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ON THE INDEX OF TRICYCLIC HAMILTONIAN GRAPHS

by F. K. BELL and P. ROWLINSON
(Received 6th December 1988)

Among the tricyclic Hamiltonian graphs with a prescribed number of vertices, the unique graph with maximal
index is determined. Some subsidiary results are also included.

1980 Mathematics subject classification (1985 Revision): O5C5O.

1. Introduction

All multigraphs considered in this paper are finite and undirected. A multigraph
without loops or multiple edges is called a graph. The spectrum of a graph G is the
spectrum of a real (0, l)-adjacency matrix of G, and the largest eigenvalue of such a
matrix is called the index of G, here denoted by /x(G). A graph with n vertices is tricyclic
if it is connected and has n + 2 edges.

A central part of algebraic graph theory is concerned with relations between the
structure of a graph and its spectrum. Given a class 0 of graphs, one problem is to
determine the graphs in ^ with maximal index. This problem has been solved when (for
example) *S consists of (i) all graphs with a prescribed number of edges [7], (ii) all
unicyclic graphs with a prescribed number of vertices [10], (iii) all bicyclic graphs with a
prescribed number of vertices [12], (iv) all bicyclic Hamiltonian graphs with a
prescribed number of vertices [6, 9]. Further results may be found in [2, 3, 9, 11]. Here
(in Theorem 3.6) we determine the unique graph with maximal index in ^n, the class of
all tricyclic Hamiltonian graphs with n vertices (n^5). (Note that <&„ is empty for n<4,
while ^ 4 contains only the complete graph on 4 vertices.) We think of a graph G in ^n

as an w-cycle to which two chords are added as edges: the maximal degree A(G) of G is
4 or 3 according as the two chords do or do not have a vertex in common. Some
subsidiary results concerning the index of a tricyclic Hamiltonian graph G with A(G) = 4
are given in Lemmas 3.3, 3.4 and 3.5. A result which may be of independent interest is
Proposition 2.4, which provides a formula for the characteristic polynomial of a graph
obtained from two graphs by the coalescence of an edge.

2. Some preliminary results

Our first result shows that if G is a graph with maximal index in ^n than A(G) = 4.

Proposition 2.1. / / Ge^n, «^5 and A(G) = 3 then there exists G'e&n such that
') = 4 and n(G')>n(G).
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Proof. Suppose that the vertices of a Hamiltonian cycle Z in G are labelled
1,2,...,n in cyclic order, and let A be the corresponding adjacency matrix of G.
Suppose that the two chords of Z join h to i and j to k (h, i,j, k distinct). Since G is
connected, A is irreducible [1, p. 18] and it follows from the theory of irreducible non-
negative matrices [4, Ch. XIII] that A has a unique positive unit eigenvector x
corresponding to the eigenvalue n(G), say x=(x1, ...,xn)

T. Without loss of generality,
x^Xj, Xi^xh and x,^xk. If h is not adjacent to j then let G' be the graph obtained
from G by deleting the edge hi and adding the edge hj. Note that A(G') = 4. Let A' be
the adjacency matrix of G' and let fi' = n(G'), n = n(G). We have n' — n ̂  xTA'x — \TAx =
2xh(Xj—Xj)^0. If n' = n then xTA'x = /i' and A'x=fix = Ax; this is a contradiction
because A'x has ith component xi_1+jci+1 (suffices reduced modulo n) while Ax has ith
component x,_! + *, + ! +xk. Thus (i'>n and the result is proved when h and j are
non-adjacent.

Now suppose that h and j are adjacent. If h is not adjacent to k then we may repeat
the above argument, this time obtaining G' by replacing hi by hk. Accordingly it suffices
to deal with the case in which ;, h, k are consecutive points of Z. Without loss of
generality, fc=l, h = 2 and j = 3. Since n^.5 we may assume that Mn. Now let G' be
obtained from G by replacing 2i with li. Let x' be the unique positive unit eigenvector
of A' corresponding to n', say x' = (x'1, . . . ,^)r . We have fi'x\ = x'2 + x'3 + x\ + x'n and
pi'x'2 = x'i + x'3, whence

Further, nxY =x2 + x3 + xn and /xx2 = Xj+x3 + Xi, whence

1-^1.

