ¥ does not contain an additive tuple and p is sufficiently large in terms of t, then ¥ is not
weakly locally Sidorenko.

We now prove the theorem, modulo the proof of two propositions which will appear subsequently
and occupy the remainder of the subsection. In both propositions, we prove something more general than
what is needed for the application in this document. We do so to illustrate the scope of the constructions
and because it is clear that these more general statements can be used to obtain more general results.
See also Remark 3.4.

Proof of Theorem 3.1. Recall from Equation (2) that we have

Ty(a+ef) =a’ +ac'™! Z Ty(s)(f) + € Ty (f).
|S|=t-1

It suffices to show that there exists f with Ef = 0 such that }’g|,_; Tw(s)(f) < 0; then one makes &
appropriately small to conclude. If 7 — 1 is odd, then this is trivial: take f for which }’ |,_; Tw(s)(f) # 0
(it is not difficult to see that such an f must exist), and if 35—, T (s)(f) > O then replace f with —f.
Henceforth we assume that ¢ is odd.

Our strategy will be to find, for each S c [¢] with |S| = ¢ — 1, a function fs with Efs = 0 such that
Tw(s)(fs) = 0and Ty(fs) # 0. Then we let f = (X5, fs and by (4) we see that

Ty(a+ef) =a +&Ty(f),

where Ty (f) = [1|s)=—1 Tw(fs) # 0. Recall that 7 is odd so potentially replacing f with — f depending
on the sign of Ty (f), we may conclude that for all & sufficiently small (indeed, for all &), we have
Ty(a+&f) < a’, so W is not weakly locally Sidorenko.

It remains to prove the existence of the functions fs. Recall that each of the systems W(S) has
codimension one, so is described by a single equation. This equation cannot be of the form Y; (—1)’x; = 0
by our assumption that ¥ does not contain an additive tuple. We prove the existence of such an fs in
Proposition 3.2 and Proposition 3.3. The first deals with the easier case in which there is a pair of
coeflicients whose ratio is not equal to +1, and the second deals with the remaining cases which are not
additive tuples. O

In the following and throughout, we use Vinogradov notation < and > to conceal a multiplicative
constant. The appearance of parameters in the subscript denotes that this constant may depend on these
parameters.

Proposition 3.2. Let ¥ be a codimension 2 linear system in t variables which is linearly generic. Let
© be determined by a single equation 25’:1 a;x; = 0, where each a; is nonzero, such that there are i, j
satisfying a; # xaj. Then for all n > 2, there exists [ : Fj, — [-1,1] with Ey f (x) = 0, To(f) = 0 and
Ty ()] > L.

Proof. Without loss of generality a,a; are such that a; # *a,. We construct f from its Fourier
coeflicients. Let M = My = (b;;) be the 2 X t matrix whose coefficients correspond to the two linear
equations of W. Using (3) we have that

l
To(H) = Y, [ [ flah), )

heF} i=1
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and
t
Te(H)= D, [/ +byih). ©)
hl,hzeF;; i=1
We claim that if &y, hy are linearly independent, then (uy,--- ,u;) := MT (Z;) satisfies u; # O for all i

and ayu; # +ayu; for all i, j. Indeed, that u; # O follows from linear independence and the fact that
M cannot have a zero column, and if aju; = +asu;, then by the linear independence of &1, h, we have

ap (Z;{ ) = J_raz(l;;’: ) which contradicts the fact that all 2 X 2 minors of M are full rank.
U -J

Choose any two linearly independent %y, h, and define uy, ..., u, as above. Now define f (xu;) =
1/(2¢) for all i and f(h) = 0 otherwise so that f is clearly real-valued and takes values in [—1, 1] by
Fourier inversion and the triangle inequality. Since u; # 0 for all i we have £(0) = E, f(x) = 0. Next,
since a| # +a, and since aju; # +asu; for all i, j, we have that for all & at least one of f(al h), f(azh)
is zero and so Te(f) = 0 from (5). Finally, Ty (f) > 2/(2t)" from (6). m|

