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Finite-amplitude instability of the buoyancy
boundary layer in a thermally stratified medium

Yue Xiao1, Yi Li1, Moli Zhao1 and Shaowei Wang1,†
1Department of Engineering Mechanics, School of Civil Engineering, Shandong University,
Jinan 250061, PR China

(Received 28 May 2022; revised 29 July 2022; accepted 2 August 2022)

The finite-amplitude instability of the buoyancy-driven boundary layer is considered on
a vertical plate immersed in a thermally stratified ambient medium, where the wall and
surrounding fluid have different temperature gradients. Although the linear stability in
this configuration has been investigated, the finite-amplitude solution arising from the
critical instability has been studied only for specific parameter values. We extend this by
using the amplitude expansion method. The primary bifurcations to the two-dimensional
least unstable mode for different temperature gradient ratios (0 � λ � 10) and Prandtl
numbers (10−1 � Pr � 104) are investigated. Only supercritical bifurcations are found
to occur when 0 � λ < 2 and Pr � 2800, while subcritical bifurcations are also found
for larger values of temperature gradient ratio and Prandtl number. Analysis of the
contribution of the nonlinear terms in the Landau coefficient reveals that the interaction of
the modification of the mean flow and second harmonic for velocity with the fundamental
mode for temperature plays an important role in subcritical bifurcation. Based on
the Landau equation, the threshold amplitude of the nonlinear equilibrium solution is
discussed as well. These encouraging results should be helpful for understanding such
a buoyancy-driven flow system.

Key words: stratified flows, buoyancy-driven instability, nonlinear instability

1. Introduction

Natural convection flows can occur when a heated vertical or inclined plate is immersed
in a thermally stratified ambient fluid. Such buoyancy-induced flows are very common
in several industrial processes and in nature. The buoyancy-driven boundary layer
representing a balance between buoyancy and viscous force is also known as the ‘buoyancy
layer’. For an inclined buoyancy layer, Prandtl (1952) first introduced this model to
simulate the flows over valleys and mountains in stratified air. The ambient fluid was
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assumed to be linearly stratified and kept a constant horizontal temperature difference
with the wall. By assuming a homogeneous boundary layer, a plane parallel flow solution
with temperature defect and flow reversal was derived. Relevant meteorological literature
mainly focuses on diurnal/seasonal variation and the impact of actual terrain on valley
wind; see the summary in Stull (1989).

Motivated by the above configuration, Prandtl’s model has become a paradigm for
such a buoyancy-driven flow system. Gill (1966) studied the two-dimensional convective
motion in a heated rectangular cavity to simulate the vertical buoyancy layers, in which
the wall and the ambient fluid have the same linear temperature gradients. The exact
solution revealed that the corresponding flow is parallel and simply one-dimensional for
both velocity and temperature fields. Based on this solution, the stability of a vertical
buoyancy layer was analysed by Gill & Davey (1969). They obtained the neutral stability
conditions for a wide range of Prandtl numbers. Iyer (1973) studied the inclined buoyancy
layer solution based on linear stability analysis, and calculated the neutral curve under
different inclination angles. Both transverse travelling Tolmien–Schlichting (T–S) waves
and longitudinal rolls were considered. Jaluria & Gebhart (1974) investigated the effect
of a stable ambient thermal stratification on the vertical boundary layer theoretically and
experimentally. They assumed that the temperature difference between the vertical wall
and the extensive medium varied downstream with a power law x0.2, which guaranteed
that the wall will dissipate a uniform heat flux. The results suggested that a stable
ambient stratification delays the early stages of transition. Later, the finite-difference
method was used to verify numerically the velocity and temperature fields by Jaluria
& Himasekhar (1983). A similarity solution was obtained for the natural convection
flow on an isothermal heated plate by Kulkarni, Jacobs & Hwang (1987). Based on this
solution, Krizhevsky, Cohen & Tanny (1996) investigated the convective and absolute
instabilities through linear instability analysis. Substantial progress has been made in
many theoretical and numerical studies of Prandtl buoyancy layers (Desrayaud 1990;
Gebhart et al. 1993; Tao, LeQuéré & Xin 2004a; McBain, Armfield & Desrayaud 2007;
Xiong & Tao 2017). It is worth mentioning that Tao, LeQuéré & Xin (2004b) studied
the spatio-temporal instability of the boundary layer adjacent to a vertical heated plate,
in which the temperature distribution of ambient medium and wall has different linear
temperature gradients. They introduced a temperature gradient ratio to describe the
flow evolution for different boundary conditions in a smooth way. Besides, according
to three-dimensional stability analysis (Tao & Busse 2009), the oblique roll mode is
found to be more unstable than the transverse T–S wave mode at some inclination
angles and Prandtl numbers due to ambient thermal stratification. Candelier, LeDizès &
Millet (2012) investigated the three-dimensional stability of boundary layer flow stably
stratified within an inviscid framework, and the compressible and non-Boussinesq effects
on the stability properties were considered in the strongly stratified limit. Then, Chen,
Bai & LeDizès (2016) found the boundary layer flow to be unstable with respect to two
instabilities (i.e. viscous instability and radiative instability). And the radiative instability
was shown to exhibit a much larger growth rate than the viscous instability in a large
Froude-number interval with large Reynolds numbers. Parente et al. (2020) considered
the modal and non-modal linear stability of a stably stratified Blasius boundary layer
flow. The influences of Richardson, Reynolds and Prandtl numbers on the temporal and
spatial linear stability were discussed. More recently, Xiao et al. (2022) investigated the
critical and spatio-temporal instability of the buoyancy-driven boundary layer on a vertical
cylinder. The results are consistent with those of a vertical plate when the radius is large
enough.

947 A40-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.685


Finite-amplitude instability of buoyancy boundary layer

In all the above-mentioned studies, the authors mainly focused on linear instability
analysis, which only gives the initial growth of the infinitesimal perturbation. Linear
theory fails to provide more information, such as the evolution of the perturbed flow in
the first stages and the local bifurcation behaviour. Therefore, the weakly nonlinear theory
is necessary to understand these problems accurately. Iyer & Kelly (1978) studied the
nonlinear stability of an inclined buoyancy layer with a uniform-heat-flux wall, while only
supercritical finite-amplitude wave solutions were obtained. Mizushima & Gotoh (1983)
studied the nonlinear evolution of the disturbance in natural convection induced in the
fluid layer between two parallel vertical walls with different temperatures. Jeschke & Beer
(2001) investigated the nonlinear growth of longitudinal vortices and the development
of secondary instabilities of natural convection flow in a laminar boundary layer on an
inclined flat plate with a constant-heat-flux surface. The stability of buoyancy-driven
convection between vertical concentric cylinders with a uniform temperature gap was
also studied under vertical thermal stratification conditions (Prud’homme & LeQuéré
2007). The Landau coefficient reveals that bifurcation can be subcritical or supercritical.
Wu & Zhang (2008) considered the linear and nonlinear instabilities of modified T–S
waves in a stratified boundary layer. The effect of stratification on the temporal and
spatial linear growth rates was studied, and the nonlinear evolution of the disturbances
is related to an extension of the well-known Benjamin–Davis–Ono equation. The weakly
nonlinear stability of stably stratified non-isothermal Poiseuille flow in a vertical channel
was considered by Khandelwal & Bera (2015). The results show that only supercritical
instability exists, which is consistent with the conclusion based on direct numerical
simulation (Chen & Chung 2002, 2003).