If n'^n then (x't —x'2)/x;>(x2 —x^/x,-: this is a contradiction because xTx'(fi'— fi) =
xTA'x' — xrAx' = xi{x\—x'2) — x'i(x2 — xi). Hence n'>n and the proposition is proved.

In order to deal with the case A(G) = 4 (Ge^n) we shall need the following
observations, where <f>H(x) denotes the characteristic polynomial of the multigraph H
and H — u denotes the multigraph obtained from H by deleting u and all edges
containing u.

Lemma 2.2. Let H, K be multigraphs, each with more than one vertex. If HnK
consists of the single vertex u then </>H *_,*(*) = $H(x)</>K_u(x)

Proof. For graphs, this is Corollary 2b of [8]. For a proof in the more general
context, note that with a suitable labelling of vertices, 0HUK(X) has the form
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which can be expanded as
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The multigraph HuK in Lemma 2.2 is said to be obtained from H and K by the
coalescence of a vertex. We use the deletion-contraction algorithm (Lemma 2.3) to
derive an analogous formula for graphs obtained by the coalescence of an edge
(Proposition 2.4).

Lemma 2.3. Let G be a finite multigraph with at least three vertices, let u, v be distinct
vertices of G and let m be the number of edges between u and v. Let G — uv be the
multigraph obtained from G by deleting all m edges between u and v, and let G* be the
multigraph obtained from G — uv by amalgamating u and v. Then

<t>a(x) = <t>G- uv(x) + m<j)Gt(x) + m(x - m)<f>G _ „ _ v(x) - m<pG _ u(x) - m<pG _ v(x).

Proof. [6, Theorem 1.3].

Proposition 2.4. LetfH, K be graphs, each with at least three vertices. If HnK consists
of the single edge uv (together with the vertices u and v) then

Proof. In what follows, an asterisk denotes a multigraph obtained by amalgamating
u and t; after deleting the edge uv. We first apply Lemma 2.3 to HKJK and the edge uv.
We then apply Lemma 2.2 to (i) the coalescence of H* and K* at the amalgamated
point u, (ii) the coalescence of H — u and K — u at v, (iii) the coalescence of H — v and
K — v at u. We obtain

+ 4>H.(x)4>K_u_v(x) + <j)K.(x)(t)H-u-v{x)
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The result follows by applying Lemma 2.3 to (i) H and the edge uv, (ii) K and the edge
uv, and eliminating 4>H*(x), <pK*(x).

For integers h^.1, t^.0, k^l we define a graph G(h,t,k) as follows. Let n =
h + t + k + 3 and let Z be the n-cycle 123...nl: the graph G{h,t,k) is obtained from Z by
adding edges joining 1 to h + 2 and 1 to n — k. Thus G(h,t,k)e^n and G{h,t,k) is a
union of cycles of lengths h + 2, t + 3, k + 2. Let n(h, t, k) denote the index of G(h, t, k).

Lemma 2.5. n{h,t,k)>s/5 for all h^l, f£0, k^l.

Proof. By [6, Theorem 2.6], every bicyclic Hamiltonian graph on an even number of
vertices has index >N/5. The same is true of such graphs with an odd number of
vertices because the index of such a graph decreases on subdivision of any edge [5,
Proposition 2.4]. Since G(h, t, k) has a bicyclic Hamiltonian subgraph, the result follows
[1, Theorem 0.7].

Finally, we shall use implicitly the facts that the characteristic polynomial of an n-
veftex path Pn is Un(jx), and the characteristic polynomial of an M-cycle Cn is 2Tn(^x)-2
[1, p. 73]. Here Tn, Un are Chebyshev polynomials of the first and second kind
respectively: thus if x = 2cos0 and O<0<TI then Tn{?x) = cosnd and Un(\x) =
sin(n+l)0/sin0.

3. The main result

For integers a ^ l , b^.1 we define a graph H(a,b) as follows. Let n = a + b + 2 and let
Z be the n-cycle 123...nl: the graph H(a,b) is obtained from Z by adding an edge
joining 1 to a + 2. Thus H(a,b) is a union of cycles of lengths a+ 2, b + 2. In what
follows, we simplify notation by identifying a graph with its characteristic polynomial.

