
Notes

Chapter 1

1 To avoid cluttering of brackets, we use the notation e2/4π ≡ e2/(4π), etc.
Furthermore, units � = 1, c = 1 will be used. Then dimensions are like
[mass] = [energy] = [momentum] = [(length)−1] = [(time)−1], etc.

2 As a model for mesons we have to take the spins of the quarks into
account. In a first approximation we can imagine neglecting
spin-dependent forces. Then the maximum spin is J = L + S, with L the
orbital angular momentum and S = 0, 1 the total spin of the
quark–antiquark system. The π has the qq̄ spins antiparallel, S = 0, the ρ
has parallel qq̄ spins, S = 1. In a second approximation spin-dependent
forces have to be added, which split the π and ρ masses. In picking the
right particles out of the tables of the Particle Data Group [2], we have to
choose quantum numbers corresponding to the same S but changing L.
This means that the parity and charge-conjugation parity flip signs along
a Regge trajectory. The particles on the ρ trajectory in figure 1.3 are
ρ(769), a2(1320), ρ3(1690), and a4(2040), those on the π trajectory are
π(135), π(135), b1(1235), and π2(1670). The mass mq used in this model
is an effective (‘constituent’) quark mass, mu ≈ md ≈ mρ/2 = 385 MeV,
which is much larger than the mass parameters appearing in the
Lagrangian (the so-called ‘current masses’), which are only a few MeV. In
the last chapter we shall arrive at an understanding of this in terms of
chiral-symmetry breaking.

Chapter 2

1 The formal canonical quantization of the scalar field in the continuum is
done as follows. Given the Lagrangian of the system

L(ϕ, ϕ̇) =

∫
d3x 1

2
(ϕ̇)2 − V (ϕ), (N.1)

the canonical momentum follows from varying with respect to ϕ̇,

δϕ̇L =

∫
d3x ϕ̇ δϕ̇ ⇒ π ≡ δL

δϕ̇
= ϕ̇. (N.2)
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Solving for ϕ̇ in terms of π, the Hamiltonian is given by the Legendre
transformation

H(ϕ, π) =

∫
d3xπϕ̇− L(ϕ, ϕ̇) =

∫
d3x 1

2
π2 + V (ϕ). (N.3)

Defining the Poisson brackets as

(A,B) =

∫
d3x

δA

δϕ(x)

δB

δπ(x)
−A ↔ B, (N.4)

the canonical (equal time) Poisson brackets are given by

(ϕ(x), π(y)) = δ(x − y), (ϕ(x), ϕ(y)) = 0 = (π(x), π(y)). (N.5)

The Lagrange (stationary-action) equations of motion are then identical
to Hamilton’s equations

ϕ̇ = (ϕ,H), π̇ = (π,H). (N.6)

The canonically quantized theory is obtained by considering the
canonical variables as operators ϕ̂ and π̂ in Hilbert space satisfying the
canonical commutation relations obtained from the correspondence
principle Poisson bracket → commutator:

[ϕ̂(x), π̂(y)] = iδ(x − y), [ϕ̂(x), ϕ̂(y)] = 0 = [π̂(x), π̂(y)]. (N.7)

Observables such as the Hamiltonian become operators (after
symmetrizing products of ϕ̂ and π̂, if necessary). The quantum equations
of motion then follow from Heisenberg’s equations

∂0ϕ̂ = i[Ĥ, ϕ], ∂0π̂ = i[Ĥ, π̂]. (N.8)

These need not, but often do, coincide with the classical equations of
motion transcribed to ϕ̂ and π̂. From (N.7) one observes that the
quantum fields are ‘operator-valued distributions’, hence products like π̂2

occuring in the formal Hamiltonian are mathematically ill-defined.

Chapter 4

1 The derivation leading to (4.72) is how I found the lattice gauge-theory
formulation in 1972 (cf. [42]). I still find it instructive how a pedestrian
approach can be brought to a good ending.

Chapter 8

1 Only Abelian chiral transformations form a group: if V and W are two
chiral transformations, then U = VW = VLWLPL + V †

LW
†
LPR has

UL = VLWL 
= U†
R = WLVL, unless VL and WL commute.

2 This can be checked here by re-installing the lattice spacing, writing
Mf = mf + 4r/a, and ψfx = a3/2ψf (x), etc. with continuum fields ψ(x),
ψ̄(x) that are smooth on the lattice scale (the emerging overall factor a3

must be dropped to get the continuum currents and divergences). Using
for convenience the two-index notation for the lattice gauge field
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(Uµx = Ux,x+µ, U†
µx−µ̂ = Ux,x−µ), we may write

Ux,x±µ̂aψg(x± µ̂a) = ψg(x) ± aDµψg(x) + 1
2
a2D2

µψg(x) + · · ·, with
Dµψg(x) = [∂µ − igGµ(x)]ψg(x) the continuum covariant derivative, this
gives the expected result.

3 The way Σ is introduced here corresponds to four staggered flavors,
Σ =

∑4
f=1〈ψ̄fψf 〉. Using the SU(2) value a

√
σ = 0.2634(14) [69] and

√
σ

= 420 MeV, the ratio (0.00863/4)1/3/0.263 = 0.491 corresponds to 206
MeV or Σ = 4(206 MeV)3. This number appears somewhat small, but we
have to keep in mind that this is for SU(2), not SU(3), and it also has to
be multiplied by the appropriate renormalization factor.

4 For staggered fermions to be sensitive to topology, quenched SU(3) gauge
couplings need to be substantially smaller than the value β = 6/g2 = 5.1
used in [143, 144]. Vink [116, 117] found that values β � 6 were needed in
order to obtain reasonable correlations between the ‘fermionic topological
charge’ and the ‘cooling charge’ (cf. figure 8.2). Note that the change
β = 5.1 → 6 corresponds to a decrease in lattice spacing by a factor of
about four.

5 Ironically, when the mechanism of canceling the anomalies out between
different fermion species was proposed [148], I doubted that it was
necessary, and this was one of the reasons (apart from a non-perturbative
formulation of non-Abelian gauge theory) why I attempted to put the
electroweak model on the lattice. On calculating the one-loop gauge-field
self-energy and the triangle diagram, I ran into the species-doubling
phenomenon, without realizing that the lattice produced the very
cancellation mechanism I had wanted to avoid.

6 At the time of writing the direct Euclidean approach is considered
suspect and a Lorentzian formulation is being pursued [176]. For an
impression of what is involved in a non-perturbative computation of
gravitational binding energy, see [177].

7 The problem here is that, in order to deal with the oscillating phase
exp(iS) in the path integral, one has to make approximations right from
the beginning. To incorporate sphalerons, kinks, etc. one needs a lattice
formulation that allows arbitrarily inhomogeneous field configurations
[178, 179].
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