In the following proposition we prove a more general statement than what is needed for the proof
of Theorem 3.1. Below we consider equations of arbitrary length with +1 coefficients. For the theorem
above, we just need to consider equations Zl’;l] a;x; = 0 of length t+ — 1 (which we recall may be
assumed to be even), where a; € +1. In this case, since ¢ — 1 is even, we have for parity reasons that
|#{a; = 1} —#{a; = —1}| must be even, and so the condition that r # (2m + 1)|#{a; = 1} —#{a; = —1}|
for all m € Z from the statement of the proposition below is automatically satisfied.

Proposition 3.3. Let ¥ be a codimension 2 linear system in t variables which is linearly generic. Let ®
be determined by the equation Zf':l a;x; =0, where each a; € {-1,1} and #{a; = 1} # #{a; = -1}. If
p is sufficiently large in terms of t and t # (2m + 1)|#{a; = 1} — #{a; = —1}| for any integer m, then
there exists f : F, — [=1,1] with E, f(x) = 0, with T (f) = 0 and with |Ty(f)| >p; 1.

Proof. LetV =Im Mg < F;,. Fori =1,...,t, let P; be the ith coordinate hyperplane (i.e., {x € F;, :
x; = 0}). Let the symmetric group on ¢ elements Sym(¢) act on ]F;, by coordinate permutation, and let
(Z]27Z)" act on ]F;J by reflection in each coordinate hyperplane (so, e.g., (1,0, 1,0, ...) € (Z/2Z)" maps
(w1, up, us3, ug,...) to (—uy,uz, —us, ug, ...)). Let G be the group of permutations of F;, generated by
Sym(¢) and (Z/2Z)" and let S = G - {id, (1,1,...,1)}.

We claim that V — (U}, P; U Uy cs V) is nonempty. Indeed,

V—(QPiu | av)

o€eS

t

2|V|—Z|V0Pi|—Z|V00'V|,

i=1 oeS

where each VN P; and V N oV is a subspace of V, so has size 1, p or p?. By taking p sufficiently large in
terms of ¢, it suffices to show that V. # VN P; and V # oV foreachi € [f] and o € S. That V £ V N P;
follows from the fact that M cannot have a zero column, and that V # o'V for every o € § is an easy
exercise in linear algebra, using the fact that each 2 X 2 minor of M has full rank and that every element
of G may be written in the form o7 for some o € Sym(¢) and 7 € (Z/2Z)".

Letu := (uy,...,u;) € V— (Ui, Pi UUgyes 0V). We may assume that #{a; = 1} > #{a; = -1}
so that by Fourier inverting

To(f)= D If (P F(n), ™)

heFy

where t' = 2k +1, k > 0,1 = #{a; = 1} — #{a; = -1} > 0. We have by construction that each
+u; is distinct and nonzero. Let % < c¢t,...,¢; < 1 be real numbers to be chosen later and define
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Fui) = cie¥ [ (2t) and f(~u;) = f(u;) forall i. Set £(h) = 0 for all other h. Then E £ (x) = £(0) = 0,
f takes values in [—1, 1] and R(f(2u;)") = 0 for all i. Thus we have

To(f) = R(Ta(f)) = Z IF(WP*R(f (') = 0.

heF?,

It remains to argue that [Ty (f)| >, 1. Fourier inverting we have

Ty(f) = Z nf(bliY1+b2iY2)-

yl7yZE]Fp i=1

Let U = {#uy,...,+u,} and let Z be the collection of multisubsets of [¢] which have ¢ elements.
For a multisubset W of U with ¢ elements, let i(W) € Z be the multisubset of indices of W (e.g., if
t = 4 we may have i([uy,uy,us,—ui]) = [1,1,3,1]), and let X(W) be the sum of the signs in W (so
X([uy,ur,uz,—u;]) =1+1+1—-1=2). Then