Lemma 3.1. When a^.\ and b^, 1 we have

Proof. First apply Lemma 2.3 to H(a,b) and the edge joining 1 to a+ 2; secondly
apply Lemma 2.2 to the coalescence (at a vertex) of cycles of lengths a+ 1 and b+ 1.

Lemma 3.2. When h^l, t^O, fc^l and n = h + t + k + 3 we have

—PkPt+l — Ck+2P , + i
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Proof. Let Ca * Pb denote the graph obtained by coalescence of a vertex of Ca with
an end-vertex of Pb. Applying Proposition 2.4 to G(h, t, k) and the edge joining 1 to
h + 2 we obtain

+ Ph(H(t+l,k)-Ck+2*P,+2). (1)

Two applications of Lemma 2.2 yield the equation Ct + 2 * P,+2 = Ck+2P,+i — Pk+lPt.
The result follows by applying Lemma 3.1 to H(h + t+ 1, k) and H(t+l,k).

Lemma 3.3. If l^k^t then n(h, t, k)<^i(h, k- 1, t + 1).

Proof. By Lemma 3.2, G(h, t, k) — G(h,k — 1, t+ I) = s1+s2 + s3 + s4, where

53 = Ph\Pk + l̂ *r ~ Pf + 2^k - l ) '

54 = 'h(Ct + 3 ' * ~ Qk + 2 ° | + l)-

On simplifying the corresponding expressions involving Chebyshev polynomials (with
argument jx), we obtain:

s4 = 2Uh(Ut+l-Uk)-xUhU,^k.

On using the relation UaUb—Ua+b=Ua_1Ub_1, we obtain G(h,t,k) —
-\,t+l) = Uh-iU,-k + 2[.Uh-1(Ut-Uk-1) + {Ut+i-Uky]. Since this function is

positive on [2, oo) and fi(h, t, k) > *J5, the result follows.

Lemma 3.4. Ifk^t^l then y.{h, t,k)<n(h, t-1,k + 1).

Proof. We deal first with the case k>t + h. From equation (1) we have
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G(h,t,k)-G(h,t-l,k+l) =

Let l(a,b) denote the index of H(a,b). Since k>t + h we have k(h + t,k+l)>
X(h +1 + 1, k) by [9, Theorem 1]. It follows that the polynomial H(h +1 +1, k) - H(h +1, k + 1)
is positive for x^A(h + t + 1, fe), and hence for x^n(h, t, k) because H(h + t+ l,k) is a
subgraph of G{h,t,k). Similarly, H(t + \,k)-H(t,k+ 1) is positive for x>n(h,t,k). It is
straightforward to show that the polynomial Ck + 3*Pt+l — Ck+2*Pt + 2

 ls equal to
2Tk_,_1(^x) + 2[t/, + 1(|x)-(/,(^x)] + t/it_r+i(^x), which is positive on [2, oo). Thus the
polynomial G(h,t, k) — G(h, t — l,fc + l) is positive for x^/i(/i, t, k) and it follows that
H(h,t,k)<n(h,t-\,k+l).

Now suppose that t + hT^k^t^l. By Lemma 3.2 we have G(h,t,k) —
G(h,t—l,k+l) = sl+s2 + s3 + s4. where

Define Vm = Um+i — Um and L/_! = 0. Routine calculations yield the following equations,
where as usual all Chebyshev polynomials have argument \x: si = 2(Vk—Vh+t), s2 =
-2UhTk_l+l + 2UhVk, s3 = 2UhTk_t + i a n d s^ = Uh+l^k_x. T h u s

Now t/.K^K^fc + t / ^ , ^ , , and so

This polynomial is positive on [2, oo) and so again n(h, t, k)<[i(h, t— l,/c+ 1) as required.

Lemma 3.5. If2^h^k then n(h,0,k)<n(h- 1,0,k + 1).

Proof. Let Ca * Cfc denote the graph obtained by the coalescence of a vertex in Ca

with a vertex in Cb. Let H2{a,b) denote the multigraph obtained from H(a,b) by adding
a second edge joining 1 to a + 2. On applying Lemma 2.3 to G(h, 0, k) and the vertices
fc + 2, /i + 3 we obtain

* Pk+l.
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On applying Lemma 2.3 to H2(h, k) and the vertices 1, h + 2 we obtain

Four applications of Lemma 2.2 now yield the equation

k+l + xPh+lPk.

