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1. Introduction. In a finite dimensional vector space V
asetxj,i=1,2, ..., nof vectors of V is said to be a basis,
base, or coordinate system for V if the vectors xj are linearly
independent and if each vector in V is a linear combination of
the elements xj with real coefficients. If a topology for V is
defined in terms of a norm || . || then {Xi} is a basis for V if
and only if to each x ¢ V corresponds a unique set of constants
aj such that

1%~ 2 aw|] = 0.

In infinite dimensional normed vector spaces the above
concepts of basis have different generalizations. The first or
algebraic definition gives a Hamel basis which is a maximal
linearly independent set [l, p. 2] . We shall be interested in
the other or topological definition.

DEFINITION. A set of elements xj, i=1, 2, .. . ina
real Banach space B is a countable or Schauder base or basis
if to each x in B corresponds a unique set of real constants
{aj} such that

limp 4 HX - Zrll ajXj H =0.

A Schauder basis will be called an unconditional basis if, for
each permutation p of the positive integers,

1
) Part of this note is adapted from Mr. Kuehner's M.A. thesis.
) Holder of a National Research Council Studentship.
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n
limp o || % - Z‘izl 2 51) %p(i) || =o0.

If a Banach space B has a Schauder basis {x;j}, the set of
finite linear combinations of the basis elements with rational
coefficients is dense in B. Since this set is countable, B must
be separable. An important unsolved problem of analysis, first
formulated by Schauder, is the basis problem. Does every
separable Banach space have a Schauder basis? By actual con-
struction it has been shown that most of the familiar separable
Banach spaces do have Schauder bases. That the trigonometric
system {%, sin nx, cos nx}, n=1, 2, . . ., is a Schauder basis
for L%(- r, ) follows from known theorems in the theory of
Fourier series [6, pp. 74-5] . This system is also a countable
basis for LP(-7,w), p>1 [6, 7.3 (i), p. 153] but not for
Ll(- nw,m) [6, p. 155] . The Haar functions form a Schauder
basis for LP(- , ), p > 1 and generalizations of the Haar
functions form a Schauder basis for a wide class of Banach
function spaces [2] . The present state of the basis problem
is given in [l, chapter w].

If Schauder basis is replaced by unconditional basis the
answer to the corresponding basis problem is known. In [1]
it is shown that if X is an arbitrary compact Hausdorff space
then C(X), the Banach space of continuous functions on X, can
have an unconditional basis only if C*(X), the conjugate space,
is separable. Since C*(X) is separable only in trivial cases
this shows that in general the spaces C(X) do not have uncondi-
tional bases [l, corollary 1, p. 77] . If the answer to the basis
problem is negative it is possible, but unlikely, that some of
these spaces also fail to have Schauder bases. We do not believe
that it has been shown that every separable C(X) has a Schauder
basis. In the appendix we show that there is no loss of generality
if X is assumed to be compact metric. In this case it is shown
in [2] that there exists a system of generalized Haar functions
for which the partial sums of the series for an arbitrary f e C(X)
converge uniformly to f. However, since the generalized Haar
functions are not in general in C(X) they cannot form a basis for
C(X) and it does not appear possible to obtain a basis by some
simple modification of these functions. In 1927 Schauder con-
structed a countable basis for the case X = [0, 1] [5, see § 2] .
It appears to be well known that a Schauder basis can be con-
structed for X an n-dimensional rectangle in Euclidean n-space
although we do not know of any proofs in the literature.

The principal part of this exposition is the construction of
two different Schauder bases for C(X), X a closed square. The
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first has properties more nearly analogous to the one dimen-
sional case. In the second method the basis is defined in terms
of Cartesian products of one dimensional basis elements and
the results extend readily to n dimensional rectangles. We also
consider briefly the existence of countable bases in certain
spaces of continuous functions vanishing at infinity and in C(X)
where X is compact as a Cartesian product of compact subsets
of the line. In an appendix we consider the implications in the
general case of the separability of C(X).

