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Abstract

Cognitive diagnosis models (CDMs) have been popularly used in fields such as education, psychology,
and social sciences. While parametric likelihood estimation is a prevailing method for fitting CDMs,
nonparametric methodologies are attracting increasing attention due to their ease of implementation and
robustness, particularly when sample sizes are relatively small. However, existing consistency results of the
nonparametric estimation methods often rely on certain restrictive conditions, which may not be easily
satisfied in practice. In this article, the consistency theory for the general nonparametric classification
method is reestablished under weaker and more practical conditions.
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1. Introduction

Cognitive diagnosis models (CDMs), also known as diagnostic classification models (DCMs), are a
popular family of discrete latent variable models employed in diagnostic assessments to provide detailed
information about subjects’ latent attributes based on their responses to designed diagnostic items. For
instance, in educational testing, these latent attributes might indicate if a subject has mastered certain
skills or not (de la Torre, 2011; Henson et al., 2009; Junker & Sijtsma, 2001); in psychiatric diagnosis,
the latent attributes might signal the presence or absence of certain mental disorders (de la Torre et al.,
2018; Templin & Henson, 2006).

Parametric models for cognitive diagnosis have been developed and widely applied in practice.
Popular examples include the deterministic input, noisy “and” gate (DINA) model (Junker & Sijtsma,
2001), the deterministic input, noisy “or” gate (DINO) model (Templin & Henson, 2006), the general
diagnostic model (GDM; von Davier, 2008), the reduced reparameterized unified model (reduced RUM;
Hartz, 2002), the log-linear CDM (LCDM; Henson et al., 2009), and the generalized DINA model
(GDINA; de la Torre, 2011). In conventional settings with a fixed number of items (J) and a large number
of subjects (N), the latent attributes are often viewed as random variables. The corresponding CDMs can
thus be viewed as a family of finite mixture models, where each subject’s latent attribute profile αi behaves
as a discrete random variable following a categorical distribution. From this perspective, the estimation
often takes place through the maximization of the marginal likelihood, relying on methods such as
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the expectation-maximization algorithm (de la Torre, 2011; DiBello et al., 2007; von Davier, 2008).
However, the maximum likelihood-based approach often necessitates sufficiently large assessments to
guarantee the reliability of the item parameter estimation, and it may either produce inaccurate estimates
with small sample sizes or suffer from high computational costs (Chiu & Köhn, 2019a; Chiu et al.,
2018). Moreover, the parametric CDMs involve certain parametric assumptions about the item response
functions, which may raise concerns about the validity of the assumed model and the underlying process
(Chiu & Douglas, 2013).

As an alternative, researchers have explored nonparametric cognitive diagnosis methods (Chiu
& Köhn, 2019b; Chiu et al., 2009). Instead of modeling the item response functions parametrically,
the nonparametric methods aim to directly categorize subjects into latent groups by minimizing
certain distance measure between a subject’s observed item responses and some expected “centers” of
the latent groups. Two popular examples of nonparametric cognitive diagnosis methods include the
nonparametric classification (NPC) method (Chiu & Douglas, 2013) and its generalization, the general
NPC (GNPC) method (Chiu et al., 2018). The GNPC method, in particular, has received increasing
attention in recent years due to its effectiveness in handling complex CDMs and its good performance
for sample sizes (Chandía et al., 2023; Chiu & Chang, 2021; Ma, de la Torre, et al., 2023; Wang et al.,
2023). The algorithms of the NPC and GNPC methods are straightforward to implement and require
minimal computational resources, making them highly appealing for practical applications.

Theoretical properties of the nonparametric methods have also been explored in the literature. Under
some regularity conditions, the NPC estimators of the subjects’ latent attribute profiles have been shown
to be statistically consistent for certain CDMs, including DINA and reduced RUM (Wang & Douglas,
2015), and a similar consistency theory for the GNPC estimator has also been established (Chiu &
Köhn, 2019a). However, the current theoretical guarantees for these nonparametric methods depend on
relatively stringent assumptions. In the case of the NPC method, the assumptions associated with the
ideal binary responses might oversimplify the underlying diagnostic process and thus be challenging
to fulfill when dealing with complex underlying CDMs, such as the GDINA model and other general
CDMs (Chiu et al., 2018). Although the GNPC method addresses the oversimplification issue of the
NPC method, its consistency depends on a key assumption that consistent initial estimators of the
latent attribute profiles are available. For instance, Theorem 1 in Chiu and Köhn (2019a) provides
theoretical guarantees for the GNPC estimators, assuming an initialization that consistently estimates
the ground truth latent memberships. Similarly, Theorems 1–3 in Ma, de la Torre, et al. (2023) require
consistent estimation of latent memberships from a calibration dataset to establish their consistency
results. The assumption that consistent initial estimators of latent attribute profiles can be obtained or
that a calibration dataset is available may be overly restrictive in practice, and the consistency of the
GNPC method in more realistic settings remains an open problem.

In this article, we establish the consistency for the GNPC method using different theoretical
techniques, without relying on the previous assumption on initial consistent estimators or calibration
datasets. Our analysis covers both the original GNPC method in Chiu and Köhn (2019a) and a modified
version of the GNPC method in Ma, de la Torre, et al. (2023).