1 T(W)mi
Tw(H=)| D, #{Y1,)’21MT(§;)=W}~(2t)te(21) [1e ®)

T€Z\W:@(W)=I iel

where we abuse notation by implicitly ‘unordering’ the vector MT (§ ; ) and identifying it with the
corresponding multiset. Viewing (8) as a polynomial in cy, ..., ¢;, we may choose cy, ..., c; in such a
way as to force |Tw(f)| >, 1 unless (8) is the zero polynomial. Note that when I = [¢], we have by
our construction of # = (u, . .., u,) that the only multisubsets W for which #{y, y, : MT (i;) =W}is

nonzero are W = [uy, uo, ..., u;] and W = [—uy, —ua, ..., —u,], and in these cases #{y, y» : MT (ﬁ) =

W} = 1. Furthermore, for these W we have that X(W) = ¢ and — respectively. Therefore, the coefficient

of the term H§:1 c;in (8) is %‘R(e%i), which is nonzero since ¢ is not of the form (2m + 1)/ for any

integer m. Thus we may choose cy, ..., c; so that [Ty(f)| >, 1, completing the proof. O

Remark 3.4. It is not difficult to adapt the construction from the previous proposition to relax the
assumption that r # (2m + 1)/ to the assumption that / # 1 or ¢ is even; one proceeds by defining

(2nj+1) 7i

f(u;) == c;e— 2 for an appropriate choice of integers {n;}!_,. In fact, it seems likely that a modest
perturbation of the above argument may allow us to remove any assumption of this kind completely. We
do not pursue the matter in this document as we have no immediate need for the more general statement.
We hope that the above example is illustrative.

3.2. Systems with additive tuples are not locally Sidorenko
Together with Theorem 3.1, the following completes the proof of Theorem 1.1.

Theorem 3.5. Let ¥ be be a system of two linear equations which is linearly generic. Then ¥ is not
locally Sidorenko.

The main observation underpinning the upcoming construction is that the complexity of a system
of linear forms is not maintained under Fourier inversion. We have not investigated the extent to which
higher-order Fourier analysis may be applied in frequency space, but the upcoming construction (and
natural generalisations thereof) at least demonstrates one application of the aforementioned observation.

In light of Theorem 3.1 we may assume that 7 is odd. We note that if ¥(.S) corresponds to an additive
(t — 1)-tuple, then by Fourier inversion, Ty(s) is the ((t — 1)th power of the) £/~ norm in frequency
space. In particular, if Ty (s)(f) = 0 then f = 0, so the proof strategy from the previous subsection fails.
We will have to settle for a function f for which the ratio Ty (s) () /Ty (f) is arbitrarily large in absolute
value. The existence of such a function is proven in Proposition 3.7. First, we need a lemma.
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Lemma 3.6. The following facts hold:

1. Define the quadratic q : ¥}, — Fp, by q(x) = xT Mx+h"™ x, where M is a matrix of rank r and h € Fp.
Then

[Bxesnep(q(x)] < p~/2.

2. Let ¥ be a system of linear forms, each mapping (]FZ)D 1o Fy,. Let A C T, be the zero set of the
quadratic defined by xT x. Then

[Ty (14) — p~*| < p™/2,

where k is the dimension of the F,-span of the functions {y; (x)" ¢; ()Y,

Sketch proof. Part 1 is a very standard Gauss sum estimate; a proof may be found in [Gre07], for example.
In [GW 10, Proof of Theorem 3.1] it is shown (using Part 1 as the main ingredient) that if a system of
linear forms ¥ := (iJ; !, has {;(x)" i (x)}iep) linearly independent, then [Ty (14) — p7'| < p 2,
Let S C [7] be a set such that {y;(x)"¢;(x)}ies is a basis for {;(x)"¢;(x)}!_ . Then we observe
the equality [[;cs 1a(¥i(x)) = [Ticpe) La(¥i(x)) for all x, so Ty(14) = Ty(s)(14) and our result then
follows from the second sentence of this proof.