2. Schauder's basis in C(X), X = [0, 1] . Letr; =0,
r2 =1, r3, . . . bedense in X. Define x = xj(P) =1 - P;
x =P, 0sP< 1., If ry falls between the adjacent points r, r!
of the set rj,i=1,2, ..., n-1, define

0, 0OsPs<sr, r'e Pgl,

Xn(P)

(2.1) (P-r)/(rp-r), T < P <1y,

i

= (P-r')/(r-ry), Tn< P <"
Given {(P) in C(X), set
(2.2) a; = (ry),
n
sp(P) =Z1 a; x;(P), ap = f(rp) - sp_1(rg), n=1,2, ...
We note that

(1)  xp(P) € C(X), ||%pl] = sup{|xpx(P)|: 0<P<1} = 1;

(i) xp(P)=0, P=ry, r3, « « «, Tn_1;

(iii) sp(P), n=2, 3, . . ., is in C(X), coincides with
f(P)for P=r;,i=1,2, ..., n andis piecewise linear
between adjacent points of the set {ril ,i=1, ..., n.

From (iii), the uniform continuity of f on X and the fact
that the set {rj} is dense in X it follows that ||f - sp|[— 0 as
n-> o. To prove uniqueness suppose that f(P) = 2 a; x;j (P)
= 2b; x;(P). If ej is the continuous linear functional on C(X)

defined by ej(x) = x(rj), i=1, 2, . . .,

0=ep [2(bi-apx] =(b) -ae(x)) =Dy -ay.
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Proceeding inductively, using (ii), it follows that
aj=bj,i=1,2,....

3. A countable basis for C(S), S a closed square, first
method. We call a function {{P) defined on S a pyramid function
if there exists a pyramid with base AC X, with vertex above A,
altitude unity, and such that {(P) vanishes outside of A and
defines the lateral surface of the pyramid for P in A. In this
section the basis functions will be pyramid functions. They are
defined in stages corresponding to progressively finer partitions
of S, the partitions being alternately determined by lines parallel
to the sides and to the diagonals of S.

The basis functions x;, i = 1, 2, 3, 4 are pyramid func-
tions with vertices at the corners P; of S and with triangular
bases determined by the two sides adjacent to Pj and the corres-
ponding diagonal. We define a; by (2.2) with P; replacing
ri, i=1,2, . ... The second stage consists of the single
pyramid function x5 on S as base with vertex at Py, the center
of S. It is easily seen that sg(P) is in C(S), coincides with {(P)
at the center and four corners of S and determines a surface
with plane triangular faces above the four triangles into which
the diagonals partition S.

If D) is one of the isosceles right triangles into which the
diagonals of S partition S and Pg is the midpoint of the hypo-
tenuse of D, x¢(P) is the pyramid function with base Dj and
vertex at Pg. The refinement of the partition of S correspond-
ing to x¢ is obtained by bisecting Dj by the line PgPg. Then
s¢(P) defines a continuous surface with plane triangular faces
above the triangles of this partition and coinciding with f(P) for
P=P;,i=1,2,...,6. The other three functions of stage three
are similarly related to the three remaining triangles into which
the diagonals partition S.

The remaining even stages correspond to successive
partitions of each of the squares in the preceding even stage
into four equal squares. The corresponding basis elements
are then pyramid functions on square bases with vertices above
the centers of the bases. Each remaining odd stage corresponds
to a partitioning of S by all the diagonals of all the squares of
the preceding even stage into a number of squares in S and a
number of right isosceles triangles each with hypotenuse in a
side of S. The basis elements are then right pyramid functions
on square bases in the first case and pyramid functions with
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triangular bases and vertices above the midpoint of the hypo-
tenuse in the second. The vertex of the i-th basis function is
denoted by Pj.

Clearly (i) and (ii) of §1 are satisfied with r; replaced by
P;j. In place of (iii) we have

(iii)* sp(P) € C(S), n=1,2,... and, for n > 4, s, (P)
coincides with {(P) for P=P;, i =1,2,..., n and defines a
surface with plane triangular faces above non-overlapping
triangles in S with the points Pj, i = 1,2,..., n as vertices of
these triangles.

The dimensions of these triangles approach zero uniformly
as n—>©, The proof that the functions {xp} form a countable
basis for C(S) is essentially the same as that outlined above for
one dimension.