Up to now, there has been little research on nonlinear analysis of the buoyancy layer
on a vertical plate in a stratified medium. More importantly, it is still unknown how the
Prandtl number and temperature gradients affect the finite-amplitude instabilities in such
a system, which is the main motivation of this paper. Weakly nonlinear analysis focuses
on the amplitude equation (Landau equation) and the value of the Landau coefficient.
The perturbation technique used here was first developed in the work of Stuart (1958,
1960) and Watson (1960). Later, Reynolds & Potter (1967) extended and modified the
method of Stuart and Watson, and applied it to shear flows. We follow the physical
model developed by Tao et al. (2004b) and the amplitude expansion method formalized
by Reynolds & Potter (1967). The remainder of this investigation is outlined as follows.
In § 2 the governing equations of the fluid problem and the expansion formalism of
weakly nonlinear stability analysis are described. The basic flow and the critical linear
instability are documented in § 3. The results of nonlinear solutions and the related Landau
coefficients are obtained in § 4. Finally, conclusions are presented in § 5.

2. Mathematical formulation

2.1. Governing equations
The two-dimensional vertical boundary layer induced by buoyancy in a stratified fluid
is studied. A sketch of the geometry and the reference frame is shown in figure 1,
where the streamwise coordinate x∗ is measured vertically and opposite to the direction
of gravitational acceleration g and y∗ is the coordinate in the wall-normal direction.
The heated wall temperature is assumed to vary linearly in the streamwise direction
with a temperature gradient Nw � 0. The temperature of surrounding fluid increases
independently and linearly with a gradient N∞ > 0. The temperature profiles on the wall
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∞(0)
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g

Figure 1. Schematic geometry of a vertical plate immersed in thermally stratified fluid and the temperature
profiles on the wall and in the ambient medium.

and in the ambient fluid are given by

T∗
w(x) = T∗

w(0)+ Nwx∗, T∗
∞(x) = T∗

∞(0)+ N∞x∗, T∗
w(0)− T∗

∞(0) > 0, (2.1a–c)

where the subscript ‘∞’ and the superscript ‘∗’ denote the ambient condition and
dimensional quantities, respectively.

The heated wall is assumed to be of finite extent, and its temperature is greater than that
of the surrounding fluid at any elevation. The temperature difference between the wall and
the surrounding fluid at x∗ = 0 is �T∗ = T∗

w(0)− T∗∞(0). Length L is the characteristic
length scale satisfying T∗

w(0) = T∗∞(L), as shown in figure 1 by the vertical dashed line.
The governing equations for continuity, momentum and energy are

∇ · u∗ = 0, (2.2a)

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇(P∗/ρr)− gβ(T∗ − T∗

∞)+ ν∇2u∗, (2.2b)

∂T∗

∂t∗
+ u∗ · ∇T∗ = κ∇2T∗, (2.2c)

where ρr is a reference density, β the coefficient of thermal expansion, ν the kinematic
viscosity and κ the thermal diffusivity.

Following the non-dimensional variables employed by Tao et al. (2004b),

λ = Nw

N∞
, Gr =

(
gβ�T∗L3

ν2

)1/4

, Pr = ν

κ
, t = t∗

νGr3

L2 , (x, y) = (x∗, y∗)
Gr
L
,

(u, v) = (u∗, v∗)
L

ν Gr2 , T = T∗ − T∗
∞(x

∗)
T∗

w(x∗)− T∗∞(x∗)
, P = P∗ − P∗

∞(x
∗)

ρν2Gr4 L2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

where λ is the temperature gradient ratio, Gr the Grashof number and Pr the Prandtl
number. Note that the definition of the Grashof number used here differs from the
conventional definition by 1/4 power. When the wall is isothermally heated (Nw = 0),
we have λ = 0 for the isothermal boundary condition. And the unit temperature gradient
ratio represents a uniform-heat-flux boundary condition. Let ε = 1/Gr characterize the
degree of spatial inhomogeneity of the basic flow. Making the standard Boussinesq
approximations, the dimensionless governing equations for the velocity and temperature
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according to these scaling are then

∂u
∂x

+ ∂v

∂y
= 0, (2.4a)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂P
∂x

+ 1
Gr

∇2u + 1
Gr

T[1 + (λ− 1)εx], (2.4b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂P

∂y
+ 1

Gr
∇2v, (2.4c)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= 1
Pr Gr

∇2T − u[1 + (λ− 1)T]
Gr[1 + (λ− 1)εx]

+ 2(λ− 1)
Pr

∂T
∂x
ε2, (2.4d)

with the boundary conditions

u(t, x, 0) = v(t, x, 0) = u(t, x,∞) = T(t, x,∞) = 0, T(t, x, 0) = 1. (2.5a,b)

In the linearized analysis, the perturbations of velocity and temperature are assumed as
Γ ( y) exp[i(α̃x + ωt)] exp(at), where α̃ represents the streamwise wavenumber and ω − ia
would emerge as the complex eigenvalue in the linear problem. Parameters ω and a are
the frequency and growth rate of the basic wave, respectively. In the nonlinear analysis,
we seek solutions in terms of the basic wave and its harmonics, and the following initial
transformations of variables are utilized:

θ = α̃x + ω̃t, ω̃ = ω̃(A), A = A(t). (2.6a–c)

Note that A(t) is the amplitude of the fluctuations and the frequency also depends upon the
amplitude. Considering the new variables (2.6a–c), the continuity in (2.4) is automatically
satisfied by introducing a stream function ψ(θ,A, y), such that

∂ψ

∂y
= α̃u,

∂ψ

∂θ
= −v. (2.7a,b)

Substituting (2.6a–c) and (2.7a,b) into (2.4), then eliminating the pressure P, we obtain
the equations for ψ and T:

dA
dt
∂ζ

∂A
+
[
ω̃ + dω̃

dA

(
t
dA
dt

)]
∂ζ

∂θ
+ J(ψ, ζ ) = 1

Gr
∇2
α̃ζ + α̃f (x)

2
√

2 Gr

∂T
∂y
, (2.8a)

dA
dt
∂T
∂A

+
[
ω̃ + dω̃

dA

(
t
dA
dt

)]
∂T
∂θ

+ J(ψ, T) = 1
Pr Gr

∇2
α̃T − 2

√
2[1 + (λ− 1)T]

Gr α̃f (x)
∂ψ

∂y

+O(ε2), (2.8b)

where ζ = ∇2
α̃
ψ , J( f , g) is the Jacobian determinant defined by (∂f /∂y)(∂g/∂θ)−

(∂f /∂θ)(∂g/∂y), ∇2
α̃

= ∂2/∂y2 + α̃2∂2/∂θ2 and f (x) = 2
√

2[1 + (λ− 1)εx]. The
corresponding boundary conditions are

ψ(θ,A, 0) = ∂ψ

∂y
(θ,A, 0) = ∂ψ

∂θ
(θ,A, 0) = 0, T(θ,A, 0) = 1, (2.9a)

∂ψ

∂y
(θ,A,∞) = 0, T(θ,A,∞) = 0. (2.9b)
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2.2. The expansion formalism
In order to simplify the equations, the modified Grashof number G, wavenumber α and
frequency ω are introduced:

G = f (x)Gr, α =
√

2α̃, ω = 2
f (x)

ω̃, τ = f (x)
2

t, η = y√
2
. (2.10a–e)

Then, we expand the stream function and temperature in terms of their harmonic
component:

ψ(θ,A, η) = f (θ)
∞∑

k=0

[Ψ (k)(A, η) exp(ikθ)+ Ψ (k)(A, η) exp(−ikθ)], (2.11a)

