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Abstract

Let G/K be a compact symmetric space, and let G — KAK be a Cartan decomposition of G. For / in
l}(G) we define the spherical means f(g,t) = jK fKf(gktk')dkdk', geG, t s A. We prove that if /
is in LP(G), 1 < p < 2, then for almost every g e G the functions t •-» f(g, t) belong to certain
Soblev spaces on A. From these regularity results for the spherical means we deduce, if G/K is a
compact rank one symmetric space, a theorem on the almost everywhere localization of spherical
harmonic expansions of functions in L2(G/K).
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Sunto

Sia G/K uno spazio simmetrico compatto, e sia G = KAK una decomposizione di Cartan del gruppo G.
Se fel}(G), si definiscono le medie sferiche f(g,t) = fK jKf(gktk')dkdk', geG, t e A. Si
dimostra che se f s LP(G), 1 < p < 2, allora per quasi ogni g e G, le funzioni t -»f(g, t) appar-
tengono a certi spazi di Sobolev su A. Da questi risultati di regolarita si deducono dei risultati di
localizzazione quasi ovunque per sviluppi in serie di armoniche sferiche di funzioni in L2(G/K), quando
G/K e uno spazio simmetrico compatto di rango uno.

Introduction

For / e L1
loc(/{

A'), x e R", and t > 0, we define the spherical means f(x, t) by

f(x,t)=ff/f(x-ty)do(y),
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288 Leonardo Colzani [2]

where a is the surface measure of the unit sphere S"'1 in RN. E. M. Stein proved
in [16] that if / is in LP(RN), with N > 3 and p > N/(N - 1), then for almost
every x e i ! " the function t •-» f{x, t) is bounded and continuous in t e [0, + 00)
and later J. Peyriere and P. Sjolin in [14] and D. M. Oberlin and E. M. Stein in
[13] proved

THEOREM A. Let N > 3, let p > N/(N - 1), and let f <= LPX(RN). Then for
almost every x e R", f(x, •) belongs to the Lipschitz space A'"(1_1/ ^j^O, + 00)).

Part of this result is also implicitly contained in [7]. A more precise result, due
again to P. Sjolin [15], is the following theorem. Denote by £„(/?), a > 0, the
Sobolev space

L2
a(R)= lh eL2(R): \\h\\ii= ( ( + °° (l + \s\)2a\h(s) \*ds) < +00

THEOREM B. Let <f> e C°°(R) be such that Suppc/) c (0, +00). / / N > 2, if
N/{N - 1/2) < p < 2, if a = NQ. - \/p) - 1/2, and if/e L>>(RN), then

i 1/2

<c||
ip.

Since L^+1/2(R) is contained in Aa(R), Theorem B implies Theorem A.
In this paper we shall extend these results from RN to any compact symmetric

space. Our approach to the study of spherical means in these spaces is essentially
group-theoretic, and it is based on the theory of spherical functions. We have
found this point of view illuminating: in this general setting proofs are simple,
and the results quite general.

In Section 1 we shall prove an analog of Theorem B for any compact symmetric
space, but special emphasis will be put on the rank one case. In Section 2 we shall
apply the results obtained in Section 1 to the study of almost everywhere
localization of spherical harmonic expansions of L2-functions on compact rank
one symmetric spaces.

We are happy to thank Christopher Meaney for several helpful discussions
concerning the subject of this paper.

1. Regularity of spherical means

Let (G, K) be a compact symmetric pair, and let X = G/K be the associated
compact symmetric space (see [4] and [10] for the definitions and main properties).
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[ 31 Regularity of spherical means 289

We shall always identify functions and distributions on X with right ^f-invariant
functions and distributions on G. Let G = KAK be a Cartan decomposition of G.
Then, if g = ktk', with k and k' in K and t in A, the Haar measure dg of G can
be decomposed as dg = dkw(t)dtdk', for an appropriate weight w on A. If / is
in Ll(G) we define the spherical means f(g,t), g e G, t e A, by

/(*,') = / f f(gktk')dkdk>.