The alternate stages in the construction have been used
to give (i), (ii) and (iii)! and yet make sure that thereismno line L
such that, for some N, xpn(P) =0, Pe¢ L, n > N for then
limp sp(P) would be piecewise linear on L and obviously not in
general equal to f(P). If we had used only the functions in the
even stages above, the lines x = i/2R, y =i/2%, i=1,2,..., 208,
n=1,2,... would all have been of this type. For the con-
struction we have given the set of points P; is dense not only in
S but also on each of these lines,

If the square S is not closed, C(S) is not separable and
thus does not have a countable basis [86, theorem Al.
Similarly no countable basis exists for C(X), X the whole plane.
The functions xp(P), n > 4, form a countable basis for Cy(S),
the space of continuous functions vanishing on the boundary of
the square S and in this case S need not be closed. We note
that if h is a homeomorphism of the open square S° onto the
plane X, the functions xp'(P'), n = 5,6,... defined by
xn'(hP) = xn(P) form a countable basis for Cy(X), the space of
continuous functions on the plane vanishing at infinity. Alter-
natively a countable basis of pyramid functions is obtained for
Co(X) by ordering the unit squares with integer vertices, taking
a countable basis of pyramid functions for each square, order-
ing these elements by the diagonal method and finally combining
those of the elements from the odd stages that are discontinuous
(as functions on X) into continuous functions.

4, Second method. Let X = [a, b], Y = [c, d], suppose
that {ri} , {ri%hry=r1'=0, rp =rp)'=1, are dense in X and Y
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respectively and let ¢;(x), ¢;'(y) be Schauder one dimensional
bases for C(X) and C(Y) corresponding to these dense sets.
Define

$3j(x:y) = $i(x) 95" (y)
and order the functions ?ij as follows
(4‘ l) ¢11’ ¢21’ ‘blzt ¢22: e ¢’n-1’n—1* ¢nl: ¢n2: ooy

¢n’n-1! ¢ln; ¢2I1’ P ) ¢DI1’ ss s a

If the subscript ij precedes the subscript mn in this ordering
we write (i,]j) < (m,n). Given {(P) in C(XxY), P = (x,y),
we define

(4.2) aj; = f(rl’rll)’ smn(P) = Z aij¢ij(P)’

(i,j) ¢ (m,n)

amn = f{tm.1p') - Z 3;j9ij{Tm> Ty ).

(i,j) < (m,n)

We note that (ii) of §3 implies

1 ifi =m and j = n,

(4. 3) $rnalTi i)

0 if (i,j) < (m,n).
" We shall show that
(4. 4) || £ - 2as; 5] = 0.
We note that
SmnlP) = 2mn ¢ mnlP) + Z(i,j) < (m,n) 2ij ¢ij(P)>
Smn{Tm ' Tn') = amn * H{rmsTh") = amn = {rm, "),
using (4.2) and (4.3). With (4. 3) this implies that
(4.5) smn(ri,rj') = f(rj, r;') if (i,]) < (m,n).
We first show that
(4.6) Nsan - £]| — O, |

|sn,n-1 -fj] =0
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as n-—~>ow. Now spn(P) ¢ C(XxY), and coincides with {(P) at
(rl,r:E , 1, j ¢ n. These points as vertices partition XxY into
(n-1) rectangles and the density of {r } inX, {r;'}inY implies
that the dimensions of these rectangles approach zero uniformly
as n - o, Inthe closures of these rectangles the X- and
Y-sections of s, are linear. If P is in the closure of the

rectangles with vertices Pj, i =1, 2, 3, 4,
ming [snn(Pk) = £(Py) ] < spn(P) < maxy [ spa(Py) = {(Py) ]
[|san - £ || ¢ max, |£(Py) - £(P)| ,

and the first part of (4.6) follows from the uniform continuity of
f(P). The second part follows by the same argument.

We next show that if

(4.7) [|sn-1n-1-£1] < €,

then

(4.8) |[I'spi - sn-1>n-11l « €,1i=1,2,...,n-1.
Define

i

di(P) = sni(P) - sn-1,n-1(P) = X ;_} anj én(x) &' (v).
Thus |d; (x,y)| assumes its maximum values for x = r, and,
since d; (rp,y) is continuous and piecewise linear between the
points y = rj', j=1,2,...,1, it is sufficient to prove that
(4.9) |di(rn,rj‘)[ <€,j=1,2,...,1.
Since dj (rp, rj') =dj-1 (rn,rj') ifj<iand |dj (rp.ri")| =
| f(rn, ri') - sp-1,n-1(rn,ri")| < £ by (3.7), simple induction
proves (4.9).

