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On Some Topological Properties
of Fourier Transforms of Regular
Holonomic D-Modules

Yohei Ito and Kiyoshi Takeuchi

Abstract. We study Fourier transforms of regular holonomicD-modules. In particular, we show that
their solution complexes are monodromic. An application to direct images of some irregular holo-
nomicD-modules will be given. Moreover, we give a new proof of the classical theorem of Brylinski
and improve it by showing its converse.

1 Introduction

First, we recall Fourier transforms of algebraicD-modules. Let X = CN
z be a complex

vector space and let Y = CN
w be its dual. We regard them as algebraic varieties and use

the notations DX andDY for the rings of “algebraic” diòerential operators on them.
Denote by Modcoh(DX) (resp. Modhol(DX)) the category of coherent (resp. holo-
nomic) DX-modules. Let WN ∶= C[z, ∂z] ≃ Γ(X;DX) and W∗

N ∶= C[w , ∂w] ≃

Γ(Y ;DY) be the Weyl algebras over X and Y , respectively. hen by the ring iso-
morphism

WN
∼
Ð→W∗

N (z i z→ −∂w i , ∂z i z→ w i)

we can endow a le�WN -moduleM with a structure of a le�W∗
N -module. We call it the

Fourier transformofM and denote it by M∧. For a ring R we denote byMod f (R) the
category of ûnitely generated R-modules. Recall that for the aõne algebraic varieties
X and Y , we have the equivalences of categories

Modcoh(DX) ≃ Mod f (Γ(X;DX)) = Mod f (WN),
Modcoh(DY) ≃ Mod f (Γ(Y ;DY)) = Mod f (W∗

N)

(see e.g., [HTT08, Propositions 1.4.4 and 1.4.13]). For a coherent DX-module
M ∈ Modcoh(DX), we can thus deûne its Fourier transform M∧ ∈ Modcoh(DY).
It follows that we obtain an equivalence of categories

( ⋅ )
∧
∶ Modhol(DX)

∼
Ð→Modhol(DY)

between the categories of holonomic D-modules. However, the Fourier transform
M∧ of a regular holonomic DX-moduleM is not necessarily regular. For the regu-
larity ofM∧, we need some strong condition on M. Recall that a constructible sheaf
F ∈ Db

C−c(CX) on X = CN is calledmonodromic if its cohomology sheaves are locally
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Some Topological Properties of Fourier Transforms 455

constant on each C∗-orbit in X = CN . Note that this condition was introduced by
Verdier [Ver83]. hen the following beautiful theorem is due to Brylinski [Bry86].

heorem 1.1 (Brylinski [Bry86]) LetM be an algebraic regular holonomicD-module
on X = CN . Assume that its solution complex SolX(M) ismonodromic. hen its Fourier
transform M∧ is regular, and SolY(M∧) is monodromic.

Recently in [IT18], the authors studied the Fourier transforms of general regular
holonomicD-modules very precisely by using the Riemann–Hilbert correspondence
for irregular holonomic D-modules established by D’Agnolo and Kashiwara [DK16]
and the Fourier–Sato transforms for enhanced ind-sheaves developed by Kashiwara
and Schapira [KS16a]. In this process we found a new proof of heorem 1.1 (see the
proof ofheorem 3.2). Recall that Brylinski proved it by reducing the problem to the
case N = 1 and using some deep results on nearby cycleD-modules. Our new proof
is purely geometric and relies on the Riemann–Hilbert correspondence of D’Agnolo
and Kashiwara [DK16]. See the proof of heorem 3.2 for the details. In our study
of Fourier transforms of regular holonomic D-modules, we also found that for a
regular holonomic DX-moduleM, the enhanced solution complex SolEY(M∧) of its
Fourier transform M∧ satisûes a special condition. More precisely, for a R+-conic
sheaf G ∈ Db(CY×R) on Y ×R ≃ R2N+1, we found an isomorphism

SolEY(M
∧
) ≃ CE

Y
+
⊗ G,

where we regard G as an ind-sheaf on the bordered space Y × R∞ by the natural
embedding

Db(CY×R)
� � // Db(ICY×R∞);

see Corollary 3.6. From this, we obtain the following result.

heorem 1.2 Let M be an algebraic regular holonomicD-module on X = CN . hen
SolY(M∧) is monodromic.