An application of Fubini's theorem shows that for every g e 6, / (g,() is well
defined for almost every t & A. Moreover it is immediate to verify that f(g, t), as
function of g, is constant on the left cosets of K in G; hence it is properly a
function on X.

Let Gk be the subset of the dual of G consisting of equivalence classes of class
one representations, and let {</>A} x e <~ be the associated system of zonal spherical
functions. If / e L2{G) is right ^-invariant, the Peter-Weyl theorem becomes

/=

where dx denotes the dimension of X, and where * denotes the convolution. And
since every zonal spherical function </>x satisfies the equation

the spherical means f(g,t) have the expansion

f(g,*)= L
XeG*

These spherical means are then nice convolution operators that can be defined
not only for functions in L}(G), but also for distributions on G. Also the above
expansion suggests that it is natural to study the regularity of f(g,t) in terms of
some sort of Sobolev space associated with the system {<j>\}\^ck- If t e A, we set
\px(t) = d{/2<t>x(t). Then the system {4'x}\eGK^s orthonormal in L2(A,w(t)dt).
We define the Sobolev space L2

a{A, w(t)dt), — oo < a < + oo, to be the set of all
distributions h = ^

Here |X| denotes the norm of the highest weight corresponding to X, and h{\)
denotes the Xth Fourier coefficient of h, i.e., if h is in Ll(A, w(t) dt), then

h(\)=f h(t)tx(t)w(t)dt.
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290 Leonardo Colzani [41

We are now ready to state our theorem. We begin by stating the results for
compact rank one symmetric spaces. The situation for higher ranks is a bit more
complicated, and in this case we shall only sketch the proofs.

THEOREM 1.1. Let X = G/K be a compact rank one symmetric space of real
dimension N.

(i) If the distribution f belongs to the Hardy space HP(X), 0 < p < 1, and if
a = JV(1 - l/p) - 1/2, then

,1/2

JG

(ii) IffisinL\X), and if a < -1/2, then

ll/(g.-)lk«

(iii) Iff is in L>(X), l< p ^ 2, and if a = N(l - \/p) - 1/2, then

uJG

These results are essentially the best possible.

The Hardy spaces HP(X), 0 < p < +oo, are studied in some detail in [6].
However, for the case p > 1, and for the purpose of this paper, it is enough to
know [5]. Before going into the (easy) proof of the theorem, we need to introduce
some notation (see [1], [4], [9], [10], [17]).

If X — G/K is a compact rank one symmetric space of dimension TV, and if
G = KAK is a Cartan decomposition of G, then, after a suitable normalization,
we can identify A with the torus T = [ — w, m), and

dg = dkw(t)dtdk' = dk\smt/2\2a+1\cost/2\2b+ldtdk',

where a = N/2 — 1, and where b < a depends on the particular X. GK is
naturally indexed by the nonnegative integers (and by the even nonnegative
integers if X is a real projective space), and the zonal spherical functions are
closely related to the Jacobi polynomials {P<a-b)}Z™0: if g = ktk\ with k,
k' e K, and with t &A(=[-ir, IT)), then

Pn«^(cos0
<t>n(g) = —

The dimension dn of the nth representation can be computed explicitly in terms
of a, b, and n. However, it is enough to say here that there exist two positive

https://doi.org/10.1017/S1446788700033723 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033723


[5] Regularity of spherical means 291

constants q and c2 such that, for every n,

P R O O F O F THE THEOREM. Observe that, due to the ^T-bi-invariance of </>„, if / is

an integrable function on G, then we have

J I I f(sktk')dn<i,n{t-l)dkw{t)dtdk'

JK JA JK

fj(g,t)dn*JTjW(t)dt
dV2{f{g,-)){n).

Thus

G n=0

+ 00

n)2ad-'f \f*dn$n{g)\2dg

We first prove (ii). If / is in L}( X), then we have

Hence
+ 00

n _ 0

and this series converges if a < —1/2. This proves (ii).
To prove (i) and (iii) we use the fact that dn~ (\ + n)N~l. Thus,

+ 00

\\f(g,-)\\Lldg~ L(l + n)2a-N+1\\f*dn<t>J2
2.