We establish finite-sample error bounds for latent attributes of general nonparametric methods as
well as uniform consistency of the item parameters. We would like to clarify that the main contribution
of this work lies in the theoretical analysis of the GNPC and modified GNPC methods. For the
implementation of these methods, we recommend utilizing the algorithms proposed in the literature
(Chiu & Köhn, 2019a; Chiu et al., 2018; Ma, de la Torre, et al., 2023), which have demonstrated the
effectiveness of GNPC methods via extensive simulation studies and real data examples.

The rest of the paper is organized as follows: Section 2 provides a brief review of cognitive diagnostic
models and discusses the limitations in the existing consistency results. Section 3 establishes consistency
results of the GNPC methods. In Section 4, we provide a simulation study to illustrate our theoretical
results. Section 5 gives some further discussions, and the Supplementary Material provides the proofs
for the main results.
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2. Model setup and nonparametric methods

This work focuses on CDMs for multivariate binary data, which are commonly encountered in educa-
tional assessments (correct/wrong answers) and social science survey responses (yes/no responses) (von
Davier & Lee, 2019). For N subjects and J items, the observed data is an N × J binary matrix R = (Ri,j),
where Ri,j = 1 or 0 denotes whether the ith subject gives a positive response to the jth item. Consider
K binary latent attributes. Let the row vector αi = (ai,1, . . . ,ai,K) represent the latent attribute profile for
the ith subject, where ai,k = 1 or 0 indicates the presence or absence, respectively, of the kth attribute for
the ith individual. We further use an N×K binary matrix, A = (ai,k) ∈ {0,1}N×K , to represent the latent
attribute profiles for all N subjects.

To capture the dependence relationship between items and the latent attributes of subjects, a design
matrix called the Q-matrix (Tatsuoka, 1985) is employed. The Q-matrix encodes how the J items depend
on the K latent attributes. Specifically, Q = (qj,k) ∈ {0,1}J×K , where qj,k = 1 or 0 indicates whether the
jth test item depends on the kth latent attribute, and we denote the jth item’s Q-matrix vector as qj =
(qj,1, . . . ,qj,K).

For an integer m, we denote [m] = {1, . . . ,m} and for a set A, we denote its cardinality by ∣A∣. We
denote θj,α =P(Ri,j = 1∣αi = α) for any i ∈ [N], j ∈ [J] and α ∈ {0,1}K , and let Θ = {θj,α; j ∈ [J],α ∈ {0,1}K}.
We assume each response Ri,j follows a Bernoulli distribution with parameter θj,αi and the responses
are independent with each other conditional on the latent attribute profiles A and the structure loading
matrix Q. In summary, the data generative process aligns with the following latent class model:

P(R ∣A,Θ) =
N
∏
i=1

J
∏
j=1

P(Ri,j ∣ αi,θj,αi) =
N
∏
i=1

J
∏
j=1
(θj,αi)

Ri,j(1−θj,αi)
1−Ri,j .

To further illustrate the adaptability of the general nonparametric method to the model structures
embedded in CDMs imposed by the structural matrix Q, we follow the general assumption for the
restricted latent class models (Chiu & Köhn, 2015; Ma, de la Torre, et al., 2023; Xu, 2017) that for different
attribute profiles α̃ and α,

(α○qj = α̃○qj)�⇒ (θj,α = θj,α̃), (1)

where α○qj = (a1qj,1, . . . ,aKqj,K) denotes the element-wise product of binary vectors α = (α1, . . . ,αK)
and qj. This implies that the item response parameter θj,α only depends on whether the latent attribute
profile α contains the required attributes Kj ∶= {k ∈ [K];qj,k = 1} for item j. In cognitive diagnostic
assessments, the matrix Q is typically predetermined by domain experts (George & Robitzsch, 2015;
Junker & Sijtsma, 2001; von Davier, 2008). In this work, we assume the Q-matrix Q is specified, and
(A,Θ) are to be estimated from the responses R.

2.1. Parametric CDMs: DINA and DINO models
For parametric CDMs, the structural matrix Q imposes various constraints on the item parameters
based on different cognitive assumptions. For instance, in the DINA (Junker & Sijtsma, 2001) model, a
conjunctive relationship among the attributes is assumed. According to this assumption, for a subject
to provide a positive (correct) response to an item, mastery of all the required attributes of the item is
necessary. In the DINA model, the ideal response for each item j ∈ [J] and each latent attribute profile
α = (a1, . . . ,aK) is defined as

ηDINA
j,α =

K
∏
k=1

aqj,k
k .

The DINO (Templin & Henson, 2006) model assumes a disjunctive relationship among attributes,
where mastery of at least one of the required attributes for an item is necessary for a subject to be
considered capable of providing a positive response. In the DINO model, the ideal response is defined as
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ηDINO
j,α = 1−

K
∏
k=1
(1−ak)qj,k .

The DINA and DINO models further encompass uncertainty by incorporating the slipping and
guessing parameters, denoted as sj and gj for j ∈ [J]. For each item j, the slipping parameter represents
the probability of a capable subject giving a negative response, whereas the guessing parameter signifies
the probability of an incapable subject giving a positive response. Specifically, sj = P(Ri,j = 0∣ηj,αi = 1)
and gj = P(Ri,j = 1∣ηj,αi = 0) for the ith subject. Therefore, in these two restricted latent class models, the
parameter θj,α can be expressed as

θj,α = (1− sj)ηj,α g1−ηj,α
j .

