
J. Austral. Math. Soc. (Series A) 43 (1987), 231-245

CHARACTERISATION THEOREMS FOR COMPACT
HYPERCOMPLEX MANIFOLDS

S. NAG, J. A. HILLMAN and B. DATTA

(Received 4 September 1985; revised 3 January 1986).

Communicated by J. H. Rubinstein

Abstract

We have defined and studied some pseudogroups of local diffeomorphisms which generalise the
complex analytic pseudogroups. A 4-dimensional (or 8-dimensional) manifold modelled on these
'Fueter pseudogroups' turns out to be a quaternionic (respectively octonionic) manifold.

We characterise compact Fueter manifolds as being products of compact Riemann surfaces with
appropriate dimensional spheres. It then transpires that a connected compact quaternionic (H)
(respectively O) manifold X, minus a finite number of circles (its 'real set'), is the orientation double
covering of the product Y x P 2 , (respectively Y x P 6 ) , where Y is a connected surface equipped with
a canonical conformal structure and P " is n-dimensonal real projective space.

A corollary is that the only simply-connected compact manifolds which can allow H (respectively
O) structure are S 4 and S2 x S2 (respectively S8 and S2 X S6).

Previous authors, for example Marchiafava and Salamon, have studied very closely-related classes
of manifolds by differential geometric methods. Our techniques in this paper are function theoretic
and topological.

1980 Mathematics subject classification (Amer. Math. Soc): 30 G 35, 32 C 99, 55 R 10, 58 H 05.

1. The Fueter and hypercomplex pseudogroups

Over 50 years ago, R. Fueter [2] had defined a class of mappings whose domain
and range are open subsets of W, (n > 2), obtained by a certain transformation
from complex analytic functions. Indeed, let </> be a holomorphic map whose
domain and range are open subsets of the upper half-plane U = {z = x0 + iy:

A major part of this research was done while the first author was a Visiting Fellow at the Institute of
Advanced Studies of the Australian National University. It is a pleasure to thank ANU for its
hospitality and support.
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232 S. Nag, J. A. Hillman and B. Datta [2 J

y > 0} . The 'n-dimensional Fueter transform' of </>, denoted Fn(</>), is a C°° (in

fact C " ) map from an open domain of R" to R" obtained by substituting in (/>

the expression (elxl + ••• + en_1xn_1)/ yxf + ••• + * 2 _ 1 for the imaginary

unit /'. (Here R" has coordinates (x0, x v . . . , JC B _ 1 ) with unit vectors

(e0,ex,...,en_x). We deliberately identify x0 as also the real coordinate in the

z-plane).

One chief reason for interest in the 'Fueter maps ' stems from the fact that

F4(<J>) and Fs(<j>) are expressible as power series in a quatemionic or octonionic

variable (respectively) when </> has a formally-real expansion around real centres.

The precise definition of Fn(4>) is as follows:

Let U denote the upper half-plane, D be a region in U, and 'W = R" - {x0

axis}, n > 2. We set

(1) Fn{D) =

Let >̂: D -» U be complex analytic with real and imagnary part decomposition
4> = ^ + it]. Then Fn(<f>) = /=;(/)) -* R" is defined by

(2) -

where y = y^2 + • • • +x\_x (the positive square root). Note that F2(<j>) = <#> on
F2(Z>) n [/.

We show easily that if 0 is a diffeomorphism then so is Fn (</>), and the
restrictions of these Fueter diffeomorphisms to arbitrary open subsets of their
domains form a pseudogroup of transformations on 'R". Indeed one finds that

(3) ^ ^ ) = f,W«f,W.
Further, the Fueter transform behaves as a homomorphism of linear spaces of
functions, and for n = 4,8 it works as an algebra homomorphism preserving
multiplications in H and O.

The mappings Fn{<$>) are in general not conformal, nor are general Mobius
transformations in the Fueter class. Indeed we have calculated that Fn(</>) is
A^-quasiconformal in the sense of Ahlfors' 'Mobius transformations in several
dimensions' if \d-q/dy - rj/y\ «£ 2AT over the domain D of <j> = £ + JTJ.

If the holomorphic function <£ has real boundary values where the real axis
abuts D then a direct application of the reflection principle guarantees that Fn((/>)
can be defined real-analytically on the revolved domain Fn(D) together with the
corresponding portions of the xo-axis.

