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We study the interaction between a pair of particles suspended in a uniform oscillatory
flow. The time-averaged behaviour of particles under these conditions, which arises from
an interplay of inertial and viscous forces, is explored through a theoretical framework
relying on small oscillation amplitude. We approximate the oscillatory flow in terms of
dual multipole expansions, with which we compute time-averaged interaction forces using
the Lorentz reciprocal theorem. We then develop analytic approximations for the force in
the limit where Stokes layers surrounding the particles do not overlap. Finally, we show
how the same formalism can be generalised to the situation where the particles are free to
oscillate and drift in response to the applied flow. The results are shown to be in agreement
with existing numerical data for forces and particle velocities. The theory thus provides an
efficient means to quantify nonlinear particle interactions in oscillatory flows.
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1. Introduction
Particles in oscillatory flows and acoustic fields exhibit complex behaviour due to an
interplay between inertial and viscous effects. Fluid oscillations around particles lead
to time-averaged flows, known as streaming (Riley 2001). When the flow is spatially
non-uniform, particles may also experience time-averaged secondary radiation forces
(King 1934; Gor’kov 1962; Settnes & Bruus 2012), which is a phenomenon distinct from
streaming but ultimately arising from fluid inertia. The combination of these effects can
lead to a steady drift of suspended particles over many oscillation cycles.

These phenomena have been used for different applications, such as particle sorting
(Friend & Yeo 2011) and focusing in microfluidics (Mutlu, Edd & Toner 2018; Rufo
et al. 2022; Yang et al. 2022). They are also useful in the levitation of particles and
droplets (Foresti & Poulikakos 2014; Andrade, Marzo & Adamowski 2020). The levitation
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of particles also makes it easier to observe phenomena which are hard to study due to
gravity; for example, Lee et al. (2018) use acoustic levitation to study electrostatic charging
of fine particles due to collisions. Radiation forces have been used in the non-contact
extraction and manipulation of droplets from liquid–liquid interfaces (Lirette, Mobley &
Zhang 2019).

Many examples involve multiple particles, and interactions between these particles are
often central to the observed behaviours. Experimental studies show that suspensions of
particles exposed to oscillations demonstrate collective motion, organising into chains
(Klotsa et al. 2009; van Overveld, Clercx & Duran-Matute 2023), lattices with long-range
attraction and short-range repulsion (Voth et al. 2002), or clusters (Sazhin et al. 2008; Lim
et al. 2019).

While reduced-order models have been proposed (Voth et al. 2002; van Overveld et al.
2024), a quantitative understanding from first principles remains challenging as these
phenomena are controlled by nonlinear inertial flow features across multiple time and
length scales. Recent computational work on the topic has focused on understanding the
interactions between a pair of particles. Direct numerical simulations (DNS) resolving
all length and time scales have provided insight into particle interactions (Klotsa et al.
2007; van Overveld et al. 2022a,b; Kleischmann et al. 2024), but can be computationally
expensive. An alternative approach is to develop a perturbation expansion in small
oscillation amplitudes. Although the reduced system of equations still typically requires
numerical solutions (Ingber & Vorobieff 2013; Fabre et al. 2017), it yields insight into
scaling behaviours and symmetries of the time-averaged dynamics.

The focus of the present article is to gain analytic insight into the interactions of two
particles in oscillatory flow, filling the gap between past experimental and computational
studies. We build on recent progress on the dynamics of single particles in oscillatory
flows, accounting for both inertial and viscous effects (Zhang & Marston 2014; Agarwal
et al. 2021, 2024; Zhang, Minten & Rallabandi 2024). We focus on the regime of small
oscillation amplitudes, which allows us to split the problem into fast (oscillatory) and slow
(time-averaged) scales (§ 3). Using this decomposition, we develop a theory that combines
multipole expansions for the oscillatory flow and the Lorentz reciprocal theorem (§§ 4
and 5). Together, these techniques lead to a highly efficient semi-analytic framework for
the time-averaged interaction forces (§ 6), which we find to be in good agreement with
numerical solutions of the small-amplitude scheme (Fabre et al. 2017). Our framework
yields fully analytic results in the limit where the particles are sufficiently far apart so
that their Stokes boundary layers do not overlap, providing quantitative insights into the
scaling of forces with the inter-particle distance and oscillatory Stokes number. Section 7
extends the framework to the time-averaged drift velocity of freely suspended particles,
finding good agreement with the DNS of Kleischmann et al. (2024). We discuss possible
extensions of the framework before concluding in § 8.