2.2. Nonparametric CDMs: NPC and GNPC
For nonparametric CDMs, the ideal responses described under the DINA and DINO models serve as
foundational elements for the NPC analysis. Given a set of 0–1 binary ideal responses, denoted as {ηj,α},
the NPC method, as introduced by Chiu and Douglas (2013), estimates the subjects’ latent attribute
profiles as follows. This method utilizes a distance-based algorithm, leveraging observed item responses
to categorize subjects into latent groups. The NPC estimator, α̂i, for the ith individual’s attribute profile,
αi, is expressed as

α̂i = argmin
α∈{0,1}K

J
∑
j=1
(Ri,j−ηj,α)2.

In the NPC method, the ideal responses ηj,α can be based on either the DINA model or the DINO
model. However, due to the dependence on these specific model assumptions, which define two extreme
relations between qj and latent attribute profile α, the NPC method may fail to handle complex CDMs,
such as the GDINA model, and such limitation may lead to misclassifications of the subjects (Chiu &
Köhn, 2019a).

To address this issue, the GNPC method (Chiu et al., 2018) offers a solution by considering a more
general ideal response that represents a weighted average of the ideal responses from the DINA and
DINO models, as in

η(w)j,α =wj,αηDINA
j,α +(1−wj,α)ηDINO

j,α . (2)

The weights are determined by the data; therefore, the proportional influence of ηj,α and wj,α on
the weighted ideal item response is adapted to the complexity of the underlying CDM data generating
process. The GNPC method can be utilized with any CDM that can be represented as a general CDM,
without requiring prior knowledge of the underlying model. To obtain estimates of the weights, Chiu
et al. (2018) proposed minimizing the L2 distance between the responses to item j and the weighted
ideal responses η(w)j,α :

dj,α = ∑
i∶αi=α

(Ri,j−η(w)j,α )2.

When ηDINO
j,α = ηDINA

j,α , this results in η(w)j,α = ηDINA
j,α = ηDINO

j,α , which happens either when α includes all the
required latent attributes in Kj, leading to η(w)j,α = 1, or when α does not contain any required attributes,
resulting in η(w)j,α = 0. Equivalently, these two extreme situations can be summarized as the following
constraints:

(α ⋅qj = 0�⇒ η(w)j,α = 0) and (α ⋅qj = Kj �⇒ η(w)j,α = 1), (3)
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where α ⋅qj = ∑
K
k=1 αkqj,k denotes the inner product of the two vectors and Kj is defined as ∑K

k=1 qj,k,
representing the number of latent attributes that the jth item depends on. Thus, in these two extreme
situations, the parameters η(w)j,α are known and do not need estimation. In scenarios where α includes
only some of the required attributes, η(w)j,α need to be estimated, and in such cases, minimizing dj,α would
lead to

ŵj,α = 1−Rj,α, η̂(w)j,α = Rj,α, (4)

where Rj,α =∑i∶αi=α Ri,j/∣{i ∈ [N];αi = α}∣, which represents the sample mean of the responses to the jth
item for subjects with given latent attribute profile α. Since the true latent attribute profiles are unknown,
the memberships and the ideal responses will be jointly estimated. Specifically, the optimization problem
associated with the GNPC method in Chiu et al. (2018) aims to minimize the following loss function
over the membership αi and the weights wj,α under the constraints imposed by the given Q-matrix:

∑
α∈{0,1}K

∑
i∶αi=α

J
∑
j=1
(Ri,j−η(w)j,α )2, (5)

under constraint (1), where η(w)j,α is given in (2).
A modified GNPC method was studied by Ma, de la Torre, et al. (2023) under a general framework

where the item parameters θj,α are treated as a certain “centroid.” In their framework, the item
parameters θj,α and latent attributes αi are obtained by minimizing L(A,Θ) =∑α∈{0,1}K ∑i∶αi=α l(Ri,θα),
where l(Ri,θα) is a loss function that measures the distance between the ith subject’s response vector,
Ri = (Ri,j,j= 1, . . . ,J), and the item parameter vector θα = (θj,α,j= 1, . . . ,J), given a membership α. Under
their framework, GNPC method can be derived by taking l(Ri,θα) = ∑J

j=1(Ri,j −θj,α)2, which leads to
minimizing the following loss function:

∑
α∈{0,1}K

∑
i∶αi=α

J
∑
j=1
(Ri,j−θj,α)2, (6)

with respect to θj,α and α under constraint (1). To ensure identifiability, we impose the natural constraint
θj,α ≥ θj,α̃ if α ⪰ α̃. Here α ⪰ α̃ if αk ≥ α̃k for all k ∈ [K].