T(θ,A, η) =
∞∑

k=0

Θ(k)(A, η) exp(ikθ)+Θ(k)(A, η) exp(−ikθ), (2.11b)

where the overline denotes a complex conjugate. For a small-amplitude disturbance, the
perturbed flow can be expanded around the basic flow. Thus, the solutions will be expanded
as a power series in the amplitude A:

Ψ (k)(A, η) =
∞∑

n=k

Anφ(k,n)(η), Θ(k)(A, η) =
∞∑

n=k

Anϕ(k,n)(η). (2.12a,b)

In the dual superscript notation, the first index (k) refers to a particular Fourier mode and
the second index (n) indicates the order of a particular term as O(An). These forms of
solutions can be reduced to the basic laminar flow with O(1) terms and linear problem
with O(A) terms. Equation (2.12a,b) represents the sum over all n � k, so Ψ (k) contains
no terms of order less than Ak. Following the series expansion forms utilized by Reynolds
& Potter (1967), the term dA/dτ and the term involving ω are represented by power series
in A:

1
A

dA
dτ

=
∞∑

n=0

Ana(n), ω + dω
dA

(
τ

dA
dτ

)
=

∞∑
n=0

Anb(n). (2.13a,b)

For linear stability analysis, a(0) and b(0) emerge as the eigenvalues. Terms a(1) and b(1)

will turn out to be zero. Term a(2) may moderate or accelerate the exponential growth of
the linear disturbance, which is the focus of interest in nonlinear analysis. According to the
signs of a(0) and a(2), one can determine whether the primary bifurcation is supercritical
or subcritical. The equation for the slowly varying amplitude A(τ ) is also known as the
Landau equation and the coefficients are referred to as Landau coefficients.

Substituting (2.11)–(2.13a,b) into (2.8) and collecting like terms with different order,
a set of coupled ordinary differential equations for φ(k,n)(η) and ϕ(k,n)(η) will be
obtained, and the equations can be solved sequentially. The governing equations and
corresponding boundary conditions for φ(k,n)(η) and ϕ(k,n)(η) are given in Appendix A.
Equation (A1) with corresponding boundary conditions embody all necessary information
for the nonlinear analysis of the buoyancy-driven flow. In a later section, we reduce
the nonlinear stability problem to a sequence of linear homogeneous/inhomogeneous
differential equations for φ(k,n)(η) and ϕ(k,n)(η), each of which can be solved numerically.
Additionally, according to the discussion by Reynolds & Potter (1967), a(n) and b(n) for odd
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φ(0,0) — — — ϕ(0,0) — — —
— φ(1,1) — — — ϕ(1,1) — —
φ(0,2) — φ(2,2) — ϕ(0,2) — ϕ(2,2) —
— φ(1,3) — φ(3,3) — ϕ(1,3) — ϕ(3,3)

· · · — — — · · · — — —

Table 1. Non-zero functions for φ(k,n) and ϕ(k,n) for k � n.

n vanish. Besides, the functions φ(k,n) and ϕ(k,n) also vanish if n + k is odd. The calculation
in this paper also confirms this result, and hence the remaining non-zero functions (see
table 1) are discussed in the following.

3. Linear stability analysis

To predict the stability in our framework, we start by performing the linear stability
analysis of the basic state φ(0,0) and ϕ(0,0), which was previously done by Tao et al.
(2004b). We briefly rederive their results in the following subsection so that they can be
applied in the later weakly nonlinear analysis.

3.1. Basic flow (k = 0, n = 0)
For the steady and spatial inhomogeneous base flow, it is necessary to take k = 0 and
n = 0 into (A1). Then we obtain

D4φ(0,0) + 8
√

2(λ− 1)
α

(φ(0,0)D3φ(0,0) − Dφ(0,0)D2φ(0,0))+ α√
2
Dϕ(0,0) = 0,

(3.1a)

1
Pr

D2ϕ(0,0) − 4
√

2
α

Dφ(0,0)[1 + 2(λ− 1)ϕ(0,0)] + 8
√

2(λ− 1)
α

φ(0,0)Dϕ(0,0) = 0,

(3.1b)

where D = d/dη. Because we used the transformation (2.6a–c) before, the wavenumber
α appears as a coefficient in (3.1). However, the basic flow is independent of the
wavenumber. We change the above equations into a more reasonable form by transforming
F0 = 2

√
2α−1φ(0,0) and H0 = 2ϕ(0,0). The following equations are obtained, which are

consistent with those of Tao et al. (2004b). For the sake of simplicity, the derivative of the
basic flow with respect to η is represented by a prime:

F′′′
0 + 4(λ− 1)

(
F0F′′′

0 − F′
0F′′

0
)+ H0 = 0, (3.2a)

Pr−1H′′
0 + 4(λ− 1)F0H′

0 − 4F′
0 [1 + (λ− 1)H0] = 0, (3.2b)

with boundary conditions

F0(0) = F′
0(0) = F′

0(∞) = H0(∞) = 0, H0(0) = 1. (3.3a,b)

In order to solve the ordinary equations (3.2), we regard this problem as a two-point
boundary value problem. The coupled equations are first transformed into a system
of five first-order differential equations. Then, after a coordinate transformation, the
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0.4

Krizhevsky et al. (1996)

Tao et al. (2004)

Tao et al. (2004)

λ = 1, Pr = 6.7

λ = 0, Pr = 6.7

λ = 0, Pr = 0.7

λ = 1, Pr = 0.7

λ = 0, Pr = 6.7

λ = 0, Pr = 6.7

(a) 1.0

0.5

0

–0.5

H0

–1.0

(b)

0.3

0.2

0.1

0

F0
′

–0.1

–0.2
0 2 4 6

η
8 10 0 2 4 6

η
8 10

Figure 2. Comparison of basic flow (a) F′
0(η) and (b) H0(η) profiles between the present results (lines) and

previous results (symbols) for different λ and Pr. Solid lines (triangle), λ = 1,Pr = 6.7; dashed lines (circle),
λ = 0,Pr = 6.7; dash-dotted lines (square), λ = 0,Pr = 0.7.

Gauss–Lobatto points are adopted to discretize the system of differential equations in
the η interval [0, ηmax]. The solution obtained by Prandtl (1952) for a one-dimensional
flow is taken as the initial guess for the Newton iterations. For a high enough numerical
accuracy, the order of Chebyshev polynomial N and a large enough ηmax must be chosen.
As a consequence, the parameters are determined when the absolute value of the residual
varies by less than 10−10 on each iteration. The numerical solutions of dimensionless
vertical velocity F′

0(η) and temperature H0(η) for different temperature gradient ratios
and Prandtl numbers are tested successfully against the results of Krizhevsky et al. (1996)
and Tao et al. (2004b) (see figure 2). The discussions for related velocity and temperature
profiles can be found in their works and hence we do not repeat them here for the sake of
brevity.

3.2. Critical instability: fundamental mode (k = 1, n = 1)
In the linear problem at O(A), it is assumed that the disturbances are infinitesimal to the
basic state. Substituting k = 1 and n = 1 into (A1), the Orr–Sommerfeld equation coupled
with the energy equation is obtained:

Q(1,1)X (1,1) = (a(0) + ib(0))SX (1,1), (3.4)

where X (k,n) = (φ(k,n), ϕ(k,n))T, and Q(1,1) and S are

Q(1,1) =

⎛
⎜⎜⎝

1
G

L 2
1 + iα

(
F′′′

0 − F′
0L1

) α√
2G

D

i
√

2H′
0 − 4

√
2

αG
[1 + (λ− 1)H0] D

1
Pr G

L1 − iαF′
0 − 4

G
(λ− 1)F′

0

⎞
⎟⎟⎠ ,

(3.5)

S =
(
L1 0
0 1

)
, (3.6)

with Lk = D2 − k2α2, and the superscript T denotes the transposition operation for a
vector. The boundary conditions are

φ(1,1)(0) = Dφ(1,1)(0) = Dφ(1,1)(∞) = ϕ(1,1)(0) = ϕ(1,1)(∞) = 0. (3.7)
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Figure 3. Comparison of amplitude profiles of critical modes between the present results (lines) and previous
results (symbols) for Pr = 6.7. (a) Velocity disturbance and (b) temperature disturbance for λ = 1 and λ = 0.

