
Chapter 7

Extracting networks from data
— the “upstream task”

The goal of this chapter is to recognize that, while there are cases where it is straight-
forward and unambiguous to define a network given data, often a researcher must
make choices in how they define the network and that those choices, preceding most
of the work on analyzing the network, have outsized consequences for that subsequent
analysis.

7.1 What is it?
Sitting between gathering the data and studying the network is the upstream task: how to
define the network from the underlying or original data. Defining the network precedes
all subsequent or “downstream” tasks, tasks we will focus on in later chapters. Often
those tasks are the focus of network scientists who take the network as a given and focus
their efforts on methods using those data.

The upstream task is to define the network from the data before you begin to
analyze it. Sometimes this is easier said than done: researchers often face choices,
sometimes difficult choices, before they can begin to study their network.

The simplest way to visualize the upstream task is to ask yourself two questions:
“What are the nodes?” and “What are the links?” By focusing on these questions, while
they seem rather elementary, you can at times reveal important details about why the
network was made and even if it should have been defined differently.

Consider these two questions as we discuss several examples below.

Example: social network In social network analysis, a common data source has
been social media services like Twitter. Some provide a programming interface (called
an API) to retrieve data on users and their activities. But there are multiple ways to
generate the network from social media activity data. For instance, from Twitter, one
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could construct the network using mentions, retweets, and followings. In these cases,
the nodes are Twitter users but how to define links may not be clear. Which definition
should we choose? Should we simply gather all of them and merge them, defining
links between users when any mention, retweet, or following occurs? This can be a
critical mistake depending on the research question. It has been shown that each of
these connections carry different meaning [72, 115]. In political discourse 1 on Twitter,
retweets strongly signify agreement with the original author. By contrast, mentions tend
to cross the political aisle and are used as a channel for fighting and mockery of political
opponents. In other words, the retweet network captures in-group relationships while
mentions capture both.

Example: protein–protein interaction network Protein interactions are measured
via high-throughput experiments (Ch. 6). When defining a network such as HuRI (Ch. 2),
we need to pay attention to our experimental methods because the characteristics and
biases in the methods strongly affect downstream tasks and network properties. For
instance, the AP–MS and Y2H methods extract different types of links (Ch. 5), leading
to potentially very different networks. But often choices need to be made, not just
between methods, but within a method, to use it appropriately. To build the HuRI
network, for example, the Y2H method was applied to an 𝑁 × 𝑁 search space of
proteins nine separate times. And three different versions of Y2H were used [283].
Luck et al. varied the versions and replicated their screenings specifically to enhance
the robustness of the discovered interactions. Future studies may vary their protocols
further. Overall, we can see how different experimental methods, and choices when
applying them, can yield very different pictures of the network being inferred.

Example: brain network Neuroscientists use imaging experiments to infer the hid-
den structure and functional dynamics of the living brain (Fig. 7.1). As with protein
interaction networks discussed above, experimental protocols will affect the final net-
work being extracted. The brain scanner is part of the upstream task. The field of
neuroimaging has taken great pains to understand the most appropriate use of imaging
studies, with sometimes great debate as to their ability to yield good descriptions of
the brain. From this work has arisen a field of statistical analysis aimed at inferring the
nodes and links of brain networks, the connectome. These analyses include methods
to pull out signals from time series measurements of blood oxygen levels in the brain,
the central focus of functional MRI (fMRI) imaging. Moving from these signals to a
network requires many choices of algorithms and parameters, all of which influence the
final form of the brain network. The upstream task in network neuroscience is rich and
complex.

7.2 Why does it matter?
We emphasize the importance of the upstream task because everything subsequent
depends on it. Perhaps you wish to study the community structure in your network but

1 If you can call it that.

https://doi.org/10.1017/9781009212601.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.010


7.2. WHY DOES IT MATTER? 85

of a network. The two metrics of a real network can be com-
pared with those in benchmark networks such as random and
regular networks. A small-world network possesses higher
local interconnectivity than a random network (low clustering
coefficient and short characteristic path length) and higher
global integrity than a regular network (high clustering coeffi-
cient and long path lengths).

Network efficiency is a more biologically relevant metric
to describe brain networks from the perspective of information
flow. The global efficiency of a network is defined as themean
of the inverse of shortest path length in the network. The local
efficiency of a network is measured as the averaged global
efficiency of the subgraph composed of the neighbors of all
nodes. Global efficiency and local efficiency measure how
efficiently information is exchanged at the global and local
levels, respectively [48, 49]. Using these efficiency measure-
ments, networks with high global and local efficiencies are
also considered to be small-world [48–50].

Nodal Centrality Several graphic metrics can be used to mea-
sure nodal centrality such as degree, efficiency, and eigenvec-
tor. These measures can quantify the roles of a node within a

network from different perspectives (Fig. 2). The degree of a
node is the number (in a binary graph) or the total connectivity
strength (in a weighted graph) of all edges that link to the
node, reflecting the most directly quantifiable measure of
centrality. The nodal efficiency is calculated as the averaged
reciprocal shortest path length between the node and the other
nodes, representing the ability of information transfer from
itself to other nodes in the entire network [50]. The eigenvec-
tor centrality is defined as the first eigenvector of the adjacent
matrix corresponding to the largest eigenvalue [51], and with
its recursive property, it is able to capture the global promi-
nence of a node [52]. In the brain networks, regions with high
nodal centrality are usually referred as hubs.