Note that given the membership α, the item parameter θj,α that minimizes the loss function (6) takes
exactly the form of Rj,α in (4) for all items and α’s. Inspired by this, as shown in Ma, de la Torre, et al.
(2023), we can see that the solution (α̂i,η̂j,α) to the original GNPC estimation method in (5) is the same
as the solution (α̂i,θ̂j,α) to (6) under constraint (1) and the following additional constraint:

(α ⋅qj = 0�⇒ θj,α = 0) and (α ⋅qj = Kj �⇒ θj,α = 1), (7)

where the additional constraint (7) corresponds to the constraint (3) under the GNPC setting.
Following the above discussion, both the original GNPC method and the modified GNPC method

can be formulated in a unified estimation framework (Ma, de la Torre, et al., 2023) of minimizing
(6) under different constraints. In particular, since∑N

i=1∑J
j=1(Ri,j−θj,αi)2 =∑α∈{0,1}K ∑i∶αi=α∑J

j=1(Ri,j−
θj,α)2, we can rewrite (6) equivalently as the following loss function:

�(A,Θ∣R) =
N
∑
i=1

J
∑
j=1
(Ri,j−θj,αi)

2, (8)

where minimizing the loss function (8) with respect to (A,Θ) under the constraints (1) and (7) obtains
the original GNPC estimators in Chiu and Köhn (2019a) and the modified GNPC estimators in Ma, de
la Torre, et al. (2023) can be obtained by minimizing (8) under the constraint (1) only.
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2.3. Limitations of existing consistency results for nonparametric CDMs
Existing theoretical research has offered valuable insights into the practical utility of nonparametric
methods. It has been shown that the NPC estimators are statistically consistent for estimating subjects’
latent attributes under certain CDMs (Wang & Douglas, 2015). Similarly, the GNPC estimator’s ability to
consistently classify subjects has been established (Chiu & Köhn, 2019a). However, current theoretical
assurances for these nonparametric methods come with their own set of limitations.

A fundamental assumption for the NPC method to yield a statistically consistent estimator of A
is that P(Ri,j = 1∣ηj,α = 0) < 0.5 and P(Ri,j = 1∣ηj,α = 1) > 0.5, where ηj,α represents the binary ideal
responses (either 0 or 1) under the considered model (Wang & Douglas, 2015). However, as previously
pointed out, this binary ideal response becomes restrictive when working with more complex CDMs.
The binary ideal response, limited to representing the complex latent attribute patterns of examinees
through two states, could potentially oversimplify the actual complexity of the scenario. This limitation,
in turn, constrains the practical application of the NPC method in instances where the underlying
true model is more sophisticated. For instance, Chiu et al. (2018) provided an illustrative example
highlighting this restriction, showing the possibility of misclassifications when the underlying true
model is the saturated GDINA model.

Although the GNPC method addresses the oversimplification problem of the NPC method, a new
restrictive assumption emerges in the existing theory for the GNPC method. Specifically, Theorem 1
in Chiu and Köhn (2019a) assumes initialization of the memberships α̂(0)i s that consistently estimates
the ground truth in order to establish the consistency theory for GNPC. Similarly, Ma, de la Torre,
et al. (2023) assumes the existence of a calibration dataset that provides consistent estimations Âc for
the true latent class membership A0

c of the calibration subjects. Under these assumptions, η̂(w)j,α can be
estimated using consistent membership estimations, which further support the consistency theory. The
assumption concerning the existence of an initial set of consistent estimates or a calibration dataset may
be restrictive and hard to satisfy in practice. To address this issue, we present new theoretical results
demonstrating that the consistency of the GNPC method can be established without the need for a
consistent initialization or a calibration dataset. These findings are detailed in the subsequent section.

3. Main results

Based on the unified framework of two GNPC methods outlined in Section 2, we will establish the
theoretical properties of both the original GNPC method (Chiu & Köhn, 2019a) and the modified
GNPC method (Ma, de la Torre, et al., 2023) under less stringent conditions. Regarding implementation,
estimation algorithms for both the original and modified GNPC methods have been detailed in Chiu
et al. (2018) and Ma, de la Torre, et al. (2023), respectively. We recommend using these well-established
methods for estimation.

Before delving into the statistical behaviors of the aforementioned general nonparametric estimators,
we outline the needed regularity conditions. Consider a model sequence indexed by (N,J), where both
N and J tend to infinity, while K is held constant. For clarity, let the true parameters generating the
data be represented as (Θ0,Q0,A0), and other true parameters are also denoted with superscript 0.
Assumptions are made on these true parameters as follows.
Assumption 1. There exists δ > 0 such that

min
1≤j≤J

{ min
α○qj≠α̃○qj

(θ0
j,α−θ0

j,α̃)2} ≥ δ.

Assumption 2. There exist {δJ ∶ δJ > 0}∞J=1 and a constant ε > 0 such that

min
1≤k≤K

1
J

J
∑
j=1

1{q0
j = ek} ≥ δJ ; (9)