If / is in L2(X) and a = (N - l)/2, the desired result is a consequence of the
Plancherel formula (and the theorem is sharp in this case). To treat the case
p < 2, we introduce the "fractional integral operators" {I&}pG R, defined by

+ 00
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It is proved in [6] that if 0 < p ^ q < + oo, and if /} = N(l/p - 1/q), then the
operator I& maps HP(X) into Hq{X) continuously (here of course HP(X) =
LP(X) if 1 < p < + oo). In particular, if p < 2, then j*a//>-1/2) m a p s H^X)
into L2(A^) continuously. This statement is equivalent to the following inequality:

and (i) and (iii) follow.
To prove that the results in (ii) and (iii) are sharp, let us consider the " Poisson

kernel"
+ 00

Since for every g in G, Pr(g) > 0 (see [1] and [17]), we have WP^ = 1. Also

I +ao \ 1/2 / + oo \ 1/2

\\Pr\\2={ Lr2"dn) ~\ I ra"(l + n)w-1 - (1 - r)~N/\
\ \ /\n=0 / \n=0 /

and
+ 00 +00

I I^L= Lr"dn~ Z r»(l + n)N~l ~ (1 - r
n=0 n=0

and, by interpolation,

if 1 < /> < + oo.

(If we had better estimates for HP,^, /> ̂  1, 2, +00, then a new interpolation
between p and 1, or /> and + 00, would provide better estimates also for ||Pr||2,
but this would be a contradiction.) Hence

\ 1/2 / + 00 \ 1/2

, n = 0

~ 1 if a < - 1 / 2

~ (1 - log(l - r))1/2 if a =-1/2,

~ ( l - r ) " 1 / 2 " a if a > -1/2.

Letting r -* 1", we see that

only if a < - 1 / 2 and p = 1, or if a < N(l - \/p) - 1/2 and 1 < p < 2.
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To prove that the results in (i) are sharp, we can consider instead of the Poisson
kernel Pr its "radial derivatives" {dk/drk)Pr. (It can be proved that if k >
N(l/p - 1),

^-P
drk r

The proof of the theorem is now complete.

REMARK 1.2. It is possible to prove part (iii) and part (i) of Theorem 1.1 with
p = 1, without using (explicitly) the fractional integral operators {I^}p£R- Since
this approach is somewhat more elementary, it will be sketched here. R. R.
Coifman and G. Weiss proved in [5] that if the function / is in the atomic Hardy
space ^(S1*), then the following Hardy inequality holds:

This result has been subsequently extended to any compact symmetric space by
F. Cazzaniga and E. Giacalone in [3]. Actually the same techniques used by these
authors yield the inequality

which is valid for every compact rank one symmetric space of dimension N.
Interpolation between H\ X) and L2( X) then gives

if 1 < p < 2. This is just the result in fractional integration which we used in the
proof of part (iii) of the theorem.

REMARK 1.3. Theorem 1.1 is the analog for compact rank one symmetric
spaces of Theorem B for RN. Indeed it is not difficult to state and prove also an
analog of Theorem A: let N > 3, let p > N/(N - 1), and let 8 > 0; if / is in
LP(X), then for almost every g e G, the spherical means /(g, •) belong to the
Lipschitz space AJV(1_1//,)_1([5, IT - 8]). Indeed, it follows from the asymptotic
formula of the Jacobi polynomials [17] that, away from the "antipodal points" 0
and IT, the functions \pn(t) behave like the trigonometric polynomials cos(«0> a nd
the Sobolev spaces L2

a+l/2{A,w{t)dt), a > 0, are imbedded into the Lipschitz
spaces Aa([8,ir — 8]).
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Let us now consider the analog of Theorem 1.1 for compact symmetric spaces
of rank greater than one.

THEOREM 1.4. Let X = G/K be a compact symmetric space of dimension N and
rank Q, and let M be a constant such that for every X e GK, we have dx >
c(l + \X\)M.