To complete the proof of (4.4) we show that

(4. 10) ll8in - smyactll < €, i=1,2,..0.m,

if n is sufficiently large. Define

f1(x,y) = $,' (NE(x,1;"),
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« n-1 .
fa(x,y) = 8" (y) [f(x,1q") - 2, =1 fi(x,tp' )], n > L.
Since ¢,'(rj') =0ifn > i,
an.(xr-')—f(xr-')- i=1,2 n; n=1,2
i:._l 1 ? J - 3 J P Y&y e s ey ddy &y e e ey

and since for each x, 2 ir:11 f;(x, rjt ) is linear between
adjacent points of the sety = r;', i =1,2,...,n the fact that
{ri'lis dense in Y and f(x,y) is uniformly continuous implies
that :

fe- Z1all =o,

and ||f,|| < ¢ if nis sufficiently large. We note that, for
eachn, fp(x,rp') € C(X) and '

fa(x,10") = 2.7 ain 65(x).

Now, if nis sufficiently large that ||f,]] < € ,

[sin(P) - Sn,n—l(P)] = ]Z ':il a‘n¢-(X)4>n'(Y)|£|Z~:il ajntb-(x)] .
J T J J

The last expression on the right is the absolute value of a
Schauder partial sum for f (x,rp') in C(X) and is therefore
bounded by

sup { |fn(x,tn V:ixe X} < ||fy]] < ¢

The uniqueness of the coefficients is then established as
before using (4.3) and the continuous linear functionals ej;
defined by eij(f) = f(rj, rj').

5. C(X) with X compact. In this section we describe
briefly a simple countable basis for C(X) when X is a compact
(that is a closed and bounded) subset of the line. Let
a=g.l.b. X, B =1.u.b. X. Then the complement of X rela-
tive to [a«, @] is open and therefore can be expressed as

U lil(aci,@i), n < ®©, with the open intervals («j, ﬁ;i) disjoint,

Define
Xo(P) = (P -a)/(Pp-a), «<P=<p;
x| (P) = - (P-B)/(B - o).

Proceeding by induction, the points «;, @;,1i=1,2,...,n-1
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partition [a,P] into intervals. If («,,B,) falls in the interval
(', «'), define

Xon(P) = (P- ' )/(ap-B'); B<P<ay

0 elsewhere; n=1,2,...;

il

Xomp 1(P) = = (P =a') (xp=B'f; BaPeotp;

0 elsewhere; n = l,Z,...,

With the coefficients chosen as in (2.2) with {«, 8, «j, ;!
replacing {rj}, s2p(P) will coincide with f(P) ¢ C(X) at

o, B, oy, Byseo-snals Bpn-1s» «pnand sy 1(P) = {(P) at these
points plus B,. If X is nowhere dense in [«, 8] the functions
X;, i=1,2,... will form a countable basis for C(X). If X is
not nowhere dense in [«, #], then for some value or values of
n one or more of the closed intervals complementary to

U T («;, 81) on [«, B] will be contained in X. Completing the
one dimensional Schauder basis for each such closed interval,
there is an obvious ordering whereby the original elements plus
all the additional elements for all the closed intervals, is a
countable basis for C(X) with (i), (ii) and the equivalent of (iii)
all holding. If X = X1 x X5 ... x X, where each X; is a com-
pact subset of the line, arguments similar to those given in §4
can be used to show that the set of all Cartesian products of
basis elements of the above type for each C(X;) is, with a suitable
ordering, a countable basis for C(X).

6. Appendix. The separability of C(X). If X is an
arbitrary topological space, C(X) will denote the space of
bounded continuous functions on X. If X is locally compact
Co(X) denotes the space of continuous functions vanishing at
infinity (i.e. such that for each € >0, {x : f(x) = ¢} is
compact). Topological concepts will be defined as in [3].
Most of the following results are well known.

If C(X) has a countable basis it must be separable as we

have seen above. Suppose that {f;(x)}, n=1,2,... is dense
in C(X). Define a pseudo-metric p on X by

plxrxg) = 2T 27 [fu(x1) - )| /2 || fall € 1

Then p is a metric if and only if C{X) separates points of X.
Let T denote the original topology, M the metric or pseudo-
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metric topology. It is easy to show directly that T always
contains M. There exist regular Hausdorff spaces for which
C(X) consists of the constant functions [3, p. 117] . Since M
is then the indiscrete topology it is clear that M and T need not
be the same. However, since M c T, C(X, M) cC(X,T). Since
every f ¢ C(X) is continuous for the M-topology C(X,M)=C(X, T).
It is clear that a Schauder basis for one of these spaces is a
Schauder basis for the other. If X is a pseudo-metric space
the subspace X, obtained by using one representative element
from the closure of each one point set is, with the relative
topology, a metric space and the existence of a countable basis
in C(Xgo) implies the existence of a countable basis in C(X).
Thus as far as the basis problem is concerned there is no loss
of generality in assuming that X is a metric space. We note
that when the continuous functions on X determine the topology
of X, that is when X is completely regular, the separability of
C(X) implies that T = M and T is metrizable.