It seems that this result is already implicit in themain theoremof Daia [Dai00]. In-
deed, for regular holonomicM ∈ Modrh(DX), it implies that SolY(M∧) is R+-conic.
Note that the recent result in [DHMS17, Lemma 6.1.3] of D’Agnolo, Hien, Morando,
and Sabbah also implies also the same property of SolY(M∧) (see also [DHMS17,
Lemma 1.5.2]). For a general theory of conic ind-sheaves, see [Pre11]. he mon-
odromicity of SolY(M∧) in heorem 1.2 follows from its C-constructibility and the
R+-conicness (see Lemma 2.1). In this paper, we proveheorem 1.2 by using the the-
ory of enhanced ind-sheaves and our results in [IT18]. In thisway,we can also improve
Brylinski’s heorem 1.1 as follows.

Corollary 1.3 LetM be an algebraic regular holonomicD-module on X = CN . hen
M∧ is regular if and only ifM is monodromic.

Namely,we prove the converse of Brylinski’s theorem. Moreover, as a simple appli-
cation of heorem 1.2, we obtain the following result, which may be of independent
interest.
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heorem 1.4 Let ρ ∶ X = CN ↠ Z = CN−1 be a surjective linear map of codimension
one and let M be an algebraic regular holonomic D-module on X = CN . For the dual
L ≃ CN−1 of Z let ι ∶ L ↪Ð→ Y = CN be the injective linear map induced by ρ. hen for
any point a ∈ Y/ι(L) the direct image

Dρ∗(M
D
⊗OX e−⟨z ,a⟩) ∈ Db

hol(DZ)

is concentrated in degree 0.

Recently, many mathematicians studied direct images of irregular holonomic
D-modules and obtained precise results. See, for example, Heizinger [Hei15], Hien–
Roucairol [HR08], and Roucairol [Rou06,Rou07]. Note also that in the case N = 1,
Fourier transforms of general holonomicD-modules were precisely studied bymany
authors such as Bloch–Esnault [BE04], D’Agnolo–Kashiwara [DK17], Mochizuki
[Moc10,Moc18], and Sabbah [Sab08] to name a few.

2 Preliminary Notions and Results

In this section, we brie�y recall some basic notions and results that will be used in
this paper. We assume here that the reader is familiar with the theory of sheaves and
functors in the framework of derived categories, for which we follow the terminol-
ogy in [KS90]. For a topological space M denote by Db(CM) the derived category
consisting of bounded complexes of sheaves of C-vector spaces on it. he following
lemma will be used in the proofs ofheorems 3.2 and 3.9.

Lemma 2.1 Assume that aC-constructible sheaf G ∈ Db
C−c(CCN ) onCN isR+-conic.

hen it is monodromic.

Proof By restrictions,we can assume thatN = 1. By theC-constructibility ofG, there
exists a ûnite subset {P1 , P2 , . . . , Pk} ⊂ C of C ≃ R2 such that (H jG)∣C/{P1 ,P2 , . . . ,Pk} is
a local system for any j ∈ Z. For 1 ≤ i ≤ k such that Pi ≠ 0 let ℓ i = R+Pi ≃ R+ be
the real half line in C ≃ R2 passing through the point Pi . hen by our assumption,
(H jG)∣ℓ i is a constant sheaf for any j ∈ Z. his implies that for the function h i ∶ C→ C,
h i(x) = x − Pi such that h−1

i (0) = {Pi} ⊂ C, we have ϕh i (G) ≃ 0, where

ϕh i ∶ D
b
C−c(CC)Ð→ Db

C−c(Ch−1i (0)
)

is Deligne’s vanishing cycle functor. From now on, we use an argument in Sabbah
[Sab06, §8]. Let

pϕh i = ϕh i [−1] ∶ D
b
C−c(CC)Ð→ Db

C−c(Ch−1i (0)
)

be the perverse (or shi�ed) vanishing cycle functor. Recall that it preserves the per-
versity. For j ∈ Z, let pH j(G) ∈ Perv(C) be the j-th perverse cohomology sheaf
of G. hen pϕh i (

pH j(G)) is concentrated in degree 0 for any j ∈ Z. Hence, there
exists an isomorphism H j(pϕh i (G)) ≃ H0(pϕh i (

pH j(G))) for any j ∈ Z. We thus
obtain pϕh i (

pH j(G)) ≃ 0 for any 1 ≤ i ≤ k and j ∈ Z. his shows that the perverse
sheaves pH j(G)’s are smooth on C∗; i.e., H l(pH j(G))∣C∗ is a local system on C∗ for
any j, l ∈ Z. hen the assertion immediately follows. ∎
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2.1 Ind-sheaves

We recall some basic notions and results on ind-sheaves. References are made to
Kashiwara–Schapira [KS01] and [KS06]. Let M be a good topological space (which is
locally compact, Hausdorò, countable at inûnity, and has ûnite so� dimension). We
denote by Mod(CM) the abelian category of sheaves of C-vector spaces on it and by
ICM that of ind-sheaves. hen there exists a natural exact embedding ιM ∶ Mod(CM)