The fundamental observation of Fueter [2] for our purposes is that // <j> has a
Laurent expansion with real coefficients around real centres,

(4) • ( * ) - E « . ( * - c ) " + tbm—L-^
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[31 Compact hypercomplex manifolds 233

(an, bm, c are real, the annulus of convergence is r < \z — c\ < R) then

(5) F4(4>)(V)= tan(V-c)"+ f > *
n-0 m-1 (^-C)

where V = xQ + exxx + e2x2 + e3x3 is a quaternionic variable. Similarly, F8(4>)
will be represented by the 'same' Laurent series with V an octonionic variable.
The corresponding domains of convergence are the ring-domains r < \\V - c\\ < R
in Euclidean spaces R 4 and R8 respectively. We will allow power series as special
cases of the Laurent series, in which case the convergence domains are of course
Euclidean balls with centre c.

Note. If the central Laurent series (4) for the complex variable z is a function <p
mapping U into U then the quaternionic series is precisely F4(<j>); but if <j> maps
U to the lower half-plane then the corresponding quaternionic series (5) is
- F 4 ( - * ) .

These Laurent (or power) series with central (= real) coefficients in H or O
variable, together with their restrictions to open subsets of their domains of
convergence, will clearly form pseudogroups of transformations in R4 and R8.
Manifolds modelled on these as the coordinate transition functions will be
christened \-dimensional central quaternionic (resp. octonionic) manifolds. Briefly
we will call them hypercomplex manifolds (with H or O structure) and their
coordinate charts will be identified by the same names.

Our observations show that these pseudogroups are basically sub-pseudogroups
of the Fueter pseudogroups in dimensions 4 and 8. Thus hypercomplex manifolds
can be studied by investigating Fueter manifolds, that is, manifolds with transition
functions from the Fn(<j>) class of local diffeomorphisms.

One defines the relevant morphisms and isomorphisms in each of these
categories of manifolds in the standard fashion. Notice that a 2-dimensional
Fueter manifold is nothing other than a Riemann surface; thus Fueter structures
generalise complex structures. It may be interesting to note that Fn(</>) assigns a
consistent meaning to the "power series Y.an(V — /?)"" where V is a R "-variable,
and <j> = T.an(z - fi)" (even though R" has no algebra structure except for
1 = 1,2,4,8).

We have characterised a Fueter mapping by equations generalising the Cauchy-
Riemann equations. In particular the Jacobian matrix entries of /*„(<#>) =
(/o> /i» • • • > fn-i) satisfies the following relations (here 3^ =

(v / 0 , Vfj) = 0, (j > 0), that is, the level hypersurfaces

for /0 always intersect orthogonally the levels for fj.
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234 S. Nag, J. A. Hillman and B. Datta [4 ]

REMARK. We can complete this system of partial differential equations for
Fn(<j>) to give six conditions which are necesary and sufficient for (/0, fx,..., fn_l)
to be a Fueter mapping. See [1]. In the quaternionic and octonionic cases the
equations (6) exhibited above can be established by purely algebraic methods
which work uniformly over H, O, and also C, for central-coefficient Laurent
series, (see Nag [3]).

2. Characterising Fueter and hypercomplex manifolds

The work and results of this section are mainly the responsibility of the first
two authors, Nag and Hillman.

We shall identify 'W = W - {xo-axis} with U X S"~2 in a fixed fashion
which will play a crucial role in our theory. Here S"~2 is the standard unit sphere
i n R " ' 1 . Indeed, we map:
(V)

+••• +em_lxH.l) "(xo + iy,(^,^,..., ^ ) ) e U X

where y = yx2 + • • • + x2_ 1 (positive square root).
We will think of Ua = U X {a}, for any a e S"~2, as the rotated position of a

standard upper half-plane U X {(1,0,. . . ,0)} in 'U". The axis of rotation is of
course the xo-axis. We can therefore identify any Ua with U.

The crux of the matter is that a Fueter mapping Fn(<j>) on Fn{D) is the
'function of revolution' obtained by revolving the function </> and its domain D
around the xo-axis. Thus

LEMMA 1 ''Revolution Principle'. A Fueter map Fn(<j>) preserves half-planes which
have the xo-axis as boundary, that is, Fn(<j>) maps Ua into itself and in fact Fn($)
restricted to Ua n Fn(D) {for any a) is precisely <f> on D c U = Ua.