For a 2 X k matrix M with values in F,, let M () be the 3 x k matrix defined by

where r; and r; are the first and second rows of M respectively, and where multiplication of vectors is
conducted coordinatewise. We claim that if M is linearly generic and k > 3 then M? has rank 3. One
may, for example, observe that if 3 values of ry are nonzero, then M () contains a 3 x 3 Vandermonde
determinant (up to rescaling columns). After similarly dealing with the case that 3 values of r, are
nonzero, and noting that each of r; and r, cannot contain more than one zero entry, we may conclude
immediately in the remaining case by a cofactor expansion along the row ryr; (two of whose entries
are zero).

Proposition 3.7. Let t > 5 be odd. Let ¥ be a system of t linear forms whose image has codimension
2 and which is linearly generic. Let ® be the system defined by an additive (t — 1)-tuple. Then, for all
n sufficiently large in terms of p and t, there is a function f : Fj, — [~1,1] such that E. f(x) = 0,
Tw ()] >p p"0H72 and To (f) < p0=2,

Proof. We construct f by specifying its Fourier transform f : [, — C. Let A be the zero set of the
quadratic form given by x” x. Define f(0) = 0 and f(h) = ﬁ(]A(h) — p~!) otherwise. Firstly,
To(f) = T lf W < pt - (p/2) " = prd2,

It is clear that for all 7 € F}, we have f(h) = f(~h), and so f takes values in R. Furthermore, for all

x #0:
1F@) =Y F(hep(x - h)
h
1
= ST A =P gt ) =1 =7
< pn/++1(|p"Eh (EaeF,,e,,(ahTh))ep(xTh)) +(1-p™)
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1 _

< pn/z—ﬂ(p"Eae]F,JEhep(ahTh+xTh)|+(1 -p l))
1 _

< pn/2+l(p”/2+1—p 1)

<1,

by Fourier inverting in the first line, an expansion of 14 in terms of quadratic phases in the third line (this
follows from the orthogonality of characters), and Lemma 3.6 Part 1 in the fourth. For x = 0 we have

<1,

1
lf(0)] = Im

D at)y—pH-1+p!
h

by Lemma 3.6 Part 2 with the trivial set of linear forms x +— (x). Thus f takes values in [—1, 1].
By (3) and the condition that the image of ¥ has codimension 2 we have

Ty ()] = p*"[Twr (f)| >p, p* - p™/?

Tyr(la—p~ ")+ Or(l’_"/z)|,

where W+ denotes the dual set of linear forms which may be determined as in (3). It remains to show
that [Ty (14 — p~')| >, 1. We have

Tyr(l4—p ') = Z (=p) "SI T 5y (14)
Sclt]

= (=) 1B o [ ] (e Gex) Ty (21, x2) ).
2

Sclr] ieS

Since the image of ¥ has codimension 2, we have that each y;- € ¥+ maps (11-?‘2)2 — F}. Thus
each ¢+ (x)T ¢ (x) maps x = (x1,x2) € (F%)? to a linear combination of {x] xy,x] x2,x3 x2}, so the
dimension of the span of the functions {y/;- ()C)szl.l (x)}i_, is at most 3. By Lemma 3.6,

Toi(la—p ) = Z (=p) S| p=dimspan (v (DT v D ies 4 0, (p~"/?).
Sclr]

One observes that dim span{tﬁf(x)Tlﬁil (x)}ies = rank M;z) where My is the matrix obtained by re-
stricting the columns of My to the coordinates in S. We show that |Ty (14 — p~')| > p.t 1 by showing

&)
that X g4 (—p) 181 p=rank Mg’ is nonzero. As discussed above, the fact that every 2 X 2 minor of My
has nonzero determinant implies that for each S C [¢] with |S| > 3, rank M;Z) = 3. Furthermore it is
clear that if |S| = 1, 2 then rank M éz) = 1, 2 respectively. Thus we have