Equations (3.4) and (3.7) constitute eigenvalue problems, which determine a set of
eigenvalues of a(0) and b(0), as well as the corresponding eigenfunctions of φ(1,1) and
ϕ(1,1). The real and imaginary parts of the phase velocity c(0) are represented by c(0)r =
−b(0)/α and c(0)i = a(0)/α, respectively. The disturbance is neutrally stable as c(0)i = 0.
It is worth noting that there are two more terms related to λ in (3.5) when compared
with (2.8a) in Tao et al. (2004b), which were ignored in their work. Although these
two terms have little effect on the results of linear stability analysis, they are crucial
to the weak nonlinear problems in the later analysis. The amplitude profiles of critical
modes, shown in figure 3 as solid line (λ = 1) and dashed line (λ = 0), agree well with
the results from Tao et al. (2004b). The generalized eigenvalue problem (3.4) is then
solved using a spectral eigenvalue solver based on Chebyshev polynomials. We first map
the computational Chebyshev domain [−1, 1] onto the physical domain [0, ηmax] via a
linear coordinate transformation. For different parameters (e.g. Prandtl number and the
temperature gradient ratio), several tests have been performed for different Chebyshev
points and computational domains to ensure numerical convergence. To determine the
neutral states, for given parameters of Pr and λ, α and G are varied until |c(0)i | � 10−6. In
all subsequent numerical calculations, the number of Chebyshev points N = 200 are used
to accurately compute the generalized eigenvalue problem. For more details on numerical
calculation, we refer the reader to Schmid & Henningson (2001) and Xiao et al. (2022).

The neutral curves of G versus α and c(0)r for different Pr and λ are shown in figure 4.
The neutral curves exhibit the common feature in the buoyancy-driven system, i.e. the
neutral curves have higher- and lower-wavenumber parts. Those two-lobed structures (also
known as the nose-shaped piece) are determined by thermal instability and mechanical
instability (Gill & Davey 1969). The lower-wavenumber part is caused by the coupling
between the Orr–Sommerfeld equation and the energy equation, which corresponds to
buoyancy-driven instability. The higher-wavenumber part is controlled by mechanical
instability, and the feature does not change when the buoyancy effects are neglected. The
minimum value of Grashof number on the curve determines the critical Grashof number
Gc. The corresponding wavenumber and phase velocity are denoted as αc and c(0)c . With an
increase of λ, the critical Grashof number Gc increases while c(0)c decreases, which means
a larger gradient ratio λ stabilizes the buoyancy layer. The critical parameters for different
values of Pr and λ are shown in table 2. Besides, the loop of the neutral curve for Pr = 6.7
and λ = 0 (see figure 4c) is produced by the twist in the (α, G, ω) space.
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Figure 4. The neutral curves for different temperature gradient ratios λ in (a,c) (α, G) plane and (b,d) (c(0)r ,
G) plane for (a,b) Pr = 0.72 and (c,d) Pr = 6.7.

In order to fix the amplitude of φ(1,1) and ϕ(1,1), the amplitude of the eigenfunction is
normalized by

〈φ(1,1), φ(1,1)〉 + 〈ϕ(1,1), ϕ(1,1)〉 = 1 (3.8)

with the inner product

〈f , g〉 =
∫ ∞

0
f (η)g(η) dη. (3.9)

Due to the lack of explicit expressions for the solutions to the linear problem, the inner
products need to be computed numerically. The Clenshaw–Curtis quadrature (Trefethen
2008) on the Gauss–Lobatto collocation grid is applied to evaluate the integral. We will
see that the following equations for the higher-order problem can be solved one by one
with the known φ(1,1) and ϕ(1,1).

4. Weakly nonlinear analysis

4.1. Modification of the mean flow (k = 0, n = 2)
For the distortion of mean flow on O(A2), substituting k = 0 and n = 2 into (A1), we have

Q(0,2)X (0,2) = F (0,2), (4.1)
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where

Q(0,2) =

⎛
⎜⎜⎝

1
G

L 2
0 − M (0,2)L0

α√
2G

D

−4
√

2
αG

[1 + (λ− 1)H0]D
1

Pr G
L0 − M (0,2) − 4

G
(λ− 1)F′

0

⎞
⎟⎟⎠ , (4.2)

F (0,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
2

2
iD(φ(1,1)L1φ

(1,1) − φ(1,1)L1φ(1,1))

√
2

2
iD(φ(1,1)ϕ(1,1) − φ(1,1)ϕ(1,1))

+2
√

2
αG

(λ− 1)(Dφ(1,1)ϕ(1,1) + Dφ(1,1)ϕ(1,1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (4.3)

with M (k,n) = na(0) + ikb(0) + ikαF′
0. From the expression of F (0,2), it suggests that the

interaction of the fundamental mode with its complex conjugate leads to the distortion
of mean flow. Since we have already obtained the fundamental mode, (4.1) with the
associated boundary conditions is solved numerically. Furthermore, note that Q(0,2) is a
real matrix, i.e. Q(0,2) = Q(0,2). It is easy to prove that X (0,2) is always real.

Figure 5 illustrates the modification of the mean flow for two sets of parameters:
Pr = 6.7 for different λ, and λ = 0 for different Pr. For Pr = 6.7, the position of the
maximum value for the modification of the mean flow moves towards the wall at higher
gradient ratio λ due to a thinner boundary layer. And the maximum value of the correction
of velocity and temperature increases with an increase of λ. However, near the wall, the
defect of velocity decreases with an increase of λ (figure 5a), which is contrary to the
temperature (figure 5b). The modifications of the mean flow with different Pr for an
isothermal wall (λ = 0) are shown in figure 5(c,d). With an increase of Pr, the amount
of correction increases constantly, but the position of the maximum value does not change
monotonically. Nevertheless, the curves have a common feature: there is a maximum value
and two minimum values. And the value of basic flow near the wall will decrease to some
extent.

4.2. Second harmonic of the fundamental (k = 2, n = 2)
The equation for the second harmonic is derived by substituting k = n = 2 into (A1), and
we have

Q(2,2)X (2,2) = F (2,2), (4.4)

where

Q(2,2) =

⎛
⎜⎜⎝

1
G

L 2
2 − M (2,2)L2 + 2iαF′′′

0
α√
2G

D

2
√

2iH′
0 − 4

√
2

αG
[1 + (λ− 1)H0]D

1
Pr G

L2 − M (2,2) − 4
G
(λ− 1)F′

0

⎞
⎟⎟⎠ ,

(4.5)

F (2,2) =

⎛
⎜⎝

√
2i(Dφ(1,1)L1φ

(1,1) − φ(1,1)L1Dφ
(1,1))

√
2i(Dφ(1,1)ϕ(1,1) − φ(1,1)Dϕ(1,1))+ 4

√
2

αG
(λ− 1)Dφ(1,1)ϕ(1,1)

⎞
⎟⎠ . (4.6)
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Figure 5. Modification of the mean flow. (a) Velocity and (b) temperature as functions of η for different values
of λ with Pr = 6.7. (c) Velocity and (d) temperature as functions of η for different values of Pr with λ = 0.
For the case of Pr = 0.1 in (c,d), the dotted lines are magnified by 100 times.

