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Abstract

We give an intrinsic construction of a coupled nonlinear system consisting of two first-
order partial differential equations in two dependent and two independent variables which
is determined by a hyperbolic structure on the complex special linear group regarded as a
real Lie group G. Despite the fact that the system is not Darboux semi-integrable at first
order, the construction of a family of solutions depending-upon two arbitrary functions,
each of one variable, is reduced to a system of ordinary differential equations on the 1-jets.
The ordinary differential equations in question are of Lie type and associated with G.

1. Introduction

In recent years much attention has focused on studying the solutions of typical partial
differential equations (PDEs) of applied mathematics and mathematical physics by
reducing them to ordinary differential equations (ODEs) (see for example [8] and
references therein). Typically, these reductions to ODEs are only able to describe
a “finite-dimensional submanifold” of the “infinite-dimensional manifold” of all the
solutions of the PDE. That is, one obtains a family of solutions parametrised by finitely
many arbitrary constants rather than a family of solutions parametrised by arbitrary
functions. The best known method for carrying out such reductions is by making use
of the equation’s Lie point symmetry group.?

By contrast, if a hyperbolic system consisting of two first-order PDEs in two
dependent and two independent variables (say) is Darboux semi-integrable, then it
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3However, there is currently a vigorous research program whose aim is to find new reductions beyond
those provided by classical Lie methods. Apart from [8), see, for example, the non-exhaustive list

[1, 6, 7], and references therein.
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can be shown ([5, 9]) that the general solution of the system can be constructed from
an ODE system and this ODE system may itself be canonically constructed without
having to solve PDE systems. Thus if a hyperbolic first-order system is Darboux semi-
integrable, then the construction of its general solution, that is, a family of smooth
solutions parametrised by two arbitrary smooth functions each of one variable, is
entirely reduced to ODEs.

Roughly speaking, a first-order system is Darboux semi-integrable (at first order) if
one of its characteristic systems has at least /wo independent characteristic invariants
(first-order differential functions which are constant along the system’s characteristic
flows). An interesting question is the converse: if the construction of the general
solution of an (intrinsically) nonlinear hyperbolic system is reducible to ODEs then
is the system Darboux semi-integrable? In this paper we establish the existence of a
nonlinear, nondegenerate® first-order hyperbolic system, the construction of whose
general solution is reduced to an ODE, and yet the system has no regular first-order
invariants on either characteristic system. That is, a nonlinear first-order system
which is not Darboux semi-integrable at first order but whose general solution can
nevertheless be constructed by solving an ODE on the 1-jets.5 Another interesting
feature of our example arises from the following consideration: it can, in fact, be
shown that the constructed system is Darboux semi-integrable at Aigher order, namely,
at order 3. Our construction thus foreshadows the system’s integrability at lowest
possible order. This begins to address one of the basic open problems in geometric
integrability, namely, to find a low order test for Darboux semi-integrability.

We emphasise that, by construction, the ODE system that solves our first-order
hyperbolic PDE system is of Lie type, being an ODE on the Lie group G, (see [3]).
Moreover, the results of this paper have much more general application. Indeed, it
follows from our general construction that (almost) every 6-dimensional Lie group
gives rise to an integrable PDE system in the class &'.” Finally, we remark that a
number of completely integrable systems, such as the KdV and the Camassa-Holm
equations, are now known to be expressible as (geodesic) flows on certain infinite-
dimensional Lie groups [2]. It is in this sense that we regard the system constructed
in this paper as ‘integrable’, being, essentially a flow on a finite Lie group.

“In the literature on hyperbolic first-order systems of the type considered in this paper, characteristic
invariants are also called Riemann invariants.

5By ‘nondegenerate’ we mean that there is no local coordinate system in which the system either
completely or partially decouples; see Section 4, especially Proposition 4.1.

SOf course, it is not precluded that the system is Darboux semi-integrable at some higher order. Nor is it
precluded that, though, as we shall see, the system cannot be linearised by a contact transformation, it
may yet have a Bicklund or Bianchi transform which is ODE solvable. This raises very interesting
questions which will not be explored in this paper.