Z (_p)—t+|5|p—rankMé2) :p—3 Z (_p)—t+|S| + ((;) —t+ 1)(_p)—t

Sclt] S>3
_(-py +p3((5) —t+1) = (p2(5) — pt+1)
(-p)'p? '

We claim that the numerator is nonzero for pairs (p,t) with p prime and ¢ > 5. Indeed, for p =2 and ¢
odd we obtain a quadratic whose roots satisfy # < 5. The same is true of p = 2 and ¢ even. Otherwise,
for large values of (p, 1) it is clear that the term (1 — p)’ dominates, and the claim may be checked by
direct computation for small values of (p, ) (the author obtained a bona fide proof when ¢ > 11, or
t € {5,7,9} and p > 11, and checked the cases (p,t) € {3,5,7} x {5,7,9} by hand; for the sake of
brevity we do not include the details). O
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Remark 3.8. In the above proposition, the assumption that ¥ is linearly generic may be removed
quite easily, at least if one allows p to be sufficiently large in terms of 7. Indeed one writes

ZSCM(_p)—’+|5\p*ra“kM§2) as a p-adic series Y, , a;p'. Each |a;| may be bounded in terms of ¢,
so if p is large enough in terms of ¢ then this series representation is unique and so the sum is zero if
and only if each a; is zero. One may use some linear algebra to show that at least one of the a; must be
nonzero. It is certainly plausible that the more general result may be used in the further classification
of Sidorenko systems in a directly analogous way to how Proposition 3.7 is used here, but we have no
need for such a statement in this document and so we do not write out the details.

Proof of Theorem 3.5. Recall that we may assume that ¢ is odd. As in the proof of Theorem 3.1, using
(2), we have

Ty(a+sf) =a' +as™! Z Tys)(f) + €' Ty (f).
|S|=t-1

As we have seen already, each W(S) has codimension one and so Ty s) ( f) is of the form 3, H;;ll f(a;h).
By Holder’s inequality then

Twis) (O < D f I =Ta(f),
h

where we let @ denote an additive (¢ — 1)-tuple. Thus
Ty(a+ef) <a' +(t—Dae''To(f) +&' Ty (f).
Let f be the function from Proposition 3.7, and if Ty (f) > O then replace f with — f, so
Ty(a+ef) <a' +(t— DagIpt=12 _gle  pt=912,
For &, a fixed, we may choose n large enough so that Ty (a + £ f) < @', completing the proof. O

This also completes the proof of Theorem 1.1, which is a union of Theorem 3.1 and Theorem 3.5.

4. Examples
4.1. Locally Sidorenko but not Sidorenko

Recall that a system ¥ comprising ¢ linear forms is locally Sidorenko if for all @ € [0, 1] there exists
€ > Osuchthatforalln > landall f:F), — [-a,1 -] withEf =0 we have Ty(a +&f) 2 a'. We
begin by providing the following example of a system which is locally Sidorenko but not Sidorenko.
This proves Proposition 1.6.

Example 4.1. Let @ denote the following system of two linear equations in nine variables:

X1 —x2+x3—X4=O

X5 —Xg +x7 —xg +x9 =0.

We firstly observe that @ is not Sidorenko. Indeed, let A = {1} C F),. Then Exep,1a(x) = 1/p, but A
contains no solutions to @, so Tgp(14) = 0.