Similarly, (4.6) implies that the fundamental mode interacting with itself leads to the
generation of the second harmonic. The amplitude profiles of the second harmonic of
the fundamental for different Pr and λ are shown in figure 6. For given Pr = 6.7, it can
be seen from figures 6(a) and 6(b) that the velocity curve contains three peaks, but the
temperature curve only has one. And with increasing λ, all of the peaks approach the
wall gradually. Compared with the linear critical mode for velocity disturbance in Tao
et al. (2004b), the position of the second and third peaks of |φ(2,2)η | almost coincides with
the extreme position of the linear mode corresponding to the buoyancy-driven instability
mode. Besides, the distinction is that there will be an additional peak in the near-wall
region for the velocity of the second harmonic of the fundamental, and the emergence
of this peak is related to the interaction between linear modes. For λ = 0, the maximum
value of each curve increases as Pr increases (see figure 6c,d). In figure 6(c), the amplitude
profiles for Pr = 0.72 and 6.7 have three peaks, while for a large or small value of Pr, the
profiles have only two peaks. Considering the physical meaning of the Prandtl number,
the number of peaks in the second harmonic of the fundamental may be related to the
competition between momentum transport and heat transport.

4.3. Landau coefficient (k = 1, n = 3)
At O(A3), we derive an equation for the distortion of the fundamental mode φ(1,3) and
ϕ(1,3) by substituting k = 1 and n = 3 into (A1):

Q(1,3)X (1,3) = (a(2) + ib(2))SX (1,1) + F (1,3), (4.7)
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Figure 6. Amplitude profiles of the second harmonic of the fundamental. (a) Velocity and (b) temperature as
functions of η for different values of λ with Pr = 6.7. (c) Velocity and (d) temperature as functions of η for
different values of Pr with λ = 0. For the case of Pr = 0.1 in (c,d), the dotted lines are magnified by 100 and
20 times, respectively.

where

Q(1,3) =

⎛
⎜⎜⎝

1
G

L 2
1 − M (1,3)L1 + iαF′′′

0
α√
2G

D

√
2iH′

0 − 4
√

2
αG

[1 + (λ− 1)H0]D
1

Pr G
L1 − M (1,3) − 4

G
(λ− 1)F′

0

⎞
⎟⎟⎠ ,

(4.8)

and the expression for the inhomogeneous term F (1,3) represents the quadratic nonlinear
terms that arise from the product of two Fourier series:

F (1,3) =
(

N 01
M + N 12

M

N 01
E + N 10

E + N 12
E + N 21

E

)
, (4.9)

with

N 01
M = −

√
2i[(Dφ(0,2) + Dφ(0,2))L1φ

(1,1) − φ(1,1)L0(Dφ
(0,2) + Dφ(0,2))], (4.10a)

N 12
M = −

√
2i(2Dφ(1,1)L2φ

(2,2) − Dφ(2,2)L1φ(1,1)

−2φ(2,2)L1Dφ(1,1) + φ(1,1)L2Dφ
(2,2)), (4.10b)
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N 01
E = −

√
2i(Dφ(0,2) + Dφ(0,2))ϕ(1,1) − 4

√
2

αG
(λ− 1)(Dφ(0,2) + Dφ(0,2))ϕ(1,1),

(4.10c)

N 10
E =

√
2iφ(1,1)(Dϕ(0,2) + Dϕ(0,2))− 4

√
2

αG
(λ− 1)Dφ(1,1)(ϕ(0,2) + ϕ(0,2)), (4.10d)

N 12
E = −

√
2i(2Dφ(1,1)ϕ(2,2) + φ(1,1)Dϕ(2,2))− 4

√
2

αG
(λ− 1)Dφ(1,1)ϕ(2,2), (4.10e)

N 21
E =

√
2i(Dφ(2,2)ϕ(1,1) + 2φ(2,2)Dϕ(1,1))− 4

√
2

αG
(λ− 1)Dφ(2,2)ϕ(1,1). (4.10f )

The subscripts M and E refer to terms that originate from the momentum and energy
equations. The superscripts 0, 1 and 2 represent the modification of the mean flow,
fundamental mode and second harmonic, respectively. For example, in the energy
equation, N 01

E is the interaction of the modification of the mean flow for velocity with
the fundamental mode for temperature.

Equation (4.7) is an inhomogeneous differential equation that has a unique solution if
and only if a solvability condition or the Fredholm alternative is satisfied. The solvability
condition states that the inhomogeneous term has to be orthogonal to the solution of the
adjoint homogeneous problem. The homogeneous adjoint problem associated with (4.7)
is given as

Q(1,3)†X (1,3)† = 0, (4.11)

where X (1,3)† = (φ(1,3)†, ϕ(1,3)†)T and the adjoint operator Q(1,3)† is defined through the
relationship

〈f ,L g〉 = 〈L †f , g〉. (4.12)

Thus, Q(1,3)† can be obtained by integration by parts. Then we obtain

Q(1,3)† =

⎛
⎜⎜⎜⎜⎜⎝

1
G

L 2
1 − M (1,3)L1 −

√
2iH′

0 + 4
√

2
αG

[D + (λ− 1)(H0D + H′
0)]

+2iαF′′
0D

− α√
2G

D
1

Pr G
L1 − M (1,3) − 4

G
(λ− 1)F′

0

⎞
⎟⎟⎟⎟⎟⎠ ,
(4.13)

with the adjoint boundary conditions

φ(1,3)†(0) = Dφ(1,3)†(0) = Dφ(1,3)†(∞) = ϕ(1,3)†(0) = ϕ(1,3)†(∞) = 0. (4.14)

The amplitude of the adjoint solution is normalized by

〈φ(1,3)†, φ(1,3)†〉 + 〈ϕ(1,3)†, ϕ(1,3)†〉 = 1. (4.15)

The adjoint solutions φ(1,3)† and ϕ(1,3)† for Pr = 6.7 with different λ are displayed in
figure 10 in Appendix B. The Fredholm alternative for the present case means that the
right-hand side of (4.7) has to be orthogonal to the solution of the adjoint problem (4.11).
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Figure 7. (a) Variation of the Landau coefficient a(2) with Pr for different λ. The lines are obtained by spline
interpolation. (b) Phase diagram in the (Pr, λ) plane. The grey thick solid line indicates the boundary a(2) = 0
separating the supercritical region (below) and subcritical region (above).

The Landau coefficient is then obtained:

a(2) + ib(2) = −
〈
X (1,3)†, F (1,3)

〉〈
X (1,3)†,SX (1,1)

〉 = σ 01
M + σ 12

M + σ 01
E + σ 10

E + σ 12
E + σ 21

E , (4.16)

with

σ 01
M = −

〈
φ(1,3)†,N 01

M
〉〈

X (1,3)†,SX (1,1)
〉 , σ 12

M = −
〈
φ(1,3)†,N 12

M
〉〈

X (1,3)†,SX (1,1)
〉 , (4.17a)

σ 01
E = −

〈
ϕ(1,3)†,N 01

E
〉〈

X (1,3)†,SX (1,1)
〉 , σ 10

E = −
〈
ϕ(1,3)†,N 10

E
〉〈

X (1,3)†,SX (1,1)
〉 , (4.17b)

σ 12
E = −

〈
ϕ(1,3)†,N 12

E
〉〈

X (1,3)†,SX (1,1)
〉 , σ 21

E = −
〈
ϕ(1,3)†,N 21

E
〉〈

X (1,3)†,SX (1,1)
〉 , (4.17c)

where σ 01
M is the feedback of the mean flow distortion on the fundamental mode, σ 12

E is
the feedback of the second harmonic on the fundamental mode, etc. The supercritical and
subcritical types of instability (bifurcation) are identified by the sign of a(2). For a(0) > 0
and a(2) < 0, a finite-amplitude equilibrium solution can be achieved after the infinitesimal
state has become unstable, which is known as supercritical bifurcation. For a(0) < 0 and
a(2) > 0, a finite-amplitude equilibrium solution can be achieved before the base state has
become linearly unstable, which is known as subcritical bifurcation.