THEOREM A. If X is a metric space and C(X) is
separable then X is compact,

We note that if X is metric compactness is equivalent
to:- For each sequence in X there is a subsequence converging

to a point of X [3, p. 138] .

Suppose that X is metric but not compact. A metric
space is normal [3, theorem 10, p. 120] and therefore
completely regular [3, p. 117] . If X is not compact there
exists an infinite sequence {x;} of different points of X with no
convergent subsequence. By induction construct a sequence
{ Si} of disjoint closed spheres with centers x; and decreasing
radii. Then U°f Si is closed. For each i the complete

regularity of X and the existence of e(x) =z 1 in C(X) implies the
existence of a function f; € C(X) with ||f;]| = 1 and with

fi(xj) = 1, fi(x) =0, xe~ Sj. Let o« = 0.ajap ... denote the
dyadic expansion of an arbitrary number between 0 and 1 and

let f  (x)=) ] aifj(x). Thenf, ¢ C(X). Since
Hfowy -fapll=1if «f # «,, C(X) cannot be separable giving

a contradiction.

COROLLARY. If X is a subset of n-dimensional
Euclidean space with the relative topology and C(X) is separable
then X is closed and bounded.
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THEOREM B. If Xis a compact metric space C(X) is
separable [3, S(d), p. 245].

A proof closely related to that of the Stone-Weierstrass
theorem can be given. It is based on the following lemma.

LEMMA. Let A be a set of real-valued continuous
functions on a compact space X which is closed under the
lattice operations f v g = max [f(t), g(t)] , £ ~ g = min [£(t), g(t)] .
Then the uniform closure of A contains every function in C(X)
which can be approximated at every pair of points by a function
of A [4, p. 8].

To prove the theorem it is thus sufficient to construct a
countable set A closed under the lattice operations and such that
every function in C(X) can be approximated at every pair of
points by a function of A. A compact metric space is normal
and separable. Let {x;}1 ,i=1,2,... be dense in X. For
i#jlet Sy, Sj denote the closed spheres with centers x; and x;
and radii P (x;, x;)/3. By Urysohn's lemma 3, p. 115] there
exists fij(x) € C(X), vanishing in S; and unity in Sj. Let Ag
denote the countable set of functions r] + rafjj(x) where i, j
runs through the set of pairs of different positive integers and
ry, r2 runthrough the rationals. Let A denote the closure of
Ao under the lattice operations. Then A is countable.

Let f(x) be an arbitrary element of C(X), p, q arbitrary
points of X. Given &> 0,rsufficiently small, |f(p) - f(x)| < €/2
if p(p, x) < 1; [£(q) - f(x)| < €/2if p(q,x) < 1.

If v < p(p,q)/band x; ¢ {x: e(x,p) <r}, xje{x: p(x,q)<r},
thenp ¢ §5; and q ¢ Sj and

(6.1) © fi(p) = fi5(x4), fi5(a) = (%),

Let h(x) = ry] + rzfij(x) where r| and rp are chosen so that
| f(xk) - hixx)] < ¢/2, k=1,2. Thenh e Aj< A and
[£(p) - h(p)| < £, |f(q) - h(q)] < €.

In the above argument the metric has been used to obtain
(6.1). It is of interest to note that there exist separable
compact Hausdorif spaces X for which C(X) is not separable
[3, p. 164] . Suchan X is completely regular and would be
metrizable if C(X) were separable.

If X is a metric locally compact space that is not compact,
C(X) is not separable. However, if X is separable, as is the
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case when X is the union of a countable collection of compact
sets, and if X* = X u { o { is the one point compactification of
X [3, p. 150], the argument given above can be modified to
show that the subset of C(X*) consisting of the functions
vanishing at infinity is separable and this implies that Co(X)

is separable.
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