→ ICM of categories. We sometimes omit it. It has an exact le� adjoint αM that has
in turn an exact fully faithful le� adjoint functor βM :

Mod(CM)

ιM //

βM

// ICM .αMoo

he category ICM does not have enough injectives. Nevertheless,we can construct
the derived category Db(ICM) for ind-sheaves and the six Grothendieck operations
among them. We denote by⊗ andRIhom the operations of tensor products and inter-
nal homs, respectively. If f ∶ M → N is a continuous map, we denote by f −1 ,R f∗ , f !,
and R f!! the operations of inverse images, direct images, proper inverse images, and
proper direct images, respectively. We set also RHom ∶= αM ○ RIhom. Note that
( f −1 ,R f∗) and (R f!! , f !) are pairs of adjoint functors.

2.2 Ind-sheaves on Bordered Spaces

For the results in this subsection,we refer the reader toD’Agnolo–Kashiwara [DK16].
A bordered space is a pair M∞ = (M , M̌) of a good topological space M̌ and an open
subset M ⊂ M̌. Amorphism f ∶ (M , M̌)→ (N , Ň) of bordered spaces is a continuous
map f ∶ M → N such that the ûrst projection M̌ × Ň → M̌ is proper on the closure Γ f
of the graph Γf of f in M̌ × Ň . he category of good topological spaces embeds into
that of bordered spaces by the identiûcation M = (M ,M). We deûne the triangulated
category of ind-sheaves on M∞ = (M , M̌) by

Db
(ICM∞

) ∶= Db
(ICM̌)/Db

(ICM̌/M).

Let
q ∶ Db

(ICM̌)Ð→ Db
(ICM∞

)

be the quotient functor. For amorphism f ∶ M∞ → N∞ of bordered spaces, we have
the Grothendieck operations,

⊗∶ Db
(ICM∞

) ×Db
(ICM∞

)Ð→ Db
(ICM∞

),

RIhom ∶ Db
(ICM∞

)
op
×Db

(ICM∞
)Ð→ Db

(ICM∞
),

R f∗ ∶ Db
(ICM∞

)Ð→ Db
(ICN∞),

f −1
∶ Db

(ICN∞)Ð→ Db
(ICM∞

),

R f!! ∶ Db
(ICM∞

)Ð→ Db
(ICN∞),

f ! ∶ Db
(ICN∞)Ð→ Db

(ICM∞
)
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(see [DK16, Deûnitions 3.3.1 and 3.3.4]). Moreover, there exists a natural embedding

Db(CM)
� � // Db(ICM∞

).

2.3 Enhanced Sheaves

For the results in this subsection, see Tamarkin [Tam08], Kashiwara–Schapira
[KS16a], and D’Agnolo–Kashiwara [DK17]. Let M be a good topological space. We
consider themaps

M ×R2 p1 ,p2 ,µ
ÐÐÐ→ M ×R π

Ð→ M ,
where p1 , p2 are the ûrst and the second projections, and we set π(x , t) ∶= x and
µ(x , t1 , t2) ∶= (x , t1 + t2). hen the convolution functors for sheaves on M × R are
deûned by

F1
+
⊗ F2 ∶= Rµ!(p−1

1 F1 ⊗ p−1
2 F2),

RHom+
(F1 , F2) ∶= Rp1∗RHom(p−1

2 F1 , µ!F2).

We deûne the triangulated category of enhanced sheaves on M by

Eb(CM) ∶= Db
(CM×R)/π−1Db

(CM).

Let
Q ∶ Db

(CM×R)Ð→ Eb(CM)

be the quotient functor. he convolution functors are also deûned for enhanced
sheaves. We denote them by the same symbols

+
⊗, RHom+. For a continuous map

f ∶ M → N , we can deûne naturally the operations E f −1, E f∗, E f !, E f! for enhanced
sheaves. We also have a natural embedding ε ∶ Db(CM)→ Eb(CM), deûned by

ε(F) ∶= Q(C{t≥0} ⊗ π−1F).

For a continuous function φ ∶ U → R deûned on an open subset U ⊂ M of M, we
deûne the exponential enhanced sheaf by

Eφ
U ∣M ∶= Q(C{t+φ≥0}),

where {t + φ ≥ 0} stands for {(x , t) ∈ M ×R ∣ x ∈ U , t + φ(x) ≥ 0}.