"The qualification ‘almost’ and the restriction to dimension 6 will be apparent from Section 2. However,
there is a generalisation which eliminates the dimensional restriction.
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2. Hyperbolic structures and hyperbolic systems

Our approach to the problem described in the Introduction is via the intrinsic
geometry of the class, &', of first-order systems in two dependent and two independent
variables

F(x, Vo U, U, Uy, Uy, Uy, V) =0, G(x‘, Vo U, U, Uy, Uy, Uy, V) =0, _ 2.1

F.. ,

(e ) @
has rank 2 on the locus F = G = 0. This locus defines a 6-dimensional subman-
ifold T¢ of the jet bundle J'(R?, R?). The local geometry of (2.1) subject to the
above open condition on matrix (2.2) was studied in detail in [11] and shown to be
equivalent to the study of certain rank 4 distributions on six-dimensional manifolds.
For the convenience of the reader, we recall the pertinent notation. Let ¥ be a vec-
tor field distribution. The subdistribution of characteristic or Cauchy vector fields,
Char ¥ C ¥, satisfies [Char ¥, ¥'] C ¥. The distribution ¥’ = ¥ + [¥, ¥] is the
first derived distribution of ¥ . The higher derived distributions are defined iteratively
in an obvious way leading to the derived flag of ¥ : ¥ C ¥/ C ¥" C -... Thereal
characteristic variety [4,9, 11] of ¥ is denoted by € (¥).

Let Mg be an arbitrary six-dimensional manifold and let I, be a rank 2 Pfaff
system on M. The pair (Ms, I,) (or, (Mg, ;")) is said to be a first-order partial
differential equations manifold, if, in a neighbourhood of each point of My there is
a local diffeomorphism ¢ : Mg — X such that ¢*i*Q! = I,, where the functions
F, G, defined by T satisfy the condition that matrix (2.2) has rank 2. If such
diffeomorphisms exist for (Mg, I,), we say that it is associated with (Zg, i*Q!). In
other words, a pair (M, ) is a first-order PDE manifold if M¢ can be immersed in J!
so that 1, is a restriction of the contact structure on J! to an equation in &'. We refer to
the distribution (i*Q2")* as the Vessiot distribution of the associated PDE, [9-11]. For
simplicity, we will usually abbreviate first-order PDE manifold to equation manifold.

We now wish to give an intrinsic, geometric characterisation of hyperbolicity for
systems in equation class &, of locally constant type.

where the matrix

?jl
o

t4

P,
G,,

(Y]
Q)

uy

DEFINITION 2.1. A rank 4 distribution of vector fields, H, on a 6-manifold M that
admits a decomposition by rank 2 subdistributions H,, H, satisfying the structure
equations

[Hlv HI]EZh [H21H2]EZZ mod H:
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is said to be a (rank 4) hyperbolic structure on M and will be denoted by the symbol
H, & H,. Here the vector fields Z,, Z, are such that H U {Z,, Z,} spans TM at each
point of M.

The following is proved in [11].

THEOREM 2.1. Let ¥ be a rank 4 distribution on a 6-manifold M such that

(1) ¥ contains a rank 2 Frobenius integrable subdistribution and
(2) The characteristic variety of ¥ is aunion of projective lines: € (¥)~RP'URP'.

Then the pair # = (M, V) is the equation manifold of a hyperbolic system h € &'
and ¥ is a hyperbolic structure H on M.

We note that though the structure equations of a hyperbolic structure H imply that
it has no regular scalar invariants® it may be the case that H, or H, do have such
invariants.

DEFINITION 2.2. If H, has p (functionally) independent invariants and H; has q, we
shall denote this by the symbol H?? and refer to it as a (p, q)-hyperbolic structure
on M.

In accordance with our earlier remarks, we give the following definition.

DEFINITION 2.3. A hyperbolic first-order PDE manifold .# is associated with a
Darboux semi-integrable (on the 1-jets) system if p > 2 or ¢ > 2; it is associated
with a Darboux integrable (on the 1-jets) system if p > 2 and g > 2.°

3. Hyperbolic structures on the projective group

In this section we employ Theorem 2.1 to construct some systems of first-order
hyperbolic PDEs in two dependent and two independent variables which have the
geometric properties we require. We do this by constructing hyperbolic structures
on the special linear group SL(2, C) regarded as a real Lie group. From the linear
fractional transformations C — C parametrised by

— a|Z+az’ a a e SLQ2, C),
a3z +1 a 1

8 A regular scalar invariant of a distribution ¥ on M is a regular, real-valued function on M that is

annihilated by each element of ¥
9We remark that the list of all systems in the class &' that are Darboux integrable on the 1-jets has been

givenin [11].
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we obtain the group law

albl + a2b3 a,bz + a a3b| + b3)

7b= 9 9
¢(a, b) (a3b.+1 asb + 1 @b + 1

Writing a; = a; + itj3, b, = B; +iBj43.j =1,2,3;i* = -1, where o, 8; € R,
we obtain the group law for a Lie group G isomorphic to the restricted Lorentz
transformations, SO(3, 1, R)". Using this group law to compute left- and right-
translations leads to the Lie algebras, .Z and & of, respectively, infinitesimal left-
translations (right-invariant vector fields) and infinitesimal right-translations (left-
invariant vector fields) on G:

Ly = w0y, + w0y, + W4y, + Ws0y,,
L; = w30y, + Oy, + We0y,,
Ly = (wsws — wyw2)dy, + (Wi — wl)dy, + (W) — waws + Wswe)dy,
+ (Waws — W ws) 0y, — 2wWaWs 8y, + (Wy — W3Ws — WrlWe) Oy,
Ly = —wy0y, — wsdy, + w0y, + w0y,
Ls = —wedy, + w38y, + Oy,
L¢ = (wiws + waws) 0y, + 2wrws3y, — (Ws — W3ws — Wrwe) u,
+ (Waws — W w7) By, + (W2 — w33y, + (Wi — Wrws + WsWe)dy,,
and .
Ry = w10, + w30, + Wydy, + Wey,,
R; = (wawe — wyw3) 0y, + (W) — wws + wsw.ﬁ)aw2 + (wg — w§)8wJ
— (w3ws + W We) 0y, + (Wa — W — W3Ws) Dy, — 2W3 W60y,
R3; = wy0y,, + 0y, + Ws0y,,
Ry = —w40y, — W6y, + W10y, + W30y,
Rs = (w3wy + w we) 0y, — (Ws — Wawe — W3Ws)dy, + 2wW3We0u,
+ (Waws — w1w3) 3y, + (W1 — Wows; + WsWe)yy + (W3 — W)y,
R¢ = —ws8y, + w0y, + 0y,
where w is a local coordinate system around idg in G. Note that Lie algebras ¥
and Z may be interchanged by the permutation w, = w;, wy — w3, w3 > Wy,
Wy > Wy, Ws > We, We > ws. We record the structure of & for later use:
[Ly, L) =Ly, [L1,L3]=L3, [Li1,L4 =0, [Ly,Ls]=~Ls, [L1,Le]= Le,
[Ly, L3] = —2Ly, [Ly,La]l = Ls, [Ly,Ls]=0, [L2,Lel= —2L,,
[L3, La] = —Ls, [L3, Ls] = 2L4, [L3, L] =0,
[Ls, Ls] = Ly, [L4,L¢]l=—Ls,
[Ls, L¢] = 2L,.

https://doi.org/10.1017/51446181100007938 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100007938

88 Peter J. Vassiliou [6]

The structure of Z follows from that of .% since [L;, L;] = —[R;, R;]1 for all i, j.
Using the simply transitive Lie algebras . and &%, we may construct a variety of
hyperbolic structures on G. Indeed, we claim that

H®® = (L), L} ® {R,, Re)
is a (0,0)-hyperbolic structure on G and that
H®Y = {L,, L¢} ® (R3, Re}

is a (0,3)-hyperbolic structure on G. For instance, in the case of H®® = {L,, L¢} ®
{R2, R¢} = H, @ H,, we have, using the structure of £ and Z, H| = {L,, L¢, L.},
H, = {R,, R¢, R4}. By a MAPLE calculation we verify thatdim H = 4 anddim H' =
6. Since [.¥Z, #Z] = 0, we deduce that H®? is a hyperbolic structure on G. To see
that each summand H; has no regular scalar invariants it is easily checked that

dimH/ =5, dmH®=6, k>3, i=1,2

Similar calculations show that H®% is a (0,3)-hyperbolic structure on G. An easy
calculation shows that the characteristic variety of a hyperbolic structure is the union
of two projective lines. By Theorem 2.1, H®® and H®% are (locally diffeomorphic
to) the Vessiot distributions of first-order hyperbolic systems in two dependent and
two independent variables. The system associated with H©? is Darboux semi-
integrable having 3 invariants on one of the characteristic systems. As mentioned in
the introduction, it can be shown that the local Cauchy problem for this system is
solvable by ODEs. This proves that the equation class &' contains a Darboux semi-
integrable system with no regular invariants on one characteristic system and 3 on the

~ other. Other hyperbolic structures on G may be constructed by consideration of the
subalgebra classification of so(3, 1, R). Each of these is associated with a hyperbolic
first-order system in &'.