We claim that @ is locally Sidorenko. Let A4 be shorthand for the first equation in @ and AS for the
second. We observe (see Observation 2.0) that for a function f on F), we have To(f) = Tas()Tas(f).
Also, since A4 has codimension one, we get Tas (e + f) = a* + Tas(f) for functions f with Ef = 0, and
similarly for AS. Thus, for f : F), — [-a, 1 —a] with Ef = 0, we see using (1) that
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To(a+ef) = (a* +Tas(ef)) (@ + Tas(ef))
=ao’ +&* (Q’STA4(f) +a*eTas(f) + & Tas(f)Tas (f))-

Fourier-inverting, we have that Tas(f) = X, | £ (h)|* and Tas(f) = X, |/ (h)|* £ (h). In particular we
have that |Tas(f)| < Taa(f) < 1. Thus,

To(a+ef) = + ' Tas(f) (a5 —a'e - 55),
and so setting & < /2 we have that T (e + £f) > a”, so @ is indeed locally Sidorenko.

4.2. Weakly locally Sidorenko but not locally Sidorenko

Recall that a system ¥ comprising ¢ linear forms is weakly locally Sidorenko if for all n > 1, for all
a € [0,1] andall f: F, — [-a,1 - a] with Ef = 0, there exists £7 > 0 such that for all & < &5 we
have Ty (a +&f) > a.

We claimed earlier that it is easy to contrive systems of complexity at least two which are weakly
locally Sidorenko, but not Sidorenko. One may, for example, begin with a system of complexity at
least two whose shortest subsystems have length at least 5, and take the union of this system with an
additive 4-tuple on a separate variable set. The weak local Sidorenko property follows from the fact that
its smallest subsystem is an additive 4-tuple, and the (non) Sidorenko property of the entire systems
essentially follows from that of the complexity two part by tensoring with an appropriate quadratic phase
function. We omit the details.

In this subsection we exhibit a complexity one, linearly generic system which is weakly locally
Sidorenko, but not locally Sidorenko, proving Corollary 1.5. The upcoming example is taken from
[KLM?23, Example 4.6], as is most of the analysis towards showing that it is weakly locally Sidorenko.
That it is not locally Sidorenko follows from Theorem 1.1.

Example 4.2. Let p ¢ {2,3} and let @ be the following system of two equations in five variables:

X1 —Xx2+x3—x4=0
X1+ 2xy —x3 —2x5 =0.

One sees that @ is linearly generic. By Theorem 1.1, @ is not locally Sidorenko. We claim that ® is
weakly locally Sidorenko. For f with Ef = 0 we have from (2) that

To(a+ef) = +as? Z Tos) (f) + € To(f),
IST=4

so it suffices to show that 3’ g|—4 To(s)(f) > 0 whenever f # 0. One sees that equations for the five
subsystems S of size 4 may be obtained by performing row operations to eliminate the variable x;,
i =1,...,5. Therefore, applying (3) to each of these subsystems, and recalling that Tes)(f) is real-
valued, we may obtain that

3 Tacs) (F) = D LF I+ 2AFWFIF I +2 (k) f R (=30
|S|=4 h
= Y SIf@nI S IFGRE 2 I
h
+2R(F(-m) f R F(-3h))
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> > 17 (=20 fBR)P + 21 f () PIf 2h) P
h

+2R(F(=n) f 2 f(-3m)

F(h) f(=2h) + f(—Zh)f(3h))2 +1/(PIf 2P

h
> Y If(PIfenl.
h

This is positive unless | £ ()[|f(2h)[> = 0 for all A. But in this case 2isi=a Tos) (f) = 2 Lf(h)|*,
which is positive unless f is zero. This completes the proof of the claim that f is weakly locally Sidorenko.

4.3. Locally Sidorenko, not Sidorenko, and no additive tuple

Recall that if ® comprises only an additive (2k)-tuple, the corresponding functional Ty is a norm on
the space of functions and in particular is positive definite: Tp(f) =0 = f =0 = Ty(f) =0,
for any W. This is the main obstruction to the proof of Theorem 3.1 going through for systems with an
additive (2k)-tuple. It transpires that there exists a nonlinearly generic ¥ with a subsystem ® whose
corresponding functional is not positive definite but with the property that 7o (f) =0 = Tys)(f) =0
for all subsystems W(S) € W. This motivates the upcoming example.