2.4 Enhanced Ind-sheaves

We recall some basic notions and results on enhanced ind-sheaves. References are
made to D’Agnolo–Kashiwara [DK16] and Kashiwara–Schapira [KS16b]. Let M be a
good topological space. SetR∞ ∶= (R,R) forR ∶= R⊔{−∞,+∞}, and let t ∈ R be the
aõne coordinate. hen we deûne the triangulated category of enhanced ind-sheaves
on M by

Eb(ICM) ∶= Db
(ICM×R∞)/π−1Db

(ICM),
where π ∶ M × R∞ → M is a morphism of bordered spaces induced by the ûrst pro-
jection M ×R→ M. he quotient functor

Q ∶ Db
(ICM×R∞)Ð→ Eb(ICM)
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has fully faithful le� and right adjoints LE ,RE deûned by

LE(QK) ∶= (C{t≥0} ⊕C{t≤0})
+
⊗ K ,

RE(QK) ∶= RIhom+
(C{t≥0} ⊕C{t≤0} ,K),

where {t ≥ 0} stands for {(x , t) ∈ M × R ∣ t ∈ R, t ≥ 0} and {t ≤ 0} is deûned
similarly.

We consider themaps

M ×R2
∞

p1 ,p2 ,µ
ÐÐÐ→ M ×R∞ ,

where p1 and p2 are morphisms of bordered spaces induced by the projections.
And µ is amorphism of bordered spaces induced by themap M ×R2 ∋ (x , t1 , t2) ↦
(x , t1 + t2) ∈ M ×R. hen the convolution functors for ind-sheaves on M ×R∞ are
deûned by

F1
+
⊗ F2 ∶= Rµ!!(p−1

1 F1 ⊗ p−1
2 F2),

RIhom+
(F1 , F2) ∶= Rp1∗RIhom(p−1

2 F1 , µ!F2).

he convolution functors are also deûned for enhanced ind-sheaves. We denote them
by the same symbols,

+
⊗ andRIhom+. For a continuousmap f ∶ M → N ,we can deûne

also the operations E f −1, E f∗, E f !, E f!! for enhanced ind-sheaves. For example, by the
natural morphism f̃ ∶ M ×R∞ → N ×R∞ of bordered spaces associated to f , we set
E f∗(QK) = Q(R f̃∗(K)) . he other operations are deûned similarly. We thus obtain

the six operations
+
⊗, RIhom+, E f −1, E f∗, E f !, E f!! for enhanced ind-sheaves. Set

CE
M ∶= Q(“ lim

Ð→
a→+∞

” C{t≥a}) ∈ Eb(ICM).

hen we have natural embeddings ε, e ∶ Db(ICM)→ Eb(ICM) deûned by

ε(F) ∶= Q(C{t≥0} ⊗ π−1F)

e(F) ∶= CE
M ⊗ π−1F ≃ CE

M
+
⊗ ε(F).

For a continuous function φ ∶ U → R deûned on an open subset U ⊂ M of M we
deûne the exponential enhanced ind-sheaf by

Eφ
U ∣M ∶= CE

M
+
⊗ Eφ

U ∣M = CE
M

+
⊗QC{t+φ≥0} ,

where {t + φ ≥ 0} stands for {(x , t) ∈ M ×R ∣ t ∈ R, x ∈ U , t + φ(x) ≥ 0}.

2.5 D-Modules

In this subsection we recall some basic notions and results on D-modules. Refer-
ences are made to [HTT08], [KS01, §7], [DK16, §8, 9], and [KS16b, §3, 4, 7]. For a
complex manifold X we denote by dX its complex dimension. Denote by OX and
DX the sheaves of holomorphic functions and holomorphic diòerential operators on
X, respectively. Let Db(DX) be the bounded derived category of le� DX-modules.
Moreover, we denote by Db

coh(DX), Db
hol(DX), and Db

rh(DX) the full triangulated
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subcategories of Db(DX) consisting of objects with coherent, holonomic and regu-
lar holonomic cohomologies, respectively. For a morphism f ∶ X → Y of complex
manifolds, denote by

D
⊗, RHomDX , D f∗ , D f ∗ , DX ∶ Db

coh(DX)
op ∼
Ð→ Db

coh(DX)

the standard operations for D-modules. he classical solution functor is deûned by

SolX ∶ Db
coh(DX)

op
Ð→ Db

(CX), Mz→ RHomDX(M,OX).

One deûnes the ind-sheaf Ot
X of tempered holomorphic functions as the Dolbeault

complex with coeõcients in the ind-sheaf of tempered distributions. More precisely,
denoting by X c the complex conjugatemanifold to X and by XR the underlying real
analyticmanifold of X, we set

Ot
X ∶= RIhomDXc (OX c ,Dbt

XR
),

whereDbt
XR

is the ind-sheaf of tempered distributions on XR (for the deûnition, see
[KS01, Deûnition 7.2.5]). hen the tempered solution functor is deûned by

SoltX ∶ D
b
coh(DX)

op
Ð→ Db

(ICX), Mz→ RIhomDX(M,Ot
X).