4. An integrable PDE system on the projective group

For now, however, our interest is in the “least integrable” (from a geometric point
of view) of these structures, namely, H %9, In reality, the pair (G, H©®) determines
a contact orbit of first-order systems in &'. Each of these systems is “maximally
non-integrable” having no regular scalar invariants on either characteristic system.
Despite this, it is not difficult to see that for any fixed*system in the contact orbit, a
family of solutions, parametrised by two arbitrary functions, each of one variable, may
be constructed by ODEs. These ODEs are of Lie type and are associated with the Lie
group G. We now proceed to the construction of these systems and their solutions.
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By Vessiot’s existence theorem {12], it is easy to show that every two dimensional
regular integral submanifold'® S C G of H has tangent space T,S,p € S so that
T,S is spanned by X, ¥, € T,S such that X, € H,,, ¥, € H,,. Let f (s) and g(¢)
be real-valued functions defined and smooth on open intervals of the real line / and
J respectively, each containing 0. An inspection of the Lie algebras ., # shows
that for each s € I and ¢t € J, the commuting vector fields L(s) = L, + f (s)L¢ and
R(t) = Rg + g(t)R, are nonzero elements of H, and H,, respectively. Note that L(s)
and R(¢) are curves in the the Lie algebras of infinitesimal left- and right-translations
on G. As is well known [3, Lecture 3, Proposition 3], [10, Theorem 4], the initial
value problem

AM@)=L(s), N0 =xeG 4.1)
foramap A/ : I — G, has a unique solution A (s) = Aﬂmx, where 5 — Aﬁ(s) is a
curve of left-translations in G uniquely determined by the smooth function f and the

condition Ai(o) = ids. The initial value problem (4.1) is said to be a system of Lie type
associated with the Lie group G.

DEFINITION 4.1. Let " : g — %2 (M) be a Lie algebra homomorphism from Lie
algebra g to the vector fields 2 (M) on manifold M. Let A : R — gbeacurvein g.
Then the ODE y.,(3,) = T(A@®))(y(1)),t € R, foracurve y : R - M issaidtobe a
system of Lie type.

Systems of Lie type were introduced by Lie and Vessiot late in the 19th century and
have more recently been studied under the title of ODE systems that admit nonlinear
superposition principles [13]. For the case under discussion, the manifold M of
Definition 4.1 is the Lie group G and the corresponding Lie algebra is so(3, 1).

Similar to the case of the curve of left-translations, the unique solution of the initial
value problem foramap A¢ : J — G,

A%(3) =R(1), A((0)=yE€egd, “4.2)

is A%(t) = pg,y, where t > pf, is a curve of right-translations on G uniquely
determined by the smooth function g and the condition o, = idg. It follows that

AY® . I x> G
defined by
AYD(s, 1) = p§,) 0 M\x 4.3)

1%An immersed submanifold S C G is a regular integral submanifold of vector field distribution ¥ on G
ifforallp e §, 7,5 C 1/,, and 7, S is an ordinary integral element [4, 14].
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is a 2-dimensional regular integral submanifold of H that passes through x € G and
is determined by the two smooth functions f, g. Thus we obtain a family of integral
submanifolds of H parametrised by the smooth functions f, g. ‘

But how is this family of integral submanifolds of distribution H related to solutions
of a hyperbolic system in &'? In fact, the connection is via Theorem 2.1 which
guarantees that H is the Vessiot distribution of some hyperbolic system A in &'. To
see this a little more explicitly, note that by a procedure described in [11], the system
h may be expressed locally in standard jet bundle coordinates by seeking the four
independent invariants of the rank 2 Frobenius distribution {Ls, R,}. Leta!, ..., a*
denote its 4 independent invariants and let «, 8 complete these to a local coordinate
system on G. Introducing these as new coordinates on G transforms distribution H
to {A, B, 3,, g}, where A = A'(a, @, B)3,, B = B'(a, a, B)da, for some A’, B'.
Since dim H = 4, it follows that we can diagonalise, and, recycling coefficients and
possibly renumbering coordinates present the transformation of H in the form

{A =08, + A%, + A%, B=0,+ B3, + B*3,, 3, 85},
B

for some A3,..., B*. From the structure equations of H, it follows easily that
CharH = 0. An argument in [11, Theorem 2.1], then shows that at least one of the 6
Jacobian determinants

3(A% A% 3(A, B) 3(B>, B*)
e, B) ~ e, p) T ¥, B)

is not zero. For instance, if the first of these is not zero, then we may make the change
of variable @ — @ = A%, B — B = A* transforming H to the form

{8a + @3> + B0, 82 + B3 + B34, 85, 85).
We change notation slightly: a' = x!,a®> = x%,a®> = u,a* = v,&@ = u, B = vy;
B? = ¢, B* = ¢ and denote the local diffeomorphism (w;) — (x!, x2, u, v, uy, v;)
by V. In the new coordinates, H is transformed to K, where

K = {ax. + w0, + vlam axz + ¢au + wav’ au,v aul}- (44)
We see that K = W, H is the Vessiot distribution of the first-order system