Utilizing the numerical values in table 2, a(2) and b(2) are computed over a range of
critical parameters. Several tests are performed for different computational domains ηmax
and Chebyshev points N to ensure numerical convergence, and the results are shown in
table 4 in Appendix C. The result of the Landau coefficient a(2) from (4.16) for different
Pr and λ at the least unstable parameter is shown in figure 7(a). For the isothermal (λ = 0)
and uniform-heat-flux (λ = 1) walls, we found that a(2) < 0 for all the cases (10−1 � Pr �
104) considered here, which means the flow is supercritical instability. However, with an
increase in the temperature gradient ratio, a(2) > 0 is obtained for a large value of Pr and
this corresponds to the subcritical solution. The results are therefore limited to Pr � 104.

The boundary a(2) = 0 is shown in figure 7(b), which separates the (Pr, λ) plane into
a supercritical region (below) and subcritical region (above). It can be seen that, for
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Pr λ Gc αc c(0)c a(2) b(2)

0.10 0 24.85 0.0655 2.6916 −0.0001 0.0007
0.72 0 24.69 0.2800 0.4795 −0.0207 0.0130
6.70 0 28.79 0.6850 0.1407 −0.1366 0.0118
100.00 0 41.79 1.4190 0.0387 −0.1474 0.1059
1000.00 0 70.48 2.4300 0.0126 −0.0766 0.1987
0.10 1 38.60 0.3310 0.2724 −1.7054 2.5603
0.72 1 158.16 0.2678 0.1649 −0.1979 0.0695
6.70 1 99.55 0.6684 0.0762 −0.2877 0.0549
100.00 1 107.50 1.4500 0.0236 −0.3645 −0.1399
1000.00 1 171.14 2.4180 0.0079 −0.0333 −0.1749
0.10 5 318.00 0.4130 0.0888 −1.4844 3.0643
0.72 5 585.26 0.3560 0.0706 −0.4322 −0.0614
6.70 5 321.96 0.8050 0.0410 −0.4296 −0.0297
100.00 5 281.31 1.6900 0.0139 −0.0887 −0.2399
1000.00 5 421.19 2.6700 0.0048 0.0336 −0.5933
0.10 10 567.89 0.4790 0.0611 −1.3107 2.8411
0.72 10 1001.96 0.4150 0.0496 −0.4962 −0.1402
6.70 10 557.57 0.9350 0.0302 −0.5037 −0.1382
100.00 10 461.01 1.8840 0.0106 −0.0775 −0.3218
1000.00 10 670.52 2.8650 0.0037 0.0730 −0.7891

Table 2. Critical Grashof number Gc, critical wavenumber αc, critical phase velocity c(0)c and Landau
coefficient for different Prandtl number Pr and temperature gradient ratio λ.

0 � λ < 2, only a supercritical bifurcation exists when Pr � 2800. Moreover, with an
increase of temperature gradient ratio, the corresponding value of Pr at the boundary
gradually decreases. It is illustrated in figure 7(b) that subcritical bifurcations are observed
only for large temperature gradient ratios and Prandtl numbers. Close examination for
basic flow F′

0(η) and H0(η) reveals that for higher temperature gradient ratio and Prandtl
number, the position of the maximum amplitude of velocity moves towards the wall and
the temperature gradients near the wall increase due to a thinner boundary layer. And the
absolute values of the maximum and the minimum streamwise velocities also decrease
with an increase of Pr and λ. These characteristics of basic flow may be related to the
fact of the existence of subcritical bifurcation at high Pr and λ. It is worth mentioning
that the parameter values from Iyer & Kelly (1978) all lie within the region where the
bifurcation is supercritical, which is consistent with their results. Besides, the parameter
values for the discussion on the convective and absolute instabilities from Krizhevsky
et al. (1996) and Tao et al. (2004b) are also shown in figure 7(b). The bifurcation types
corresponding to these parameters are still supercritical. In fact, the above results suggest
that most common fluids, such as air (Pr = 0.72), water (Pr = 6.7) and argon (Pr = 23),
are below the boundary and belong to supercritical bifurcation. For fluids such as glycerine
(Pr ≈ 2000), the buoyancy layer can experience a subcritical bifurcation under a larger
temperature gradient ratio.

4.4. Threshold amplitude
In this subsection, we discuss the nature of bifurcation for the appearance of
finite-amplitude nonlinear equilibrium solutions. We rewrite the Landau equation
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Figure 8. Variation of equilibrium amplitude as a function of ε = (G − Gc)/Gc for (a) λ = 0 with different
Pr and (b) Pr = 6.7 with different λ. The bifurcation is supercritical in each case.

(2.13a,b) as
dA
dτ

= Aa(0) + A3a(2) + A5a(4) + · · · . (4.18)

This series is also known as the Stuart–Landau series (Stuart 1960; Watson 1960), in which
a(0) is the growth rate from linear theory and the Landau coefficients a(2), a(4), . . . are
nonlinear corrections to the linear growth rate as mentioned above. Only the leading-order
term of the Landau coefficient is of concern here and the stationary equilibrium amplitude
solution Ae for (4.18) has two possible solutions. If a(0) and a(2) are of the same sign, only
the zero-amplitude state exists as an equilibrium solution. If a(0) and a(2) are of opposite
sign, as time increases, we have a steady state:

Ae =
√

−a(0)

a(2)
. (4.19)

Figure 8 plots the equilibrium amplitude Ae in the neighbourhood of the critical
instability ε = (G − Gc)/Gc 
 1 for different values of λ and Pr when the instabilities
are supercritical. The equilibrium amplitude increases smoothly with an increase of ε, and
we have Ae ∼ ε−1/2 according to the Taylor expansion. For given λ and Pr, the threshold
amplitude will reach a stable nonlinear state, which limits the basin of attraction of the
laminar flow. When λ = 0, the equilibrium amplitude decreases with an increase of Pr
(see figure 8a), i.e. the flow becomes more sensitive to small perturbations. Figure 8(b)
illustrates that Ae decreases significantly as the temperature gradient ratio increases.
Apparently, the magnitude of Ae for the flow near an isothermal wall is twice that for a
uniform-heat-flux wall.

Figure 9 shows a series of bifurcation diagrams for six values of Pr at λ = 5. It can be
seen that, with increasing Pr, the equilibrium amplitude increases gradually when the flow
works in the linearly unstable regime ε > 0. The instability here is of supercritical type,
which is indicated by solid lines in figure 9. However, when the value of Pr continues to
increase, the bifurcation type becomes subcritical immediately (dashed lines) and the value
of Ae decreases. It is noteworthy that the buoyancy flow is nonlinearly stable for A < Ae
and unstable for A > Ae, and the finite-amplitude unstable branch in figure 9 provides a
threshold for nonlinear stability. It is obtained that the critical Prandtl number at which
this switchover between the subcritical and supercritical bifurcations occurs is Pr ≈ 285.
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Figure 9. Variation of equilibrium amplitude as a function of ε = (G − Gc)/Gc for λ = 5 with different Pr.
The bifurcation type changes from supercritical (solid lines) to subcritical (dashed lines).
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Figure 10. Adjoint eigenfunctions for Pr = 6.7. (a) Real and (b) imaginary parts of φ(1,3)†. (c) Real and (d)
imaginary parts of ϕ(1,3)†.