PROOF. A simple but important calculation from formulae (1), (2) and (7).
It now follows immediately that for any n-dimensional Fueter manifold X there

is an intrinsically defined C°° submersion

(8) p:X^S"~2.

That is, p(x) = a determines the half-plane Ua in which x e X lies with respect
to any Fueter coordinate chart around x. By Lemma 1 the map p is well-defined
and each fibre of p has the structure of a \-dimensional complex manifold. Note that
neighbouring fibres have canonical local (biholomorphic) identifications determined
simply by the Fueter structure of X. Indeed the local identifications are obtained
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[51 Compact hypercomplex manifolds 235

by identifying Ua with Ua. (by rotation around the xo-axis) in the image (in 'R" )

of any Fueter chart. Again because of Lemma 1 the identifications do not depend

on the Fueter chart used, (charts will always be required to have connected

domains).

Clearly if X is compact then the fibre of p is a compact Riemann surface R,

and p is a C°° fibre bundle (being a proper submersion). By standard compact-

ness arguments we can then show that there are canonical global biholomorphic

identifications between any two fibres of p. We therefore derive

THEOREM 1. Any compact n-dimensional Fueter manifold X is Fueter-category
isomorphic to the product of a compact Riemann surface R with 5" 2. {In fact,
R X S"~2 has a canonical Fueter structure for any Riemann surface R in an obvious
way. We remark that if R = U/G, G an arbitrary Fuchsian group, then R X 5" 2

= 'R"/Fn(G) as a Fueter manifold. G can be allowed to possess elliptic elements,
and every Riemann surface R then occurs as U/G.)

Details of the proof of the above theorem are omitted because they are exactly
analogous to, (but much simpler than), the proofs for the more subtle hypercom-
plex manifold results which we explain below.

LEMMA 2. Any Fueter or hypercomplex manifold is orientable.

PROOF. A direct calculation or usage of Lemma 1 leads to the relation

(9) det(JacFn(</>))=(^)" 'detlJac^))

(notations as in equations (1) and (2)).
It follows that the Jacobian determinants of any Fueter or hypercomplex

transition function is everywhere positive.
Thus, if we choose a fixed orientation for R4 any HI manifold then gets a

canonical orientation.

DEFINITION. The set of poinits in a hypercomplex manifold X whose image
under any hypercomplex chart is on the real (xo)-axis is a closed 1-dimensional
submanifold of X called its lreal set' px = p.

Clearly, if X is compact px is a finite union of circles smoothly embedded in
X.

Now, any central H or O Laurent series will map any 2-plane containing the x0

axis into itself; so, using the facts for F4(<j>), (Lemma 1), we can understand a H
or O Laurent series function as a 'function of revolution' obtained by revolving a
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236 S. Nag, J. A. Hillman and B. Datta 16 ]

complex analyt ic function around the real axis. 2-planes in R" through x0 axis
are parametr ised by the real projective space P " ~ 2 , so on the hypercomplex
manifold X we can define a natural C°° submersion, (in analogy with (8)),

(10) p: X- px-*¥>"'2 (>i = 4 or 8).

EXAMPLE. Let X = S4 = U4 U {oo}. We can give this a HI -structure analogous
to the complex structure of the Riemann sphere, by assigning the identity chart
on R4 and obtaining F>-> 1/V as the transition function to the obvious chart
covering (R4 — origin) U {oo}.

Notice p is then the 'real circle' {xo-axis) U {oo} and the map p: X — p = 'R4

-» P2 is precisely the second component of the identification map (7) followed by
the standard double covering IT: S2 -» P 2 . The fibres of p are two disjoint
half-planes. (Ss has similar octonionic description.)

Thus S4 is quaternionic projective space P^W).
Note that for p to be well defined we must be mapping to P 2 , and not to S2;

because // (V,</>) is a H-chart on X then so is (V,-<j>), and the map <f>:
V -> 'R4 = U x S2 assigns the S2 values antipodal to those determined by -</>:
V -* 'U 4. Notice further that the upper half-plane element assigned by </> to any
x e V ( c X) is the reflection across the ^-axis (in U) of the {/-element associated
to x by — <j>.