min
α∈{0,1}K

1
N

N
∑
i=1

1{α0
i = α} ≥ ε. (10)
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Assumption 1 serves as an identification condition for local latent classes at each item level, ensuring
that the item parameters of different local latent classes, influenced by Kj, are sufficiently distinct. The
gap, denoted as δ, measure the separation between latent classes, thereby quantifying the strength of the
signals. In the finite-J regime, a δ > 0 is required for studying identifiability (Gu & Xu, 2019, 2023; Köhn
& Chiu, 2017; Xu & Shang, 2018). Assumption 2 pertains to the discrete structures of Q and A. Here,
(10) implies that the 2K latent patterns are not too unevenly distributed in the sample. An equivalent
requirement in random-effect latent class models is pα > 0 for all α ∈ {0,1}K , where pα represents the
population proportion of latent pattern α. For Assumption 2, within the finite-J regime, (9) is similar
to the requirement that “Q should contain an identity submatrix IK” (Chen et al., 2015; Xu & Shang,
2018). However, as J approaches infinity, a finite number of submatrices IK in Q may not be sufficient to
ensure estimability and consistency. Therefore, (9) necessitates that Q includes an increasing number of
identity submatrices, IK , as J grows. A similar assumption on Q was made by Wang and Douglas (2015)
when they were establishing the consistency of the NPC method. It is worth mentioning that the lower
bound δJ in (9) in Assumption 2 is allowed to decrease to zero as J goes to infinity.

In the following subsections, we study the consistency properties of the modified GNPC method with
the constraint (1) and the original GNPC method with both constraints (1) and (7). As the modified
GNPC method involves less constraints compared to the original GNPC method, for convenience, we
first present results for the modified GNPC method in Section 3.1 and then for the original GNPC
method in Section 3.2.

3.1. Consistency results for modified GNPC
In this section, we discuss the consistency results for the modified GNPC method. The following main
theorem first validates the consistency of the modified GNPC method under the constraint (1) and
provides a bound for its rate of convergence in recovering the latent attribute profiles. We use O(⋅) and
o(⋅) to denote the big-O and small-o notations, respectively, and Op(⋅) and op(⋅) as their probability
versions for convergence in probability.

Theorem 1 (Consistency of modified GNPC method). Consider the (Â,Θ̂) = argmin(A,Θ)�(A,Θ∣R)
under the constraint (1). When N,J →∞ jointly, suppose

√
J =O(N1−c) for some small constant c ∈ (0,1).

Under Assumptions 1 and 2, the classification error rate is

1
N

N
∑
i=1

1{α̂i ≠ α0
i } = op(

(log J)ε̃

δJ
√

J
), (11)

where for a small positive constant ε̃ > 0.

Theorem 1 bounds the error of the estimator Â, which establishes the consistency of the latent
attributes of the nonparametric method, and even allows the rate δJ to go to zero. Theorem 1 also offers
insight into the accuracy of estimating A with finite samples and finite J. In particular, if δJ is a constant,
then the finite sample error bound in (11) becomes op((log J)ε̃/

√
J). Ignoring the log terms, the result

shows that the classification error rate can be dominated by the order of J−1/2, indicating that a longer
item set facilitates more accurate classification for the latent profiles of all subjects. Note the scaling
condition that N exp(−Jt2) → 0 for any positive fixed t > 0 in Chiu and Köhn (2019a) and Wang and
Douglas (2015) essentially requires the growth rate of J to be at least the order of logN. In contrast, our
scaling condition only assumes that the number of items goes jointly with N at a slower rate, which can
be more easily satisfied.

The following corollary demonstrates that under certain conditions, the item parameters can be
consistently estimated via the modified GNPC method as N,J →∞.
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Theorem 2 (Item Parameters Consistency). Under Assumptions 1 and 2 and the scaling conditions given
in Theorem 1, we have the following uniform consistency result for all j ∈ [J] and α ∈ {0,1}K:

max
j,α

∣̂θj,a−θ0
j,α∣ = op(

1√
N1−c̃

)+op(
(log J)ε̃

δJ
√

J
),

where c̃ and ε̃ are small positive constants.

This theorem builds on the consistency result established in Theorem 1 to establish the uniform
consistency in parameter estimation. The condition ∑N

i=11{α0
i = α} ≥Nε for all α ∈ {0,1}K ensures that

there are enough samples within each class to provide accurate estimates of item parameters. This is
reflected in the first error term op(1/

√
N1−c̃), which achieves nearly optimal

√
N-consistency. Notably,

the added c̃ term arises due to the number of parameters going to infinity jointly with the sample
size N, causing a slight deviation from the optimal error rate of Op(1/

√
N). The maximum deviation

maxj,α ∣̂θj,α−θ0
j,α∣ is also influenced by the classification errors for the unknown latent attributes, which is

shown in the second error term op((log J)ε̃/(δJ
√

J)). In conclusion, the upper bound for the maximal
error in estimating item parameters comprises a term that denotes nearly optimal

√
N-consistency,

accompanied by an additional term related to the errors in classifying the latent attributes. Our theory
suggests that both the sample size and the test length need to be sufficiently large to ensure accurate
estimation of the item parameters, given that the latent attributes of the subjects must also be estimated.

3.2. Consistency results for original GNPC
In this section, we discuss the consistency result of the original GNPC method. Since the original
method adds an additional constraint (7) compared to the modified method, which causes some of the
parameters θj,α to be 0 or 1, additional notations are needed to characterize how this potential variation
affects the consistency outcome. Denote

λ2
N,J =

1
NJ

J
∑
j=1

⎛
⎜
⎝

∑
i∶α0

i ⋅qj=0
(θ0

j,α0
i
−0)2+ ∑

i∶α0
i ⋅qj=Kj

(1−θ0
j,α0

i
)2
⎞
⎟
⎠
, (12)

which represents the average squared distance between the true parameters and the associated zero/one
values. To establish the consistency for the original GNPC method, an additional assumption is needed.