Note that we have isomorphisms

SolX(M) ≃ αX SoltX(M).

Let i ∶ X × R∞ → X × P be the natural morphism of bordered spaces and τ ∈

C ⊂ P the aõne coordinate such that τ∣R is that of R. We then deûne an object
OE

X ∈ Eb(IDX) by

OE
X ∶= RIhomDXc (OX c ,DbT

XR
) ≃ i !RIhomDP(E

τ
C∣P ,O

t
X×P)[2],

whereDbT
XR

stands for the enhanced ind-sheaf of tempered distributions on XR (for
the deûnition see [DK16, Deûnition 8.1.1]). We call OE

X the enhanced ind-sheaf of
tempered holomorphic functions. Note that there exists an isomorphism

i !0REOE
X ≃ Ot

X ,

where i0 ∶ X → X×R∞ is the inclusionmap of bordered spaces induced by x ↦ (x , 0).
he enhanced solution functor is deûned by

SolEX ∶ D
b
coh(DX)

op
→ Eb(ICX), Mz→ RIhomDX(M,OE

X).

hen for M ∈ Db
coh(DX), we have an isomorphism

SoltX(M) ≃ i !0RE SolEX(M).

Finally, we recall the following theorem of [DK16].

heorem 2.2 ([DK16,heorem9.5.3 (Irregular Riemann–HilbertCorrespondence)])
he enhanced solution functor induces a fully faithful one:

SolEX ∶ D
b
hol(DX)

op
Ð→ Eb(ICX).
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3 Fourier Transforms of Regular Holonomic D-modules

In this section, we inherit the situation and the notations in Section 1. Let

X
p
←Ð X × Y

q
Ð→ Y

be the projections. hen by Katz–Laumon [KL85], for an algebraic holonomic
DX-moduleM ∈ Modhol(DX), we have an isomorphism

M∧
≃ Dq∗(Dp∗M

D
⊗OX×Y e−⟨z ,w⟩),

whereDp∗,Dq∗,
D
⊗ are theoperations for algebraicD-modules andOX×Y e−⟨z ,w⟩ is the

integral connection of rank one on X×Y associatedwith the canonical paring ⟨, ⟩ ∶ X×
Y → C. In particular, the right-hand side is concentrated in degree zero. Let X ≃ PN

(resp. Y ≃ PN ) be the projective compactiûcation of X (resp. Y). By the inclusion
map iX ∶ X = CN ↪Ð→ X = PN , we extend a holonomicDX-moduleM ∈ Modhol(DX)

on X to the one M̃ ∶= iX∗M ≃ DiX∗M on X. Denote by Xan the underlying complex
manifold of X and deûne the analytiûcation M̃ an ∈ Modhol(DXan) of M̃ by M̃ an ∶=

OXan ⊗OX
M̃. hen we set

SolEX(M̃) ∶= SolEXan(M̃ an
) ∈ Eb(ICXan).

Similarly, for the Fourier transformM∧ ∈ Modhol(DY), by the inclusionmap iY ∶ Y =

CN ↪Ð→ Y = PN , we deûne SolEY(M̃∧) ∈ Eb(ICY an). Let

Xan p
←Ð Xan

× Y an q
Ð→ Y an

be the projections. hen the following theorem is essentially due to Kashiwara–
Schapira [KS16a] and D’Agnolo–Kashiwara [DK17]. For F ∈ Eb(ICXan) we set

LF ∶= Eq
∗
(Ep−1F

+
⊗E−Re⟨z ,w⟩

X×Y ∣X×Y
[N]) ∈ Eb(ICY an)

(here we denote Xan × Y an etc. by X × Y etc. for short) and call it the Fourier–Sato
(Fourier–Laplace) transform of F.

heorem 3.1 For M ∈ Modhol(DX), there exists an isomorphism

SolEY(M̃∧) ≃
L SolEX(M̃).

From now on, we focus our attention on Fourier transforms of regular holonomic
DX-modules. For such a DX-module M, by [HTT08, heorem 7.1.1] we have an
isomorphism SolX(M̃) ≃ iX! SolX(M), where the right-hand side iX! SolX(M) ∈

Db(CXan) is the extension by zero of the classical solution complex of M to Xan.
Moreover, by [DK16, Proposition 9.1.3 and Corollary 9.4.9], there exists an isomor-
phism

SolEX(M̃) ≃ CE
Xan

+
⊗ ε(iX! SolX(M)).
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For an enhanced sheaf F ∈ Eb(CXan) on Xan we deûne its Fourier–Sato (Fourier–
Laplace) transform LF ∈ Eb(CY an) by

LF ∶= Eq
∗
(Ep−1F

+
⊗ E−Re⟨z ,w⟩

X×Y ∣X×Y
[N]) ∈ Eb(CY an).