Example 4.3. Let @ be the following system of two equations in eight variables:

X1 —X2+2x3—2x4+x5+x6+x7+x3=0

X5 — X¢ + 2x7 — 2xg3 = 0.

We claim that @ is locally Sidorenko (and it clearly does not contain any additive tuples). Fix a € (0, 1)
and let f : F}, — [~a, 1 — a]. Firstly invoke (1) to write 7o (a + £f) in terms of the subsystems of ®.
These subsystems may be computed by parameterising the solution space to ®. Alternatively, one sees
that they may be read off the defining equations for @ after performing row operations (recall that to
identify subsystems which contribute nontrivially, we simply need to find those coordinate restrictions
whose image do not contain a coordinate hyperplane; see remarks after (1)). Doing so, and invoking (3)
to pass to frequency space, one finds that

To(a+ef) =a®+a's Y | f(WPIf )P
7
+as’ ; [F(PIF@IPF(=2h) f () £ (=3h)
+ o’ ; [F(WPIF @RI F2h) fBh) f(~h)
+as’ ; |F(WPIF )P F(=h) f(=3h) f(=4h)
+as’ zh] [F(PIF@IPF(3R) f () f(4h)
+&8 Y 1 f()PIf P

hy,hy

- f(hy + h) f(hy = ho) f (hy +2h2) f (hy = 2ho).
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The absolute value of the final sum is at most

Z | () P1f (2h) 1P Z|f(h1 +h) f(h1 = ha) f(hy + 2ha) f(hy = 2hy)]
h1 h2
< Y AFBOPIF @) Y | f i + ha) f (i = o),
h1 hZ

by the bound || /]| < 1. Applying Cauchy-Schwarz to the sum over , and subsequently Parseval’s
identity yields an upper bound of Y, | f(%)|*|f(2h)|>. Thus

(a/4 —dag’® - 84).

To(a+ef) = a® + s“(Z |F(mPIf 2P
h

Thus setting & < /2, we have that Tg (e + £ f) > o, and so ® is locally Sidorenko.

We note that the previous example is not Sidorenko, so it gives another, albeit less simple, example
verifying Proposition 1.6.

5. Localising to subsystems with fewest variables

In this section we observe how to ‘localise’ to subsystems with the fewest variables. As an application
we outline a relatively short proof of the recent result of Kamcev-Liebenau—Morrison [KLLM24] and
independently Versteegen [Ver21] that any system containing a four-term arithmetic progression (or
indeed any system of two independent equations in four variables) is uncommon. Our proof does not
use any quadratic methods, which is also new here.

Previously we have localised by considering small perturbations of a constant function a + &f,
whereupon, defining s to be the size of smallest subsystem of ¥ for which some Ty (s)( f) is nonzero,
we have

Ty(a+ef)~a' +&° Z Tys)(f).

IS|=s

For fixed positive integers n, k and f : F), — [-1, 1], define the function F& FZ”‘ — [-1,1] by
f® = £ ® 1y where 1 is the characteristic function for 0 € Ff, (.e., f® = (fom)(lgom), where
7 projects onto the first n coordinates, 7, projects onto the final k coordinates). Then for an injective
system ¥ = (¥, ...,¥,) in D variables, we have recalling (4) that

Tu(f X)) = To()Tw(1o) = p*PTy(f).

Thus, expanding Ty (a + f ® 1p) multilinearly and letting k be large we have that

Ty(a+f@l)=a'+p™ N Ty (f)+0,(p7@D),
dim¥(S)=d

where dim ¥(S) denotes the dimension of the image of W(S) and d is the minimal such quantity for a
subsystem for which Ty s) ( f) is nonzero.