Assumption 3. For any j ∈ [J], we have θ0
j,α=0 < 1/2 < θ0

j,α=1.

Assumption 3 plays a similar role to Assumption 1, as both measure the separation between different
latent classes. While this appears to be a relatively mild condition and may seem similar to the one
presented in Wang and Douglas (2015), as discussed in Section 2, it remains applicable to complex
CDMs. The following theorem validate the consistency of the NPC method under the original GNPC
setting, provides a similar bound as Theorem 1 for the misclassification rate.

Theorem 3 (GNPC Consistency). Consider the (Â,Θ̂) = argmin(A,Θ) �(A,Θ∣R) under the constraints
(1) and (7). When N,J →∞ jointly, suppose

√
J = O(N1−c) for some small constant c ∈ (0,1). Under

Assumptions 2 and 3, the classification error rate is

1
N

N
∑
i=1

1{α̂i ≠ α0
i } ≤ op(

(log J)ε̃

δJ
√

J
)+

4λ2
N,J

δJ
.

The classification error rate for the original GNPC method is slightly different from the result given in
Theorem 1. An extra item 4λ2

N,J/δJ is added into the error rate. This additional term reflects the number
of items that violate constraint (7), as (12) will be larger when there are more items with θj,α that is
neither 0 nor 1. The impact of the additional error introduced by λN,J is further illustrated by Example
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1 and the simulation studies in Section 4. The details of Theorem 3’s proof can be found in Section C of
the Supplementary Material.

It is worth mentioning that without further regularity conditions, it might be challenging to avoid the
additional error term 4λ2

N,J/δJ . In the existing consistency results for both the NPC and the modified
GNPC methods (Chiu & Köhn, 2019a; Wang & Douglas, 2015), a crucial step involves ensuring that
for each examinee i, the true attribute profile minimizes E[di(αm)] across all m. Here, di(αm) =
∑J

j=1 d(Ri,j,η̂j,αm) represents the distance functions used in the respective nonparametric methods. A
similar approach is required in the proof of Theorem 1 for the modified GNPC method. If we denote
�(A,Θ) = E[�(A,Θ∣R)] and �(A) = infΘ �(A,Θ), then the true latent class profiles, A0, are found to
minimize �(A).

One challenge in establishing the consistency for the original GNPC method lies in the fact that, with
the inclusion of the constraint (7), the true latent class profiles A0 might not necessarily minimize �(A).
Let Ã = argminA �(A), it can be intuitively understood that Â might approach Ã more closely than A0.
Thus the additional error term originates from the discrepancy between �(A0) and �(Ã). Indeed, in the
proof of Theorem 3, we employ the following upper bound to account for this deviation:

λ2
N,J ≥

1
NJ

(�(A0)−�(Ã)) . (13)

The above inequality in (13) is sharp up to a constant multiple of λ2
N,J , below is an illustrative example.

Example 1. In this example, we assume that the number of sample size N is 8M for some positive integer
M, the number of items J is 4, and the dimension of latent attribute profiles K is also 4. We further
assume that the four corresponding row vectors for the items in the Q-matrix are q1 = (1,0,0,1), q2 =
(1,1,0,0), q3 = (0,1,1,0), and q4 = (0,0,1,1), where qj encodes the required latent attributes for the
jth item. For the true latent attribute profiles of the 8M samples, it is assumed that 4M samples exhibit
latent attribute profile (1,1,1,1), while the remaining 4M display the profile (0,0,0,0). It is noteworthy
that all parameters in the original GNPC method will be treated as exactly zero or one under the true
latent attribute profiles A0 in this example, as stipulated by the constraint (7). The last assumption in
this example is that there exists some λ ∈ (0,1/2) such that θ0

j,α=0 = 1/2−λ and θ0
j,α=1 = 1/2+λ. Under

these assumptions, the expected loss under the true latent attribute profiles satisfies

�(A0)−
N
∑
i=1

J
∑
j=1

Pi,j(1−Pi,j) = (NJ)(1
2
−λ)

2
, (14)

where Pi,j ∶= P(Ri,j = 1) are true item response parameters, independent of the estimation process. The
derivation of (14) is detailed in Section D of the Supplementary Material. To demonstrate the sharpness
of inequality (13), we construct an alternative set of latent attribute profiles, denoted as A1. This set
contains 2M samples of ek ∈ {0,1}4 for each k ∈ [4], where each ek only contains the kth latent attribute.
For instance, e1 = (1,0,0,0), e2 = (0,1,0,0), and so on. There is a correspondence between the true latent
profiles A0 and the constructed A1. Specifically, for the 2M samples assigned to ek within A1, the true
latent attribute profiles are equally divided, with half being (0,0,0,0) and the other half (1,1,1,1). Hence,
the expected loss under the constructed latent attribute profiles fulfills

�(A1)−∑
i
∑

j
Pi,j(1−Pi,j) = (NJ) ⋅(λ2+ 1

8
) . (15)

The derivation of (15) is detailed in Section D of the Supplementary Material. Thus, we have
(NJ)−1 (�(A0)−�(A1)) = −λ+ 1/8. Note that in this example λ2

N,J = (λ− 1/2)2. If λ ≤ 1/13, then one
can easily verify that −λ+1/8 > λ2

N,J/4, and therefore, in this case, we deduce that

λ2
N,J ≥

1
NJ

(�(A0)−�(Ã)) ≥ 1
NJ

(�(A0)−�(A1)) ≥
λ2

N,J

4
,
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which implies the order λ2
N,J in the inequality in (13) is sharp. The details of the proof can be found in

Section D of the Supplementary Material.