Since we have
L
(CE

Xan
+
⊗ ( ⋅ )) ≃ CE

Y an
+
⊗

L
( ⋅ ),

for the calculation of SolEY(M̃∧), it suõces to calculate the Fourier-Sato transform of
the enhanced sheaf ε(iX! SolX(M)) ∈ Eb(CXan) on Xan. he following theorem is due
to Brylinski [Bry86]. Here we give a new geometric proof for it.

heorem 3.2 Let M be an algebraic regular holonomic D-module on X = CN . As-
sume that SolX(M) is monodromic. hen M∧ is also a regular holonomicDY -module
and SolY(M∧) is monodromic.

Proof By the above argument we have isomorphisms

SolEY(M̃∧) ≃
L SolEX(M̃)

≃
L
(CE

Xan
+
⊗ ε(iX! SolX(M)))

≃ CE
Y an

+
⊗

L
(ε(iX! SolX(M)))

≃ CE
Y an

+
⊗ ε(iY ! SolX(M)

∧) ,

where ( ⋅ )∧ stands for the Fourier–Sato transform for R+-conic sheaves (see [KS90])
and in the last isomorphism, we applied [KS16a,heorem 5.7] to the R+-conic sheaf
SolX(M). Note that SolX(M)∧ is not only R+-conic but also C-constructible by
[KS90, Proposition 10.3.18]. Hence, it ismonodromic by Lemma 2.1. Moreover, by ap-
plying the functor i !0RE( ⋅ ) to the isomorphism SolEY(M̃∧) ≃ CE

Y an
+
⊗ε(iY ! SolX(M)∧)

we obtain an isomorphism

SolY(M̃∧) ≃ iY ! SolX(M)
∧ .

his implies that iY ! SolX(M)∧ is an (algebraic) constructible sheaf on the algebraic
variety Y . By [HTT08, Corollary 7.2.4], we can take a regular holonomic D-module
N ∈ Modrh(DY) on Y such that SolY(N) ≃ iY ! SolX(M)∧. hen we have isomor-
phisms

SolEY(M̃∧) ≃ CE
Y an

+
⊗ ε(iY ! SolX(M)

∧)

≃ CE
Y an

+
⊗ ε(SolY(N))

≃ SolEY(N).

By heorem 2.2, we thus obtain an isomorphism

(M̃∧)
an
≃ Nan

∈ Modrh(DY an)

of analytic D-modules on Y an. hen the assertion follows from Lemma 3.3 of
Brylinski [Bry86,héorème 7.1] below. ∎
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Lemma 3.3 (Brylinski [Bry86,héorème 7.1]) Let Z be a smooth projective variety.
hen the analytiûcation functor

( ⋅ )
an
∶ Db

rh(DZ)Ð→ Db
rh(DZan)

is an equivalence of categories.

Proof his result is due toBrylinski [Bry86,héorème 7.1]. We shall give anew proof
to it. Let Db

C−c(CZ) (resp. Db
C−c(CZan)) be the derived category of C-constructible

sheaves on the algebraic variety Z (resp. the complex manifold Zan). hen we have a
commutative diagram of functors

Db
rh(DZ)

∼
ÐÐÐÐ→ Db

C−c(CZ)

( ⋅ )an
×
×
×
Ö

×
×
×
Ö

Db
rh(DZan)

∼
ÐÐÐÐ→ Db

C−c(CZan),

where the horizontal arrows are the Riemann–Hilbert correspondences of algebraic
and analytic D-modules respectively (see e.g., [HTT08, heorem 7.2.2]). By Chow’s
theorem, the right vertical arrow

Db
C−c(CZ)Ð→ Db

C−c(CZan)

is also an equivalence of categories. hen the assertion immediately follows. ∎

For s ∈ R+, let
ms ∶ Y = CN ∼

Ð→ Y = CN , w z→ sw

be themultiplication by s. We shall use also themorphism ℓs ∶ Y ×R∞ → Y ×R∞ on
the bordered space Y ×R∞ induced by the diagonal action

ℓs ∶ Y ×R ∼
Ð→ Y ×R, (w , t)z→ (sw , st).

Let f ∶ X × Y ×R→ X, g ∶ X × Y ×R→ Y ×R be the projections. hen the following
lemma was obtained in (the proof) of Ito–Takeuchi [IT18,heorem 4.4].