(i) Iff is in L\X), and if a < -Q/2, then

u 1/2

G

(ii) Iff is in LP(X), 1 < p < 2, and if a < (M + Q){\ - l/p) - Q/2, then

u 2 V/2

llrts>-)lk<fe <4J»P-
G I(iii) Iff is in L\X), and if a = M/2, then

i 1/2

The best choice for the constant M is determined, through the Weyl dimension
formula, by the Lie algebras of G and K. In any case M ^ N - Q (see [8]).

PROOF OF THE THEOREM, (i) and (iii) are proved as in Theorem 1.1, and (ii)
follows by interpolation.

It is not difficult to show that the estimates (i) and (iii) are sharp, but it is likely
that the estimates (ii) can be slightly ameliorated.

2. Localization of spherical harmonic expansions

It is well known that the classical Riemann localization theorem for Fourier
series on the one dimensional torus does not extend to an arbitrary Lie group or
symmetric space. In particular C. Meaney has proved in [11] that if X is a
compact rank one symmetric space of dimension N and diameter IT, and if
x0 e X, then there exists / e L2NAN+1)(X), such that / is zonal about x0,
/(JC) = 0 on the ball of center x0 and radius ir/2, and E ^ / * dn4>n(x) diverges
for almost every x in X.

Despite this, the following positive result is known.

https://doi.org/10.1017/S1446788700033723 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033723


[9 ] Regularity of spherical means 295

THEOREM 2.1. Let X be a compact rank one symmetric space. If f e L2(X) is
zero almost everywhere on an open set U Q X, then E , ^ / * dn<f>n(x) converges to
zero for almost every x in U.

This result has been proved independently by A. I. Bastis and C. Meaney in [2]
and [12]. We shall here give another proof of this theorem which is based on our
previous results on the regularity of the spherical means, and with the hope that
the techniques used will be useful in other contexts.

PROOF OF THE THEOREM. Let Dn = E"_0̂ <>7- be the "nth Dirichlet kernel" of
X. By the Christoffel-Darboux formula, if g = ktk', we have

1 — cost

v ' 1 - cosf
with co(n) and c{n) positive constants, and c(n) ~ (1 + n)N~l. (This follows
from [17].) Let / be an integrable function. Then

tf*dJ<t>J(g)=f figs-^D^ds
7 = 0 JG

Suppose now that / vanishes in a neighborhood of the point g; then also f(g,t)
as a function of /, vanishes in a neighborhood of / = 0. And so, if f(g, •) is in
Ll(A,w(t)dt), also /(g, •)/(! - cos(-)) is in Ll(A,w(t)dt) (see the remark at
the end of the proof). In particular, if n -» + oo, then

JA 1 - - cos(-)

= o ( ( l+« ) -<" - 1 )

and similarly

Collecting these estimates, if a = (N — l)/2, and if n -* + oo, we obtain

and the theorem follows from the fact that if / is in L2( X), then for almost every
g in G, f(g, •) is in LfN_1)/2(A,w(t)dt).
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REMARK 2.2. In the proof of the theorem we used the fact that the product v • h
of a function h in the Sobolev space L2

t(A,w(t)dt) and a function v in
C°°(A) = r\fieRLj(A,w(t)dt), is still in L2

a(A,w(t)dt). This must be a well
known fact, and also one can readily believe it. In any case, here is a sketch of a
proof. Since \\v • h\\L2 < LJJJOI*K'1)IIWII^IIL2> and since for every /? e R, v(n) =
o(n~p) as n -» + oo, it is enough to show that

for some constants c and y.
It is shown in [1] that the product $n\pj admits the linearization

m-\n-j\

for some nonnegative constants { D(j, m, n)Y^n_jV Hence

£ £>(y, m , n ) < —
m — \n-j\

Using these estimates, and the Hardy-Littlewood maximal theorem, we obtain

+ 00

Ed+;).\2o
n+j

D{j\m,n)h(m)
= \n-j\

1/2

max | A ( m) |
0<m<3n

2n- l

E (1+7).\2o

7 = 0

n+j

E /)(>,/»!,/l)

1/2

+ 00

+ c(l + n) max D(j,m,n)

mfa\h{m)\

,U^TT (i+ «)"!*(«)

1/2

1/2
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