Human Connectomics Based on Graph Theory

Using the abovementioned graph theory metrics, recent stud-
ies have consistently demonstrated that both human brain
functional and structural networks exhibit many nontrivial
topological properties such as small-worldness structure, high
efficiency of information transfer, and highly connected hub
regions located predominantly in the medial prefrontal and

Fig. 2 Illustrations of basic network metrics. As an example, we showed
a binary network with 16 nodes and 29 edges. a The length of the shortest
path between two nodes corresponds to the distance between them. Here,
the two nodes, a and b, connect to each other by three steps indicated by
the red lines. b The clustering coefficient of a node represents the extent
of local interconnectivity among its neighbors. The node labeled with
“high clustering” (red) has in total of four neighbors (yellow) that are

linked by four existing edges of six possible edges. Thus, the clustering
coefficient of the labeled node is 4/6 (i.e., 0.67). Another node labeled
with “low clustering” (red) has a clustering coefficient value of 0 because
there are no existing edges among its three neighbors (yellow). c The
nodal degree is calculated as the number of edges linking with it. The
node labeled with “high degree” (red) has a degree of seven and the node
labeled with “low degree” (pink) has a degree of 1

Fig. 1 A flowchart of construction and analysis functional and structural
brain networks used in the ADHD studies. Briefly, the time courses from
the EEG/fMRI data or the fiber pathways from diffusion MRI data are
first extracted. The brain regions were then parcellated by structurally or
functionally defined templates. The individual connectivity matrices are

generated by considering the pair-wise functional or structural associa-
tions between brain regions. To the end, the brain network is obtained and
further visualized as a graph and its topological properties can be calcu-
lated with graph theoretical approaches
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Upstream Network

Figure 7.1 An illustration of the upstream task in network neuroscience. Here (left-to-right)
functional or structural MRI data are recorded and processed into standardized time series or fiber
bundles, respectively, then connectivity matrices are generated which are finally processed to make
networks. Many choices are made along the way, from what algorithm to use for standardizing the
data to what measure to use for comparing the time series. Network neuroscience is an example
where the upstream task is highly visible and well documented due to its complexity, but many
other areas feature networks drawn from comparably involved upstream tasks. Figure adapted
from [94].

your definition of links depends on a data processing algorithm. If a small change to a
parameter of that algorithm leads to a drastic change in the network’s structure, then is
your discovered community structure fundamental to the data you’re investigating or is
it simply due to the data algorithm?

Pay close attention to the “data generating process”!

Always think critically about the upstream task.

When you perform the task:
• What would change if you completed the task differently?
• Can you check whether your research results are robust to changes to the

task?
When someone else performed the task:

• Do you have enough information to understand what they did and how?
• Did they do it in a manner appropriate to your problem?

A further effect of drawing attention to the upstream task is that it shines light on
an important aspect of data provenance. As network data are shared, researchers can
become fixated on the network and lose track of the preceding work, the extenuating
circumstances, that went into creating that data.2 When this happens there is a risk of

2 Of course, fixating on simple messages while losing track of extenuating circumstances is by no means
limited to network studies. Many scientific problems develop a “folk wisdom” where a fact or figure gets
passed around, taken for granted and assumed true, all while being supported by one or a few studies or
experiments that were limited in scope or even incorrect. One example is the idea that in cold weather you
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unintentional misuse, you may draw a poor conclusion because of an assumption that
went into the construction of the network which you did not know about.

Take care when information on the upstream task is missing. Imagine if you start
from scratch, would you be able to arrive at the same network as what you currently
have? If you do not know everything about how the network was generated, you
may be faced with reproducibility problems down the line.

A corollary to this holds when you are performing the upstream task yourself.
Always document all aspects of this task and be prepared to replicate the task—there’s a
good chance you may need to check if your later results are robust to the task by changing
what you did to create the network and testing if your conclusions also change.

Always document your upstream task thoroughly. Ensure this information stays
with the network you extract. Be prepared to modify and repeat the upstream task.

7.3 Summary
This brief chapter discussed the upstream task, defining the network by creating a
process to extract the network from the gathered data. Envision the upstream task by
asking yourself, “what are the nodes?” and “what are the links?,” with the network
following from those definitions. You will find these questions a useful guiding star as
you work, and you can learn new insights by re-evaluating their answers from time to
time.

Are you satisfied (currently) with the network you’ve extracted? Good, we can
now turn our attention to incorporating non-network data (Ch. 9), further refining the
network (Ch. 10), or exploring the network (Chs. 11–13 and beyond).

Bibliographic remarks
Little ink has been spilled on the importance of the upstream task in network science.
A notable exception is the excellent perspective piece by Butts [88], which asks such
simple—but foundational questions—as “when is a node a node?” and “when is an
edge an edge?”

Exercises
7.1 Describe a network where there is one answer to the question, “what is a node?”

and from that answer there is really only one answer to the question, “what is an

lose most of your heat through your head, based on a single Army study and since called into question [479].
Another, more chilling example is the considerable confusion early in the COVID-19 pandemic that arose
over whether the virus spread only over short distances in respiratory droplets or was “airborne” in particles
smaller than 5 microns, which spread much farther. But this 5-micron cutoff, well supported by policy, is not
well supported by research and a better cutoff for farther spread may in fact be 100 microns [482]!

https://doi.org/10.1017/9781009212601.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.010


7.3. SUMMARY 87

edge?” Describe another network where, given what nodes represent, there are
many answers to the question, “what is an edge?”

7.2 (Focal network) Consider the data generating process of HuRI. What biases
could be present due to it?

7.3 (Focal network) Consider the developer collaboration network. Nodes represent
GitHub users, links exist between developers who coedit files. Describe a few
other meaningful definitions of links for these nodes.

7.4 (Focal network) Write a table summarizing, for each focal network, answers (in
your own words) to the questions, “what are the nodes?” and “what are the links?”
From these answers, do you see any similarities or differences between the focal
networks?

https://doi.org/10.1017/9781009212601.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.010


https://doi.org/10.1017/9781009212601.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.010