Lemma 3.4 Let F ∈ Db(CX). hen we have an isomorphism
L
(ε(iX!F)) ≃ Q(ĩY !Rg!(C{t−Re⟨z ,w⟩≥0} ⊗ f −1F)[N])

of enhanced sheaves.

For F ∈ Db(CX), let us set

L(F) = Rg!(C{t−Re⟨z ,w⟩≥0} ⊗ f −1F)[N] ∈ Db
(CY×R).

Lemma 3.5 Let F ∈ Db(CX). hen for any s ∈ R+, we have an isomorphism
ℓ−1
s (L(F)) ≃ L(F) in Db(CY×R). In other words, L(F) is a R+-conic sheaf on
Y ×R ≃ R2N+1.
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Proof Consider the Cartesian diagram

X × Y ×R idX×ℓs //

g

��

X × Y ×R

g
��

Y ×R
ℓs

// Y ×R.

hen we have isomorphisms

ℓ−1
s (L(F)) ≃ ℓ−1

s Rg!(C{t−Re⟨z ,w⟩≥0} ⊗ f −1F)[N]

≃ Rg!(idX × ℓs)−1
(C{t−Re⟨z ,w⟩≥0} ⊗ f −1F)[N]

≃ Rg!(C{t−Re⟨z ,w⟩≥0} ⊗ f −1F)[N] ≃ L(F),

where in the third isomorphism we used

st − Re⟨z, sw⟩ ≥ 0 ⇐⇒ t − Re⟨z,w⟩ ≥ 0

and f ○ (idX × ℓs) = f . ∎

From now on, we consider the special case where F = SolX(M) ∈ Db(CX) for
M ∈ Modrh(DX).

Corollary 3.6 Let M ∈ Modrh(DX) be an algebraic regular holonomicDX-module
on X. hen there exists an R+-conic sheaf G ∈ Db(CY×R) on Y ×R ≃ R2N+1 such that

SolEY(M
∧
) ≃ CE

Y
+
⊗Q(G).

Proof By Lemma 3.4 we have isomorphisms

SolEY(M̃∧) ≃ CE
Y

+
⊗

Lε(iX! SolX(M))

≃ CE
Y

+
⊗Q(ĩY !L(SolX(M))).

hen by the restriction to Y ⊂ Y and Lemma 3.5, we obtain the assertion. ∎

Proposition 3.7 LetM ∈ Modrh(DX) be an algebraic regular holonomicDX-module
on X. hen for any s ∈ R+, we have an isomorphism

ℓ−1
s LE SolEY(M

∧
) ≃ LE SolEY(M

∧
).

Proof here exist isomorphisms

LE SolEY(M̃∧) ≃ LE(CE
Y

+
⊗Q(ĩY !L(SolX(M))))

≃ C{t≫0}
+
⊗ ĩY !L(SolX(M)) .
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We extend ℓs to Y×R naturally and denote it by the same symbol. hen by Lemma 3.5
for s ∈ R+, we have isomorphisms

ℓ−1
s LE SolEY(M̃∧) ≃ ℓ−1

s (C{t≫0}
+
⊗ ĩY !L(SolX(M)))

≃ C{t≫0}
+
⊗ ℓ−1

s (ĩY !L(SolX(M)))

≃ C{t≫0}
+
⊗ ĩY !L(SolX(M))

≃ LE SolEY(M̃∧).

We obtain the assertion by the restriction to Y ⊂ Y . ∎

Proposition 3.8 Let M be an algebraic regular holonomic D-module on X = CN .
hen for any s ∈ R+, we have an isomorphism

m−1
s SolY(M∧

) ≃ SolY(M∧
).

Proof By (the proof) of Ito–Takeuchi [IT18, Lemma 3.13], there exist isomorphisms

SolY(M∧
) ≃ αY i !0RE(SolEY(M

∧
))

≃ αYRπ∗RIhom(C{t≥0} ⊕C{t≤0} , LE SolEY(M
∧
)) .

Consider the commutative diagram

Y ×R∞
π //

ℓs
��

Y

ms

��

Y ×R∞ π
// Y .