THEOREM 2. Let X be a connected compact hypercomplex manfold with real set p.
Then

(a) p: X - p -» P " " 2 (n = 4 for H, 8 for O) as defined in (10) is a Cx fibre
bundle which is not globally trivial. Let the fibre p~1(k) for any k e P " " 2 be
denoted X{k) ( c X- p).

(b) X(k) is an orientable surface with at most two components. It has a canonical
conformal structure induced by the hypercomplex structure of X.

(c) The closure X{k) of X{k) in X is precisely X(k) Up (for all k <= P"~2).
X(k) is itself orientable, and if p is non-empty then X(k) is connected.

(d) X(k) is a compact surface with a conformal structure, (that is, transition
functions are holomorphic or conjugate-holomorphic) and there is a global conformal
identification of X(k) with X(k') for all k' in a neighbourhood of k. These
identifications are determined by the hypercomplex structure of X and act as the
identity when restricted to p.

PROOF. We deal only with the HI-case since no new ideas come in for O.
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[7] Compact hypercomplex manifolds 237

First notice that p is surjective. Indeed, if p is empty then p being submersive
and X being compact says p is onto. If p has a point £ in it then any chart <f>
around £ will map to a 4-dimensional open neighbourhood of </>(£), (</>(£) is o n

xo-axis), and already every 2-plane is intersected; so p is onto.
Note that the last argument shows that each point of p is a limit point of every

fibre p~\k), and then the first part of (c) follows easily.
Consider now any chart (F, </>), V c X; <j> assigns to each point of F - p a

point in 'R4 = U X S2. (Recall (7).) Thus to any x e V — p, <£ assigns an element
of U and an element of S1. We denote the map <j> restricted to (V - p) n X(k) by
<f>(k), (k e P 2 ) . We can think of <j>(k) as a chart on a small piece of X{k),
mapping it to U; (by cutting down the size of V we may assume {V — p)C\ X{k)
is connected—so <t>(k) maps to exactly one half-plane). If (W, \p) is another chart
around x & X — p then \p assigns to x either the same S2-value or the opposite
S2-value to that asigned by <>. Since the hypercomplex central Laurent series are
essentially Fueter mappings we see from the fundamental 'revolution principle'
(Lemma 1) that <l>(k) and </-(/:) are holomorphically related near x e A^A:) if the
S2-values coincided, and are anti-holomorphically related if the 52-values were
antipodal.

In any case X(k) has a conformal structure, which, by using charts at points of
p also, clearly extends to a conformal structure on all of X(k).

Now let us explain the local conformal identification of fibres. As for Fueter
manifolds, these come by using charts and rotating half-planes to fall on one
another. Let (V,<j>) be a 'small chart' on X with a 'small' image in 'R4, that is,
<t>(V) does not intersect any pair of opposite half-planes. In that case

for nearby values of k and k' will be a conformal identification of a piece of
X(k) with a piece of X(k'). Notice that if we use a different chart {W, 4>) the
identifications are still the same:

(12)

because the square-bracketed mappings cancel each other off by the revolution
principle.

Thus, a point xl e X(k) is identified with a point x2 e X(k') (k' near k)
precisely when the {/-values assigned to xx and x2 are the same via any small
chart containing both xl and x2 in its domain. It is obvious that X(k) can now
be conformally identified with X(k') (for A:' in a small neighbourhood of A: in
P 2 ) by extending these canonical identifications to p, the extension being the
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identity on p. (Since ^(A:) is compact there is no problem in using a finite
number of small hypercomplex charts to cover X(k), and thus get the conformal
mappings globally from all of X(k) to each X(k'), for k' sufficiently near to k.)

Since we have now got a canonical way to map the fibre X(k) onto X(k'), for
all k' in a small neighbourhood of k in P 2 , it is clear that we have local triviality;
and so p is a C00 fibre bundle.

The bundle cannot be globally trivial since a product Y X P 2 cannot be
orientable for any surface Y whatsoever. Since X - p is orientable we also see
that the fibre X{k) must be orientable since the local triviality of the bundle
makes X(k) X (small 2-disc) an open subset of the orientable X — p. This says
nothing, however yet, for orientability of the compact surface X(k) =
X(k) U p, (for example, a Klein bottle minus a circle can be an annulus). The
fibre homotopy exact sequence for p:

••• - , Wl( * - p) -» ffl(P
2) - »„ (* (* ) ) - » * „ ( * - p) -»

shows immediately that X(k) has at most two components.
To complete the proof of Theorem 2 we need to prove the rather subtle

assertions of part (c). We abstract this situation into the following topological
proposition.