The magnitude of the additional classification error term arising from the aforementioned discrep-
ancy is of the order O((NJ)−1(�(A0)−�(Ã))). As demonstrated in Example 1, O(λ2

N,J) provides a tight
estimation of the order of the discrepancy (NJ)−1(�(A0)−�(Ã)). Therefore, the additional error term
4λ2

N,J/δJ in Theorem 3 may not be significantly reducible.

4. Simulation study

In this section, we conduct a comprehensive simulation study to illustrate our theoretical findings of
both the original GNPC (Chiu et al., 2018) and the modified GNPC (Ma, de la Torre, et al., 2023). Note
that in the existing literature (Chiu et al., 2018; Ma, de la Torre, et al., 2023), various numerical studies
have already demonstrated the effectiveness of both the original GNPC method and the modified GNPC
method in small sample settings. Therefore, our focus here primarily lies on scenarios where both the
sample size and test length are relatively large to illustrate our theoretical results.

For the data-generating process, followed by the simulation design of Chiu et al. (2018) and Ma, de
la Torre, et al. (2023), we consider two settings: (1) items are simulated using the DINA model, and (2)
items are simulated from GDINA model, as detailed in Section 2. The manipulated conditions include:
the sample size N ∈ {300,600,1,000}; the test length J ∈ {50,100,200,300,400,500}; the number of latent
attributes K ∈ {3,5}. For K = 3, the Q-matrix is constructed with two identity K×K submatrices, and the
remaining items are generated uniformly from all possible non-zero patterns. It is worth mentioning
that this generating process adheres to (9) in Assumption 2. For the case of K = 5, the Q-matrix is
restricted to contain items that measure up to three attributes and constructed the same way as that
for K = 3. For the data conforming to the DINA model, we simulate sj and gj independently from a
uniform distribution Unif [0,r] with r ∈ {0.2,0.4}. For data generated under the GDINA model, the
item parameters are simulated following the framework outlined in Chiu et al. (2018) as follows. For
any item j, let K∗j =∑K

k=1 qjk be the number of required attributes of item j, where qjk is the (j,k)th entry
in the Q-matrix. Without loss of generality, we assume that these attributes with qjk = 1 are the first K∗j
attributes. For instance, if K∗j = 3, that is, item j requires three attributes, we then denote the possible
proficiency classes as α∗1 = (000), α∗2 = (100), α∗3 = (010), α∗4 = (110), α∗5 = (001), α∗6 = (101), α∗7 =
(011), and α∗8 = (111). The item parameters for item j are specified by the probabilities of making the
correct responses for all α∗i with 1 ≤ i ≤ 8. If K∗j = 2, we only need to specify the probabilities for α∗i with
1 ≤ i ≤ 4 since the remaining attributes are irrelevant for distinguishing among the proficiency classes,
and if K∗j = 1, we only need to specify the probabilities for α∗1 and α∗2 (Chiu et al., 2018). Analogous
to the data generation process under the DINA model, we simulate two noise levels under the GDINA
model as in Ma, de la Torre, et al. (2023), with item parameters provided in Table 1 for small noises and
Table 2 for large noises, respectively. Note that Table 1 contains seven rows, while Table 2 contains six,
each row representing a distinct set of item parameters. For each noise level, the set of item parameters
for each item j is sampled randomly from those rows with K∗ = K∗j in each table.

For the latent attribute patterns, they are generated using either a uniform setting, where each
proficiency class is drawn with a uniform probability of 2−K , or a multivariate normal threshold model
as described by Chiu et al. (2018). In this model, each subject’s attribute profile is linked to a latent
continuous ability vector z ∼NK(0,Σ). The diagonal elements of Σ are fixed at 1, while the off-diagonal
elements are set to 0.3 for a low-correlation scenario and 0.7 for a high correlation scenario. The attribute
profile is then derived from z by applying a truncation process as follows:

αik =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, zik ≥Φ−1( k
K +1

),

0, otherwise,

where Φ is the cumulative distribution function of the standard normal distribution.