Now we outline an alternative proof of the fact that any system containing a 4AP is uncommon. In fact
we will prove the stronger result (as [KLM24] did) that any system containing a rank two system with
four linear forms is uncommon. We note that some parts of the argument remain the same. In particular,
we need the result that rank 2 systems in 4 variables can have Ty (f) < 0. Rather than reproving it
we just quote the following weak version of [KLM24, Lemma 4.1] whose proof we note does not use
higher-order methods.
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Lemma 5.1 [KLLM24, Lemma 4.1]. Let p be a prime. There exists an integer n > 1 such that the
following is true. Let (‘Pi)l.k: | be a collection of linear systems each in four variables with codimension
two. Suppose that ¥; is linearly generic for all i. Then there exists f : F}, — [—%, %] with Bf = 0 such
thatTy,(f) <Ofori=1,..., k.

Theorem 5.2 [KLM24, Theorem 1.1], generalisation of [Ver21, Theorem 1.4]. Any linear system of
distinct, nonzero forms which contains a dimension 4 subsystem of rank two is uncommon.

Proof. Let t be the number linear forms in ¥ and let f : F), — [—%, %] have Ef = 0 and be otherwise

unspecified for the meantime. Let k > 0 to be determined later, £ = p™% and 1 : ]Ff, — {0, 1} be the
characteristic function of zero. Then

o3+ @neto) s7u(5 - ene )

— 1 1 —k(|S|+dim ¥ (S))
- 2t-1 + Z 21‘_‘3'_11’ T‘P(S) (f)

0+Sclr]
|S| even

Letting k be arbitrarily large, we see it suffices to show that there is a choice of f such that
25:dim ¥ (S)+|S| minimal 1¥(s) (f) < 0, where the minimum is taken over subsystems whose image does
not contain a coordinate hyperplane (if the image contains a coordinate hyperplane then Ty s)(f) = 0
since Ef = 0). Note that this minimum is at most 6 since ¥ contains a system of four nonzero linear
forms with codimension two, and for the minimum we must have that dim ¥(S) < |S]|.

If the minimum is equal to 6, then the minimal systems ¥ (S) must have |S| = 4,dim ¥(S)) = 2. If
this is the case then we must have that W(S) is linearly generic for all of these minimal systems, or else
by an easy linear algebraic check they would give rise to a further subsystem S’ with |S’| + dim ¥(S”)
smaller. Thus we may conclude by invoking Lemma 5.1 (with an appropriate choice of ») in this case.

Otherwise any W(S) contributing to the minimum must have dim ¥(S) = 1, and indeed cannot
have |S| = 4 since any system W(S) with |S| = 4,D = 1 gives rise to (;) subsystems W(S;) with
dim ¥ (S;) = 1,|S;| = 2. In the remaining case that the minimal systems have dim ¥(S) = 1, |S| = 2 we
note that these systems are described by a single equation which cannot have its two coefficients summing
to zero since this would mean that ¥ has a pair of repeated forms. Thus we may conclude by the Fox—
Pham~Zhao random Fourier sampling argument to find f such that > .qim w($)+|s| minimal T¥(s) (f) < 0.7
This completes the proof. O

Remark 5.3. Kamdéev-Liebenau—Morrison conjecture [KI.M24, Conjecture 6.1] that an analogue of
Lemma 5.1 holds for systems comprising an even number of linear forms whose image has codimension
two. They note that their proof of [KLLM?24, Theorem 1.1] however does not generalise to the case of
higher number of variables, even if [K[.M24, Conjecture 6.1] is confirmed. We note that our proof above
would generalise should [KLLM24, Conjecture 6.1] be confirmed. This would go some way towards the
classification of weakly locally common systems.

Remark 5.4. Since this document was released on the arXiv, the generalisation suggested in Remark 5.3
has been carried out using the methods of this chapter in both [AL25] and [DLZ24].
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3In fact this is a very easy case of the Fox-Pham—Zhao argument since the equations comprise only two variables. It is likely
an even simpler argument exists, but this is a known (and nice) argument, so we quote it for brevity.
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