PROPOSITION 1. Let X be a connected oriented closed smooth A-manifold with a
non-empty smooth closed 1-submanifold p such that there is a bundle projection p:
X - p -> P 2 , with fibre F. Suppose that for each H P 2 the closure X(k) in X of
the fibre p~l(k) = X(k) is X{k) U p, and is a closed 2-submanifold in X. Then

(i) p is 2-sided in X(k),
(ii) X( k) is orientable,

(iii) X( k) is connected.

Note: (ii) =» (i) of course.

PROOF. Since X and p are orientable, the normal bundle of p in X is orientable
and therefore trivial; so p has a closed product neighbourhood N homeomorphic
(~) to p X D3 in X. We may (either using the geometry of our hypercomplex X
or by topology) choose N so that p | X - int N is still a bundle projection. The
new fibre G is then a surface with boundary, int G « F.

If px(~ S1) is a component of p, and Mx = p : X Sz is the corresponding
component of dN, the restriction /> | Ml to P 2 is again a fibre bundle. The fibre
homotopy exact sequence says that the fibre of p\Ml has either 1 or 2
components—necessarily circles.
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[91 Compact hypercomplex manifolds 239

But, in fact the fibre must have 2 (circle) components because the total space of

any ^ - b u n d l e over P 2 can never be S 1 X S2 (~ Mx). (The same principle holds

for 5 1 X S" fibering over P " , any n > 2. The n = 6 case is needed for octonionic

manifolds. We are grateful to Dr. L. Noakes for supplying us with a proof of this

fact.)

Hence the fibre of p \ X — int JV, say G(k) above any t e P 2 , has boundary

Again by the homotopy exact sequence we see that TT^M-^) maps trivially to
irj(P2); therefore p\M1 factors through the double covering IT: S2 -> P 2 via a
map 6: Mx -» S2 which is itself a bundle map with fibre S1. Now, the only
^-bundle over S2 with total space homeomorphic to S1 X S2 is the trivial
bundle, so we may choose a homeomorphism hx: M1 -» Sl X S2 such that
8 = pr2° /ix and so that p\M1 = IT ° pr2° hx, (pr2 is a projection to the second
factor of course).

We make this choice of homeomorphism hj for each component p7 of p, and
clearly we can 'radially' extend the union of all the hj to a homeomorphism^//:
N -» p X D3, so that H(p) = p X {0} and p \ N - p is IT °pr2 ° H where pr2:
p X (D 3 — {0}) -» S2 projects onto the second factor and then normalizes.

We have therefore proved that p | N - p is bundle equivalent to a union of copies
of the obvious bundle S1 X (D3 - {0}) -» P 2 .

It follows that the closure in N of any fibre of p \ N — p is homeomorphic to
p X [ — 1,1], and hence that for any k e P 2 the circles p are two-sided in

j
{

We do not yet know that the annuli p X [ — 1,1] are attached to G{k) so as to
produce an orientable X(k), but this can now be derived as follows.

Note first that an orientation for a disc neighbourhood of k in P 2 determines a
transverse orientation of the normal bundle of G(k) in X—intN, and in
particular of dG(k) in dN. It will suffice to check that the orientations de-
termined in this way by IT °pr2. S1 X S2 -* P 2 on S1 X {a} and Sl X {-a}
(here {o,—o} = ir~l(k)) extend compatibly to S1 X 8, where 8 is the diameter
in R3 connecting a and — a.

Now, an orientation on the segment 8 must point inward at one end and
outwards at the other end, so it determines opposing transverse orientations about
a and —a. Conversely, since the covering involution of S2 over P 2 is orientation
reversing the transverse orientations we had induced at a and — a from a local
orientation around k e P 2 must again be opposite,—so they give rise to a
consistent orientation of the diameter 8. (It is crucial that we are dealing with
even dimensional projective spaces here!)