Downloaded from https://www.cambridge.org/core. 20 Jun 2025 at 04:42:41, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Psychometrika 11

Table 1. Item response parameters for GDINA with small noises, where K∗ denotes the number of

required attributes of a considered item

P(α∗1 ) P(α∗2 ) P(α∗3 ) P(α∗4 ) P(α∗5 ) P(α∗6 ) P(α∗7 ) P(α∗8 )

0.2 0.9

K∗ = 1 0.1 0.8

0.1 0.9

0.2 0.5 0.4 0.9

K∗ = 2 0.1 0.3 0.5 0.9

0.1 0.2 0.6 0.8

K∗ = 3 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.9

Table 2. Item response parameters for GDINA with large noises, where K∗ denotes the number of

required attributes of a considered item

P(α∗1 ) P(α∗2 ) P(α∗3 ) P(α∗4 ) P(α∗5 ) P(α∗6 ) P(α∗7 ) P(α∗8 )

K∗ = 1 0.3 0.7

0.3 0.8

0.3 0.4 0.7 0.8

K∗ = 2 0.3 0.4 0.6 0.7

0.2 0.3 0.6 0.7

K∗ = 3 0.2 0.3 0.3 0.4 0.4 0.5 0.6 0.7

To illustrate our theoretical results, we compute the pattern-wise agreement rate (PAR):

PAR = 1
N

N
∑
i=1

I{α̂i = αi}.

We apply the original GNPC and modified GNPC estimation methods under all manipulated scenarios.
Following the algorithms proposed by Chiu et al. (2018) and Ma, de la Torre, et al. (2023), both
methods are initialized using latent attributes estimated with the NPC method for computational
efficiency. In each scenario, we conduct 100 replications and calculate the mean value of the PARs. The
iteration process is terminated when 1

N∑
N
i=1 I{α̂(t−1)

i ≠ α̂(t)i } < 0.001 or exceeding the maximal number
of iterations set as 500. Additionally, we conducted simulations in these scenarios where both methods
are initialized with random latent attributes, resulting in estimation errors similar to those obtained
with NPC initialization. Details and results are provided in Section E of the Supplementary Material.

Figures 1–4 present the PAR results when the data are generated under the DINA model, and the
PAR results under the GDINA model are shown in Figures 5–8. In each figure, the upper panel presents
the estimation results using the original GNPC method, while the lower panel displays the results using
the modified GNPC method. From left to right, the subfigures in each row illustrate the estimations
for latent attributes, simulated under three different settings: uniform, low correlation setting, and high
correlation setting.

In general, both the original and modified GNPC methods perform well under all the model settings.
The modified GNPC method exhibits a slight edge in more complex scenarios, as demonstrated in
Figures 4 and 8. A consistent trend across all figures is that as the test length J increases, the PARs
improve, supporting our theory that the upper bound for classification error decreases with J. When
the data are simulated from the GDINA models, there is a slight increase in classification errors for
both methods compared to those generated using the DINA models. In addition, comparisons between
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Figure 1. PARs when the data are generated using the DINA model with K = 3 and r = 0.2.
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Figure 2. PARs when the data are generated using the DINA model with K = 3 and r = 0.4.

figures with lower noise levels (Figures 1, 3, 5, and 7) and those with higher ones (Figures 2, 4, 6,
and 8) reveal lower classification errors with decreased noise. In particular, Figures 1 and 5 show nearly
perfect classification results under low noise and K = 3 settings. Moreover, increasing the number of
latent attributes typically results in less precise estimation, as evidenced by the comparisons between
the settings of K = 3 (Figures 1, 2, 5, and 6) and K = 5 (Figures 3, 4, 7, and 8). Within each figure, a
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Figure 3. PARs when the data are generated using the DINA model with K = 5 and r = 0.2.
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Figure 4. PARs when the data are generated using the DINA model with K = 5 and r = 0.4.

slight decrease in PARs is observed when the latent attributes exhibit a higher correlation. When the
data are simulated under larger noises and more attributes (Figure 4 and 8), PARs from the original
GNPC method appear not converging to 1 even when the sample size is 1,000 and test length is 500.
This is likely attributable to the additional error term related to λN,J/δJ in Theorem 3. Notably, λN,J in
(12) can become large when a significant proportion of θj,α0

i
fails to satisfy the constraint (7).
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Figure 5. PARs when the data are generated using the GDINA model with small noises and K = 3.
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Figure 6. PARs when the data are generated using the GDINA model with large noises and K = 3.

5. Discussion

In this work, we revise the consistency results for the GNPC method, originally offered in Chiu and
Köhn (2019a), under relaxed and more practical assumptions. We deliver finite sample error bounds
for the considered two versions of the GNPC method. These bounds not only guarantee asymptotic
consistency in estimating the latent profiles of subjects but also offer insights into the precision of these
estimates in small sample situations. Furthermore, we derive uniform convergence of item response
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Figure 7. PARs when the data are generated using the GDINA model with small noises and K = 5.
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Figure 8. PARs when the data are generated using the GDINA model with large noises and K = 5.

parameters Θ̂ for the modified GNPC method. Notably, all of these advancements are achieved without
the requirement for a calibration dataset.

The findings in this study open up several possibilities for future exploration. Using the consistency
and finite sample error bounds established for estimating the discrete latent structure A, future work
can examine statistical inference on CDMs with a large number of test items and latent attributes.
Additionally, it is important to note that in practical situations, the Q-matrix may not always be readily
available. Various estimation techniques have been proposed in the literature (Chen et al., 2015, 2018;
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Gu & Xu, 2023; Köhn et al., 2024; Li et al., 2022; Liu et al., 2012; Ma, Ouyang, et al., 2023; Xu & Shang,
2018). This leads to a potential future direction of developing theories and computational methods for
CDMs estimation with an unknown Q-matrix within the nonparametric framework.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psy.2025.9.
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