Uy, =P (X1, X2, U, U, Uy, Uy,),

4.5)
vx; '—_W(xl, X2, U, V, u,x.y v.xl)'

Being the diffeomorphic image of a hyperbolic structure, X admits a splitting K =
K, ® K,. Now, it is not hard to see that any local diffeomorphism that identifies
hyperbolic structures must preserve the corresponding hyperbolic summands and
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hence W.H; = K;,i = 1,2. Let K, be spanned by vector fields X;, X3 and K,
by X,, X4. Thus there are functions &, ... , hy such that W,(L, + f Lg) = h X, +
h3X3,\I/,(R6 + ng) = h2X2 + h4X4. We have \I’.{a,,, 35} = {3,,,, 3,,,}. A direct
calculation, [11, Proposition 3.4] shows that we may take X3, X; € {d,,,d,,} and
(dx' A dx*)(X,, X3) # 0. We show that h h, # 0. Suppose that #; = 0. Then
W, L, = h3X3 — fW,L¢ from which one deduces that distribution {L;, L¢} has 4
independent invariants, a contradiction. It follows that the integral submanifold W (S)
of the Vessiot distribution K has tangent planes which are spanned at each point by
the distribution {X; + ¥ X3, X, + uX,} for some functions y, w. It further follows [9,

- Proposition 2.2] that ¥ (S) is the 1-graph of a solution of the PDE system (4.5). Thus
each 2-dimensional regular integral submanifold of H, AY® constructed by solving
ODE: of Lie type associated with G is mapped by a local diffeomorphism to a regular
integral submanifold of the Vessiot distribution (4.4) which is the 1-graph of a solution
of the first-order system (4.5), as we wanted to show. All the constructions in question
involve only ODE calculations. An entirely similar argument, mutatis mutandis, gives
the desired result for any of the other Jacobian determinants.

Thus we have shown that the general solution of the PDE system determined by
the hyperbolic structure H®® on the Lie group G can be constructed by solving only
ODEs and this despite the fact that the PDE system is not Darboux semi-integrable (and
hence not Darboux integrable) on the 1-jets. Indeed, the PDE system is “maximally
non-integrable” on the 1-jets having no regular characteristic invariants at first order.
Furthermore, the ODEs in question are systems of Lie type associated with the Lie
group G. In a sense, such ODE systems are “nicest possible” being in the class
of ODEs (like the elementary Ricatti equation) that admit nonlinear superposition
principles.

We conclude this section by remarking on the non-degeneracy of the intrinsically
constructed first-order hyperbolic system, k. To see that the system is not linearisable
by a contact transformation note that it is not hard to show that a hyperbolic system
in &' can be linearised by a contact transformation only if it possesses at least
one Riemann invariant on each characteristic system. Another possible source of
degeneracy arises from the fact that there may be a coordinate system in which the
system either partially or fully decouples. That is, a coordinate system in which the
first-order system has the general form

F(x1 yv u, MXa uy) = 0’ G(xa yv uv u,\'1 uy, v’ UX9 vy) = 0' (4'6)
In this regard we make the following observation.

PROPOSITION 4.1. A hyperbolic system in &' can be transformed to one of the form
(4.6) only if at least one of its characteristic systems has 3 independent Riemann
invariants of first order. If both of the characteristic systems have 3 independent
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Riemann invariants of first order then the system decouples completely and is in fact
contact equivalent to the system u, = v, = 0.

The proof of the first part, which will be omitted, follows from'a case by case
analysis of the hyperbolic structure associated with system (4.6). A proof of the
second part may be found in [11]. It follows that for our system k, no such coordinate
system exists. We conclude that A has no local linear representative and is non-
degenerate.

5. Some questions

We end with some interesting problems. Suppose one is presented with a hyperbolic
first-order system in standard jet coordinates, such as (4.5). How can one tell when
there are local coordinates on its first-order PDE manifold that reduce it to an ODE of
Lie type? That is, how can we tell when a first-order hyperbolic system is an ODE on
a Lie group? In this paper, we have not directly addressed this important issue. If this
could be carried out by ODE methods alone, it would decisively answer the question
posed in the Introduction on Darboux semi-integrability and ODE solvability of a
hyperbolic first-order system. Another problem is to explore the possible linearisation
of the system & by Bianchi-type transformations via the well-known linearisation
of ODE systems of Lie type. Finally, construct the system explicitly in standard
coordinates and give a clean proof that every, say local C', solution can be constructed
by ODE:s of Lie type. Progress with these and related questions will be reported
elsewhere.
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