It is easy to see that it is Cartesian. hen by Proposition 3.7, we have isomorphisms

m−1
s SolY(M∧

) ≃ m−1
s αYRπ∗RIhom(C{t≥0} ⊕C{t≤0} , LE SolEY(M

∧
))

≃ αYm!
sRπ∗RIhom(C{t≥0} ⊕C{t≤0} , LE SolEY(M

∧
))

≃ αYRπ∗ℓ!sRIhom(C{t≥0} ⊕C{t≤0} , LE SolEY(M
∧
))

≃ αYRπ∗RIhom(ℓ−1
s (C{t≥0} ⊕C{t≤0}), ℓ!sLE SolEY(M

∧
))

≃ αYRπ∗RIhom(C{t≥0} ⊕C{t≤0} , LE SolEY(M
∧
))

≃ SolY(M∧
),

where in the û�h isomorphism we used ℓ!s ≃ ℓ−1
s (see [DK16, Corollary 3.3.11]). ∎

heorem 3.9 Let M be an algebraic regular holonomicD-module on X = CN . hen
SolY(M∧) is monodromic.

Proof Since the Fourier transform M∧ of M is also holonomic, SolY(M∧) is
C-constructible. Moreover, it is R+-conic by Proposition 3.8. hen the assertion
follows from Lemma 2.1. ∎

By this theorem, we can improve Brylinski’s heorem 3.2 as follows.
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Corollary 3.10 LetM be an algebraic regular holonomicD-module on X = CN . hen
M∧ is regular if and only ifM is monodromic.

Proof Byheorem 3.2, the Fourier transformM∧ is regular ifM is monodromic. It
suõces to show the converse. Assume that M∧ is regular. Let

( ⋅ )
∨
∶ Modhol(DY)

∼
Ð→Modhol(DX)

be the inverse Fourier transform. hen by heorems 3.2 and 3.9, the original regular
holonomicDX-moduleM ≃ (M∧)∨ is monodromic. ∎

4 An Application to Direct Images of D-Modules

In this section, we apply our results to direct images of some irregular holonomic
D-modules. We inherit the situation and the notations in Section 1. For a point
a ∈ Y = CN , let τa ∶ Y

∼
Ð→ Y ,w ↦ w + a be the translation by it.

Lemma 4.1 For M ∈ Modcoh(DX) and a ∈ Y = CN , we have an isomorphism

Dτ∗a(M∧
) ≃ (M

D
⊗OX e−⟨z ,a⟩)∧ .

Proof By Katz–Laumon [KL85], there exist isomorphisms

(M
D
⊗OX e−⟨z ,a⟩)∧ ≃ Dq∗(Dp∗(M

D
⊗OX e−⟨z ,a⟩)

D
⊗OX×Y e−⟨z ,w⟩)

≃ Dq∗(Dp∗M
D
⊗OX×Y e−⟨z ,w+a⟩)

≃ Dτ∗a(M∧
). ∎

heorem 4.2 Let ρ ∶ X = CN ↠ Z = Cn be a surjective linear map and M an
algebraic regular holonomicD-module on X = CN . For the dual L ≃ Cn of Z, let ι ∶ L ↪Ð→
Y = CN be the injective linear map induced by ρ. Assume that for a point a ∈ Y/ι(L)
the aõne linear subspace K = τa(ι(L)) ⊂ Y = CN is non-characteristic for the Fourier
transform M∧ ∈ Modhol(DY) of M. hen the direct image Dρ∗(M

D
⊗OX e−⟨z ,a⟩) ∈

Db
hol(DZ) is concentrated in degree 0.

Proof Let iL = ι ∶ L ↪Ð→ Y = CN and iK ∶ K ↪Ð→ Y = CN be the inclusion maps. hen
via the identiûcation L ≃ K induced by the translation τa , we have isomorphisms

Di∗K(M∧
) ≃ Di∗LDτ∗a(M∧

)

≃ Di∗L(M
D
⊗OX e−⟨z ,a⟩)∧

≃ (Dρ∗(M
D
⊗OX e−⟨z ,a⟩))

∧ ,

where in the second (resp. third) isomorphism we used Lemma 4.1 (resp. [HTT08,
Proposition 3.2.6]). By our assumption, the le�-hand side Di∗K(M∧) ∈ Db

hol(DK) is
concentrated in degree 0. hen the assertion follows from the fact that the Fourier
transform is an exact functor. ∎
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Corollary 4.3 In the situation of heorem 4.2 assume also that n = N − 1 i.e., the
surjective linear map ρ ∶ X = CN ↠ Z = Cn is of codimension one. hen for any
point a ∈ Y/ι(L) the direct image Dρ∗(M

D
⊗OX e−⟨z ,a⟩) ∈ Db

hol(DZ) is concentrated in
degree 0.

Proof By heorem 3.9, the Fourier transform M∧ ofM is monodromic. Since the
aõne linear subspaceK = τa(ι(L)) ⊂ Y = CN doesnot contain theorigin 0 ∈ Y = CN ,
this implies that K is non-characteristic for M∧. hen the assertion follows from
heorem 4.2. ∎
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