It follows after a little work that

Suppose that k^h+l. Then for x ^ 2 we have

G(h,0,k)-G(h-l,0,k+\)^fk(x),

where

Mx) = 4[Tk + 2(\x) - Tk{\xy\ - (x + 2) Uk _

For x ^ 2 we write x = 2cosh0 (0^0) to obtain

f , _ 2( 1+ cosh 0)cosh(/c + 1)0
A W " sinhl Sk(y)

where s*(0) = s inh20-{ l +2(cosh0- l ) 2 } tanh(/c+1)0. Now sk(0)^h(9) where
s i n h 2 0 - { l + 2 ( c o s h 0 - l ) 2 } ; and h(6)>0 for 0>sinh-1(^). It follows that / t ( x )>0 for
x > V 5 and we deduce from Lemma 2.5 that /I(/J,0,k)<fi(h-1,0,k+ 1) when fc^fc+l.

Finally consider the case /c = /i: here G(h,0,k) — G(h — l,0,k + l)=gk(x) where gk(x) =
4[Tt + 2 ( i x ) - T t + 1 ( i x ) ] - x - 2 . Now gk + 1(x)-gk(x) = 4{x-2)Tk+2^x), which is positive
for x > 2 . Hence for x > 2 we have ^(x)^^ 2 (x) = 2 x 4 - 2 x 3 - 8 x 2 + 5x + 2. Since g2(x)>0
for X>TJ5, we deduce as before that fi(h, 0, k)<n(h—1,0, /c+ 1).

Theorem 3.6. Let G be a tricyclic Hamiltonian graph with n vertices, n ̂  5. / / the
index of G is maximal (for fixed n) then G is isomorphic to the graph G(l,0, n — 4) defined
above.

Proof. By Proposition 2.1, G is isomorphic to some G(h,t,k) with h^l, t^O, k^l
and h + t + k = n — 3. Since G(h,t,k) is isomorphic to G(k,t,h) we may assume that hf^k.
By Lemma 3.3, t<k; by Lemma 3.4, t=0 ; and by Lemma 3.5, h=\. The result follows.

https://doi.org/10.1017/S0013091500018150 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018150


240 F. K. BELL AND P. ROWLINSON

REFERENCES

1. D. CVETKOVIC, M. DOOB and H. SACHS, Spectra of Graphs (Academic Press, New York, 1980).

2. D. CVETKOVIC and P. ROWLINSON, Spectra of unicyclic graphs, Graphs Combin. 3 (1987), 7-23.

3. D. CVETKOVIC and P. ROWLINSON, On connected graphs with maximal index, Publ. Inst. Math.
Beograd 44 (58) (1988), 29-34.

4. F. R. GANTMACHER, Theory of Matrices, Vol. II (Chelsea, New York, 1960).

5. A. J. HOFFMAN and J. H. SMITH, On the spectral radii of topologically equivalent graphs,
Recent Advances in Graph Theory (ed. M. Fiedler, Academia Prague, 1975), 273-281.

6. P. ROWLINSON, A deletion-contraction algorithm for the characteristic polynomial of a
multigraph, Proc. Royal Soc. Edinburgh 105A (1987), 153-160.

7. P. ROWLINSON, On the maximal index of graphs with a prescribed number of edges, Linear
Algebra Appl. 110 (1988), 43-53.

8. A. J. SCHWENK, Computing the characteristic polynomial of a graph, Graphs and Combinator-
ics, Lecture Notes in Mathematics 406 (eds R. A. Bari and F. Harary, Springer, New York, 1974),
153-172.

9. S. K. SIMIC and V. LJ. KOCIC, On the largest eigenvalue of some homeomorphic graphs, Publ.
Inst. Math. Beograd 40 (54) (1986), 3-9.

10. S. K. SIMIC, On the largest eigenvalue of unicyclic graphs, Publ. Inst. Math. Beograd 42 (56)
(1987), 13-19.

11. S. K. SIMIC, Some results on the largest eigenvalue of a graph, Ars Combin. 24A (1987),
211-219.

12. S. K. SIMIC, On the largest eigenvalue of bicylic graphs, to appear.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF STIRLING
STIRLING FK9 4LA
SCOTLAND

https://doi.org/10.1017/S0013091500018150 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018150