Thus, G(k) was orientable (being within the orientable X(k)), and we now see
that the orientation extends over the attached annuli, proving X( k) is orientable.

https://doi.org/10.1017/S1446788700029372 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029372


240 S. Nag, J. A. Hillman and B. Dat ta [ 1 o ]

We prove X(k) is connected by constructing another bundle over P 2 with
closed fibre by a process analogous both to surgery and to blowing-up. Let B be
the mapping cylinder of the covering it: S2 -» P 2 . Then B is a 3-manifold with
boundary S2 and it fibres over P 2 with fibre [ -1 ,1] . In fact B is homeomorphic
to a closed regular neighbourhood of P 2 in P 3 , and therefore to (P 3 - intD3).
Let W = (X - int N) U , p X B. Then W is orientable and fibres over P 2 with
fibre F = G U p X{- i ij P x [1> !]• Since W is orientable F is too (just as in the
proof for orientability of X(k)). We cannot straightaway identify F with X(k) =
F but from the construction we see that they have the same number of
components (and indeed F ~ F if and only if F is orientable, which we know it
is). _

To see that F, and hence X(k), is connected we note that B contains a loop
projecting to the non-trivial element in TT^P 2 ) . Therefore, since p + <f>, W also
has such a loop and it^W)-* itr(P

2) is surjective. By the fibre homotopy
sequence, therefore, F is connected.

This completes Proposition 1 and Theorem 2.
Our prime example of manifolds with hypercomplex structure we will describe

in the next:

PROPOSITION 2. Let G be torsion-free Fuchsian group operating on U; let Y be
the Riemann surface U/G, and fi = U U L U p be the full region of discontinuity
for G {on C). (Here L is the lower half-plane and p is the portion (possibly empty)
of fi on U U {oo}). Then X = XG = 'R" U p/Fn(G) is a manifold with (central)
hypercomplex structure, real set p being the ideal boundary of Y, and (with previous
terminology) X(k) = U/G U L/G = YU(-Y), and X(k) = Sl/G = the Schot-
tky double of Y.

PROOF. This is clear since if g(z) = (az + b)/(cz + d), g e G, (a
c
 b

d) e SL2(R)
then Fn(g)(V) = (aV + b)/(cV + d), V being H or O variable. Clearly these
give transitions in the allowed pseudogroup (expand as Laurent series around
-d/c).

Xc will be compact precisely when J2/G is compact.
For a finer description of compact hypercomplex manifolds we need to

understand the 'monodromy' of the local identifying maps between the fibers of
p; that is, if we take a composition of a finite chain of the identifying maps
between nearby fibres, say, X(k) -* X(k:) -> X(k2) - > • • • - » X(kn) -> X(k),
then what will the final conformal automorphism of X(k) look like? (The
identifications always extend to X(k) by the identity on p, and they always
preserve angles but not necesarily orientations.) X is assumed to be a compact
connected H(O) manifold in all that follows.
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LEMMA 3. The composition of any finite chain of the canonical maps between
nearby fibres of p always produces on any X(k) either the identity or a certain
canonical fixed-point free involution T(IC).

REMARK. T(/C) extends to X(k) by the identity on p, and in fact the proof
following shows that near p T(A:) is precisely quaternion (octonion) conjugation.
Thus, if p is non-empty then T(IC) is orientation reversing anti-conformal on the
connected compact Riemann surface X(k).

PROOF. Consider an equivalence relation ~ on X - p defined as follows:
x, y e X — p are ~ equivalent if there exists a finite sequence of points
xx = x, x2,..., xn = y such that each consecutive pair *,, xi+1 are in the (con-
nected) domain of some chart (Vt, <J>,) and the [/-element assigned by </>, to x, and
xi+1 coincide. This is clearly an equivalence relation.

Of course, if Vi is a small chart then xi ~ xi+1 exactly when the canonical
identification of fibres maps xj to xi+1. Thus ~ corresponds precisely to
compositions of several local identifying maps of the type (11).

We claim that if x ~ z then there exists a single hypercomplex chart (V,<p)
with x, z G V and [/-values coincident for x and z via <j>. This will follow if we
can fuse together charts and extend them ' in the S2-factor directions'; we achieve
this by applying the revolution principle.

To fix notations suppose x ~ y are in (T, 6) chart and y ~ z are in (W, \p)
chart, both being small charts and without loss of generality assume W D T is
connected, y e W C\ T oi course. Then let p(y) = k, so we may assume W C\T
n X(k) is a non-empty connected open subset of the fibre X(k). Define
extension of the 0-chart by

j 0 on T,
(13) ^ [
where 4<(k)(W C\ T C\ X(k)) = D <z U (upper half-plane).