In order to analyse the nonlinear effects that control the type of bifurcation, the
contributions of the different terms σ 01

M , σ
12
M , . . . in (4.16) that affect the value of a(2)

are given in table 3 for the parameters analysed in figure 9. There are several points
worth noting. First, the fundamental modes φ(1,1) in the momentum equation play a
minor role in these effects since the corresponding contributions σ 01

M and σ 12
M are of

small magnitude in comparison with the contributions associated with that in the energy
equation. A second important point is that the values of σ 10

E and σ 12
E are always negative,

which means the interaction between the fundamental mode for velocity and temperature

947 A40-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.685
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Pr a(2) σ 01
M σ 12

M σ 01
E σ 10

E σ 12
E σ 21

E

6.7 −0.4296 0.0322 −0.0113 0.1182 −0.3910 −0.1100 −0.0677
100.0 −0.0887 0.0081 −0.0149 0.1139 −0.1640 −0.0784 0.0467
270.0 −0.0041 −0.0056 −0.0113 0.0855 −0.0770 −0.0534 0.0577
300.0 0.0035 −0.0062 −0.0109 0.0825 −0.0700 −0.0497 0.0578
1000.0 0.0336 −0.0080 −0.0069 0.0523 −0.0265 −0.0261 0.0487
10 000.0 0.0203 −0.0034 −0.0024 0.0181 −0.0061 −0.0064 0.0205

Table 3. Landau coefficient and real part of the contribution of the nonlinear terms for different Prandtl
number Pr at temperature gradient ratio λ = 5.

is beneficial to supercritical bifurcation. A last important point revealed in table 3 is that
the buoyancy-driven effects are crucial since for different Pr, the values of σ 01

E + σ 21
E

are greater than zero. The flow energy from distortion of the mean flow φ(0,2) to the
fundamental ϕ(1,1) is described by σ 01

E , while σ 21
E represents the flow energy from the

fundamental ϕ(1,1) to the second harmonic φ(2,2). This suggests that the interaction of the
modification of the mean flow and second harmonic for velocity with the fundamental
mode for temperature plays an important role in the subcritical bifurcation. Considering
that the buoyancy-driven instability becomes increasingly important as the Prandtl number
is increased (Gill & Davey 1969), the coupling between the energy equation and the
Orr–Sommerfeld equation may provide some clues for revealing the mechanism of
changing bifurcation.

5. Conclusion

In this work, we have studied the finite-amplitude instability of the natural convection
flow on a vertically heated plate, where the ambient fluid and the wall have independent
temperature gradients. As mentioned in the introduction, the linear stability was
investigated by Tao et al. (2004b), and the finite-amplitude solution (Iyer & Kelly 1978)
arising from the critical instability was studied only for a uniform-heat-flux surface
(λ = 1). Only supercritical bifurcation was found in their analysis. In order to extend
their results, a weakly nonlinear theory is developed to describe the nonlinear instability
of the buoyancy-driven boundary layer. The amplitude expansion method of Reynolds &
Potter (1967) is adapted to the present nonlinear problem. At different orders, the nonlinear
stability problem is reduced to a sequence of linear inhomogeneous differential equations.
Then, the basic flow, the fundamental mode, the related modification of the base flow, the
second harmonics and Landau coefficients are obtained.

The flow is governed by three parameters: modified Grashof number G, Prandtl number
Pr and temperature gradient ratio λ. The present parametric study is mainly focused on
the critical mode of the linear problem, except in the discussion on equilibrium amplitude.
The main conclusions of the analysis are as follows. For the distortion of mean flow,
the maximum value of the correction amount of velocity and temperature increases with
an increase of λ for fixed Pr = 6.7. With an increase of Pr, the maximum value of the
distortion of mean flow increases constantly for the isothermal surface. For the second
harmonic generated by the fundamental mode interacting with itself, when Pr = 6.7, the
position of the second and third peaks of velocity almost coincides with the extreme
position of the linear mode corresponding to the buoyancy-driven instability mode. And
the modulus of the harmonic increases with increasing λ. The Landau coefficients are
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determined from the solvability condition (the Fredholm alternative) at O(A3). We have
identified the boundary for Landau coefficient a(2) = 0. For Prandtl number above the
critical value, the bifurcation is subcritical. Otherwise, it is a supercritical bifurcation. It
is shown that, for 0 � λ < 2, only supercritical bifurcation exists when Pr � 2800. The
current result is consistent with that of Iyer & Kelly (1978). In addition, the threshold
amplitude of the bifurcation is determined as well. The threshold amplitude decreases
with increasing Pr for the isothermal wall. For Pr = 6.7, the threshold amplitude also
decreases with increasing λ. By analysing the contribution of the nonlinear terms in the
Landau coefficient for the bifurcation type changing from supercritical to subcritical, it is
revealed that the interaction of the modification of the mean flow and second harmonic for
velocity with the fundamental mode for temperature plays an important role in subcritical
bifurcation.

Although only two-dimensional disturbances are considered in this paper, the
present configuration can be extended to analyse the finite-amplitude instability in the
three-dimensional buoyancy layer. We have only calculated the first Landau coefficient
at cubic order in A. For subcritical bifurcations and significant deviation from the
critical parameter, the higher-order Landau coefficients are needed to identify the stable
finite-amplitude solution. Despite this, we anticipate that the results provided in this
paper may serve as a guide for the sequence of bifurcation leading to turbulence for
such a buoyancy-driven flow system. We emphasize that the experimental data in the
literature are very scarce. This is also very convenient and helpful in the experimental
study of near-onset dynamics, in particular, for high-Prandtl-number fluids for which the
bifurcation should be subcritical. This will be the subject of future exploration.
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Appendix A. The equations for φ(k,n)(η) and ϕ(k,n)(η)

The ordinary differential equations for φ(k,n)(η) and ϕ(k,n)(η) are as follows:

dA
dt
∂ζ

∂A︸ ︷︷ ︸
T1

+
[
ω + dω

dA

(
t
dA
dt

)]
∂ζ

∂θ︸ ︷︷ ︸
T2

+ ∂ψ

∂η

∂ζ

∂θ︸ ︷︷ ︸
N1

− ∂ψ

∂θ

∂ζ

∂η︸ ︷︷ ︸
N2

= 1
G

∇2
αζ︸ ︷︷ ︸

D1

+ α√
2G

∂T
∂η︸ ︷︷ ︸

R1

, (A1a)

dA
dt
∂T
∂A︸ ︷︷ ︸

T3

+
[
ω + dω

dA

(
t
dA
dt

)]
∂T
∂θ︸ ︷︷ ︸

T4

+ ∂ψ

∂η

∂T
∂θ︸ ︷︷ ︸

N3

− ∂ψ

∂θ

∂T
∂η︸ ︷︷ ︸

N4

= 1
Pr G

∇2
αT︸ ︷︷ ︸

D2

− 4
√

2ε[1 + (λ− 1)T]
αf

∂ψ

∂η︸ ︷︷ ︸
R2

+O(ε2), (A1b)
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where the additional terms at O(ε2) are ignored. We separate each term of (A1) with

T1 = 2α2 fθ
f

ik
n∑

q=k

qa(n−q)φ(k,q) +
n∑

q=k

qa(n−q)Lkφ
(k,q), (A2)