Note, we have arranged 0(k)°\p(k)~l to be holomorphic on D c U (into U)
by replacing 6 by its negative if necesary (see paragraph preceding Theorem 2).
Then clearly 0eM will be in the hypercomplex atlas of X and its domain contains
x and z with same [/-value being assigned by 0ext to both points. We can thus
establish our claim by induction.

We can show that on any fibre X(k) the relation - identifies points in pairs,
—and this is the involutory automorphism r(k) of X(k) which we have in the
statement of Lemma 3.

In fact, let xx e X(k) be within a small chart (V, <j>) around it. Let ^ ( x j =
( J , « ) e ( / X S 2 = 'R 4. Thus k = P 2-class of o. Connect a to - a by a half-circle
y on S2. We claim that there exists a chart (W, <j>) which extends <f> and
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c R 4 intersects all the half-planes corresponding to points of y. If this
were not true there would be a first point ax on y (starting from a) which is not
included in any such chart. But by taking limits and using compactness we see
there is some point in X - p corresponding to (f, ax). We take any small chart
around this point and use the previous fusing of charts argument to extend <f> a
little further in the S^-direction; that is, ax cannot exist. It is not hard to see that
Oj cannot be — a either.

Thus, we will have a ('big') chart (V, </>) containing xx and also containing a
point x2 such that <j>(x2) = (f, — o). Thus xx - x2 (both on X(k)), and T(A:)
interchanges x1 and x2 on X(k). Because of the revolution principle a different
choice of charts makes no effect on the definition of r(k); the proof of this is
similar to the equations (12) in the proof of Theorem 2.

Lemma 3 is proved. Indeed, note that our y o n S 2 represents the non-trivial
element of ^ ( P 2 ) , and continuation of charts along y has led to the involution
r(k) on X(k). Continuation of charts along a y1 which represents the trivial
element of ^ ( P 2 ) would produce the identity identification on X(k). This
closely resembles a 'monodromy' map •nx(V

>2) -» Aut(X(k)).

LEMMA 4. If p is non-empty then the fibres X(k) must have two components, Y
and — Y, (mirror images of each other), each with ideal boundary p. X(k) must be
the Schottky double of Y (and hence connected), and r(k) is the canonical
reflection on the double.

PROOF. Consider any component A of X(k). r(k) ( = T say) maps components
to components, so, if r(A) n A is non-empty then r(A) = A.

But A must have pieces of p as its boundary since we proved X(k) = X(k)U p
was connected. Now, T acts as reflection near points of p, (remark following
Lemma 3), and this is impossible if T(A) = A. So there must be a component
distinct from A and all the assertions follow.

THEOREM 3. Let X be a connected closed hypercomplex manifold with real set p.
Then there is a natural C00 mapping

0: X-p^ YX P " " 2 , (n = 4,8)

which is the orientation double covering map; here Y = X(k)/r(k) is a connected
surface with a conformalstructure (fix any k e P"~2) .

/ / p is not empty then Y must be simply a component of the fibre X(k) and the
compact manifold X is isomorphic to the manifold Xc of Proposition 2 with
Y = U/G and X - p is isomorphic to Y X S"~2.
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ADDENDUM. If p is empty we may separate the cases (i) X(k) has 2-compo-
nents, (ii) X(k) is connected. In case (i) each component is a compact Riemann
surface Y, r(k) maps one component to the other and X is diffeomorphic to
YxSn~2. (If genus(7)>l then X is isomorphic to XG= 'W/Fn(G), as
before.) In case (ii) X(k) is a compact Riemann surface. If r(k) is orientation
preserving then Y = X(k)/r(k) is itself a compact Riemann surface and X is
diffeomorphic to Y X S"~2. If T(&) is orientation reversing then Y is a compact
non-orientable surface with conformal structure, and X is the orientation double
covering of Y X P"~2.

PROOF. The second-factor of the map /8 is our original fibre bundle p. Fix any
A:oeP2, and define Y = X(ko)/r(ko). We now take any x e X - p, say
x G X(k); identify X(k) with X(k0) by any chain of the canonical local
fibre-identifications. Then the image of x in X(k0) is well-defined when we go
modulo the 'monodromy' r(k0). This defines /? and shows it to be two-to-one,
and therefore a covering space. Since X - p is oriented, but Y X P 2 is never
orientable for any surface 7, we see fi must be the orientation double covering.
(Recall that any oriented covering space of a non-orientable manifold factors
through the orientation double covering.) Y is connected because X is.

The last statement of the theorem follows by pulling back the bundle p:
X - p -» P 2 over S2 and noting that the new total space X - p has two
components, since by Lemma 4, X(k0) = fibre of p has two components; (use
the exact homotopy sequence of the puUback bundle). So each component of X — p
must be a copy of X - p itself, and since X — p is a double covering of Y X S2

(by pulling back /?) we see that X - p = Y X S2.
In view of our previous results all the claims are now established without

difficulty.

COROLLARY 1. The only simply-connected compact manifolds which can allow
hypercomplex structure are S4 and S2 X S2 (for quaternionic); (Ss and S2 X S6

for octonionic).

PROOF. ir^X) = 0 implies w1(A
r — p) = 0. Then comparing /? with the double

covering 7 x S 2 - » y x P 2 shows X - p = Y X S2 for some surface Y. But
simple connectivity says ir^Y) = 0, and the only simply connected surfaces are U
or S2. Since p is a finite union of circles compactifying Y X S2 it must have
exactly one component for Y = U case and no components for Y = S2. The
results follow.
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REMARKS. We do not know whether S2 X S"~2 carries IH (or O) structure.
Our central quaternionic manifolds are extremely akin to, (but nevertheless

distinct from), the integrable almost quaternionic manifolds studied by
Marchiafava [5] and Salamon [6] et al.. Actually the derivatives of our transition
mappings (5) do not in general he in the group GL(1,H) = H*. Indeed, the
Jacobian of one of our coordinate transitions falls in H * only for <j>(z) - az + b,
(<j> as in (4)). See Datta-Nag [1]. Thus the hypercomplex manifolds which are the
concern of the present paper need not be integrable almost quaternionic mani-
folds—despite the marked similarity.

It has been proved, (see [5], [6]), that amongst the class of integrable almost
quaternionic manifolds the only compact simply-connected one is S4. The reader
may compare with this our corollary above.

As general references for the work of previous authors we quote [4], [5], [6], [7].

3. Higher dimensional Fueter analysis and associated Lie groups

Functions of several complex variables may also be subjected to a 'Fueter
transform' as below. Let <j> = ($i ,£2) : D -» C 2 be holomorphic from a domain
D c 'C 2 = {(zuz2) e C2: Imzj > 0, Imz2 > 0}. We define its Fueter trans-
form F<2)(<j>): Fn

(2)(D) - • R " X R " by

Ht,*2

where y} = ^ + ••• + x 2 _ 1 J , <j>j = ^ + iVj, j = 1,2. The domain Fn
(2)(D) c

'U2n = {points in U" X R" with yx > 0 and y2 > 0} is self evident.
As before, the F^2)(<j>) mappings can be described geometrically from <j> by

revolving the 'C 2 on which </> was defined around the pair of real directions. Thus
we do get new pseudogroups and a corresponding theorem that a compact "2nd-
order" Fueter In-manifold will be F^-isomorphic to the product of a compact
2c-dimensional complex manifold with Sn~2 X S"~2. Unfortunately however the
Fn

<2)(</>), n = 4,8, maps do not occur as power series in two HI or O variables even
when (<j>v<l>2) has formally-real power series expansion in (zv z2). (With k > 2
complex variables the situation is of course exactly the same.)

We have been able to characterise the matrices which are Jacobians of F(k\<t>)
mappings. We can therefore define an ahnost-Fueter^*' structure on a nk-
dimensional C°° manifold as reduction of the structure group of the tangent
bundle to these matrix groups of Jacobians. The invertible Jacobians form explicit
families of (2k2 + k)-dimensional Lie subgroups of GL(nk, R). All groups in the
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family are mutually isomorphic and the family is parametrised by a k-fo\d
product of spheres S"~2 X ••• XS"~2.

The description of non-compact Fueter or hypercomplex manifolds, and also
several-variables hypercomplex manifolds, remain unknown to us.

More details of these matters will appear later.

Added in Proof

An application of the Fueter theory developed here will appear in a forthcom-
ing paper by B. Datta and S. Nag in the Bulletin of the London Mathematical
Society entitled 'Zero sets of quaternionic and octonionic analytic functions with
central coefficients'.
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