T2 = fθ
f

n∑
q=k

b(n−q)(Lk − 2k2α2)φ(k,q) + ik
n∑

q=k

b(n−q)Lkφ
(k,q), (A3)

N1 =
√

2

⎧⎨
⎩

k∑
j=0

n−k+j∑
q=j

Dφ(k−j,n−q)ijLjφ
(j,q)

+ 1
1 + δk0

⎡
⎣ ∞∑

j=0

n−j∑
q=k+j

Dφ(j,n−q)i(k + j)Lk+jφ
(k+j,q)

−
∞∑

j=0

n−k−j∑
q=j

Dφ(k+j,n−q)ijLjφ(j,q)

⎤
⎦
⎫⎬
⎭

+
√

2
fθ
f

⎧⎨
⎩

k∑
j=0

n−k+j∑
q=j

Dφ(k−j,n−q)(Lj − 2j2α2)φ(j,q)

+ 1
1 + δk0

⎡
⎣ ∞∑

j=0

n−j∑
q=k+j

Dφ(j,n−q)(Lk+j − 2(k + j)2α2)φ(k+j,q)

+
∞∑

j=0

n−k−j∑
q=j

Dφ(k+j,n−q)(Lj − 2j2α2)φ(j,q)

⎤
⎦
⎫⎬
⎭ , (A4)

N2 =
√

2

⎧⎨
⎩

k∑
j=0

n−k+j∑
q=j

i(k − j)φ(k−j,n−q)LjDφ
(j,q)

+ 1
1 + δk0

⎡
⎣ ∞∑

j=0

n−k−j∑
q=j

i(k + j)φ(k+j,n−q)LjDφ(j,q)

−
∞∑

j=0

n−j∑
q=k+j

ijφ(j,n−q)Lk+jDφ
(k+j,q)

⎤
⎦
⎫⎬
⎭

+
√

2
fθ
f

⎡
⎣ k∑

j=0

n−k+j∑
q=j

φ(k−j,n−q)LjDφ
(j,q)
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+ 1
1 + δk0

⎛
⎝ ∞∑

j=0

n−j∑
q=k+j

φ(j,n−q)Lk+jDφ
(k+j,q)

+
∞∑

j=0

n−k−j∑
q=j

φ(k+j,n−q)LjDφ(j,q)

⎞
⎠
⎤
⎦

+ 2
√

2α2 fθ
f

⎧⎨
⎩−

k∑
j=0

n−k+j∑
q=j

(k − j)jφ(k−j,n−q)Dφ(j,q)

+ 1
1 + δk0

⎡
⎣ ∞∑

j=0

n−j∑
q=k+j

j(k + j)φ(j,n−q)Dφ(k+j,q)

+
∞∑

j=0

n−k−j∑
q=j

(k + j)jφ(k+j,n−q)Dφ(j,q)

⎤
⎦
⎫⎬
⎭ , (A5)

D1 = 1
G

(
4α2 fθ

f
ikLkφ

(k,n) + L 2
k φ

(k,n)
)
, R1 = α√

2G
Dϕ(k,n), (A6a,b)

T3 =
n∑

q=k

qa(n−q)ϕ(k,q), T4 = ik
n∑

q=k

b(n−q)ϕ(k,q), D2 = 1
Pr G

Lkϕ
(k,n), (A7a–c)

N3 =
√

2

⎧⎨
⎩

k∑
j=0

n−k+j∑
q=j

Dφ(k−j,n−q)ijϕ(j,q)

+ 1
1 + δk0

⎡
⎣ ∞∑

j=0

n−j∑
q=k+j

Dφ(j,n−q)i(k + j)ϕ(k+j,q)−
∞∑

j=0

n−k−j∑
q=j

Dφ(k+j,n−q)ijϕ(j,q)

⎤
⎦
⎫⎬
⎭,

(A8)

N4 =
√

2

⎧⎨
⎩

k∑
j=0

n−k+j∑
q=j

i(k − j)φ(k−j,n−q)Dϕ(j,q)

+ 1
1 + δk0

⎡
⎣ ∞∑

j=0

n−k−j∑
q=j

i(k + j)φ(k+j,n−q)Dϕ(j,q) −
∞∑

j=0

n−j∑
q=k+j

ijφ(j,n−q)Dϕ(k+j,q)

⎤
⎦
⎫⎬
⎭

+
√

2
fθ
f

⎡
⎣ k∑

j=0

n−k+j∑
q=j

φ(k−j,n−q)Dϕ(j,q)
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Paremeters a(0) b(0) a(2) b(2) ηmax N

−6.47 × 10−4 −0.1336 −0.0204 0.0127 10 50
−5.18 × 10−7 −0.1343 −0.0207 0.0130 20 50

Pr = 0.72 −5.11 × 10−7 −0.1343 −0.0207 0.0130 20 100
λ = 0 −5.67 × 10−8 −0.1343 −0.0207 0.0130 40 100

−1.09 × 10−7 −0.1343 −0.0207 0.0130 40 200
−3.62 × 10−8 −0.1343 −0.0207 0.0130 60 400
−1.34 × 10−4 −0.0509 −0.2841 0.0527 5 50
−1.80 × 10−7 −0.0510 −0.2879 0.0549 10 50

Pr = 6.7 −1.78 × 10−7 −0.0510 −0.2878 0.0549 10 100
λ = 1 −8.03 × 10−8 −0.0510 −0.2878 0.0549 20 100

−6.36 × 10−8 −0.0510 −0.2877 0.0549 20 200
+5.77 × 10−7 −0.0510 −0.2877 0.0549 40 400

Table 4. Numerical values of a(0), b(0), a(2) and b(2) for critical instabilities at different computational domains
ηmax and Chebyshev points N for two sets of typical parameters. The number of Chebyshev points N = 200 is
used in calculations, which is marked in bold.

+ 1
1 + δk0

⎛
⎝ ∞∑

j=0

n−j∑
q=k+j

φ(j,n−q)Dϕ(k+j,q) +
∞∑

j=0

n−k−j∑
q=j

φ(k+j,n−q)Dϕ(j,q)

⎞
⎠
⎤
⎦ , (A9)

R2 = 4
√

2ε
αf

⎧⎨
⎩Dφ(k,n) + (λ− 1)

⎡
⎣ k∑

j=0

n−k+j∑
q=j

ϕ(k−j,n−q)Dφ(j,q)

+ 1
1 + δk0

⎛
⎝ ∞∑

j=0

n−j∑
q=k+j

ϕ(j,n−q)Dφ(k+j,q) +
∞∑

j=0

n−k−j∑
q=j

ϕ(k+j,n−q)Dφ(j,q)

⎞
⎠
⎤
⎦
⎫⎬
⎭ ,

(A10)

where Lk = D2 − k2α2, D = d/dη and δkj = 0 if k /= j, δkj = 1 if k = j. The overbar
denotes complex conjugation. The factor 1/(1 + δk0) in the above equations arises from
the product of two Fourier series in which the zeroth-order terms are multiplied by a factor
of 2. The corresponding boundary conditions for k, n � 1 are

φ(k,n)(0) = Dφ(k,n)(0) = Dφ(k,n)(∞) = ϕ(k,n)(0) = ϕ(k,n)(∞) = 0. (A11)

Appendix B. Adjoint eigenfunctions for φ(1,3)† and ϕ(1,3)†

The eigenfunctions of the adjoint linear operator Q(1,3)† in (4.13) for Pr = 6.7 with
different temperature gradient are shown in figure 10.

Appendix C. Numerical convergence tests

Table 4 shows the results of numerical convergence tests for different computational
domains ηmax and Chebyshev points N.
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