2. Problem set-up
We consider a pair of identical spherical particles of radius a, suspended in Newtonian
fluid of density ρ and viscosity μ. The background flow (defined in the absence of the
particles) oscillates with a spatially uniform velocity V∞(t) = V ∞e cos (ωt), where V ∞
is the maximum speed of the flow, e is the unit vector along the axis of flow and ω is the
angular frequency of oscillation. The centres of the particles are separated by a distance
d > 2a and lie on an axis defined by the unit vector e‖ pointing from particle 1 to particle 2,
and oriented at an angle θ relative to the flow axis e (figure 1). We also define a unit vector
e⊥ perpendicular to the particle axis in the e-e‖ plane. The presence of the particles leads
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Figure 1. Sketch showing two identical particles suspended in a uniform ambient oscillatory flow V∞(t).
Hydrodynamic interactions between the particles, due to advective nonlinearities, drive secondary time-
averaged forces and drift velocities of the particles.

to oscillatory flow gradients, which in turn excite secondary ‘streaming’ flows with non-
zero time average due to inertial effects. These inertial flows exert time-averaged forces on
the particles, which are the quantities of interest here.

In most practical settings, such a pair of particles would be free to oscillate in response
to the flow. In this case, the time-averaged inertial forces are balanced by viscous drag,
leading to a drift of the particles over many oscillations. To understand the practically
important case of mobile particles, it is convenient to first consider particles that are held
stationary. We will show later that the case of mobile particles can be understood through
a change in reference frame as long as the particles have identical properties.

We decompose the flow around the particles v(x, t) into the ambient contribution
V∞(t) and a disturbance contribution vd(x, t), so that v(x, t) = V∞(t) + vd(x, t). The
amplitude of the flow oscillation relative to the particle radius is defined by ε = V ∞/(aω).
The disturbance velocity is characterised by an oscillatory Stokes number S = ωa2/ν,
which is the measure of the ratio of inertial to viscous forces over an oscillation period.
The vorticity of the oscillatory flow is confined to Stokes layers of dimensionless thickness
δ = √

2/S (defined in units of particle radius) around each particle, where inertial and
viscous effects are comparable.

We use the particle radius a as a characteristic length, the inverse angular frequency ω−1

as characteristic time and the ambient flow speed V ∞ = εaω as the characteristic velocity.
The flow is governed by the dimensionless Navier–Stokes equations

S
(

∂v

∂t
+ εv · ∇v

)
= ∇ · σ , ∇ · v = 0, with (2.1a)

v|S(1) = v|S(2) = 0, (2.1b)
v(|x| → ∞, t) = e cos t = (e‖ cos θ + e⊥ sin θ) cos t, (2.1c)
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where S(1) and S(2) represent the surfaces of particles 1 and 2, respectively, and
σ = −p I + (∇v + ∇vT) is the dimensionless Newtonian stress tensor (rescaled with
μV ∞/a), p(x, t) being the dimensionless pressure. The goal of the present study is to
calculate the time-averaged interaction forces between particles held stationary, and later,
time-averaged drift velocities of freely suspended particles.

3. Small-amplitude theory
The full nonlinear flow is complicated and requires numerical methods to resolve. In
typical applications (Voth et al. 2002; Klotsa et al. 2009), the dimensionless amplitude of
oscillation ε is small. To gain analytic insight in this limit, we perform a small-amplitude
expansion with the parameter ε

(v, σ ) = (v1, σ 1) + ε (v2, σ 2) + O
(
ε2

)
. (3.1)

The primary flow v1(x, t) oscillates with a frequency ω and scales with the applied
ambient flow. The secondary flow v2(x, t) involves a combination of a time-dependent
component (with frequency 2ω) and a steady (or time-averaged) component. We are
ultimately interested in the time-averaged flow, since it is associated with a time-averaged
force on the particles. Here and below, we use subscripts to indicate orders of ε, and
superscripts to identify particles.

Substituting the above expansion into (2.1) and separating orders of ε, we obtain the
governing equations for the primary and secondary flows. The primary flow satisfies

S ∂v1

∂t
= ∇ · σ 1, ∇ · v1 = 0, with (3.2a)

v1|S(1) = v1|S(2) = 0, v1(|x| → ∞, t) = (e‖ cos θ + e⊥ sin θ) cos t. (3.2b)
Averaging (2.1) over an oscillation cycle, we see that the secondary flow is governed by

∇ · 〈σ 2 − Sv1v1〉 = 0, ∇ · 〈v2〉 = 0, with (3.3a)
〈v2〉 |S(1) = 〈v2〉 |S(2) = 〈v2〉 (|x| → ∞) = 0, (3.3b)

where angle brackets define a time average over an oscillation according to 〈g〉(x) =
(2π)−1 ∫ 2π

0 g(x, t)dt .
Since there is no net force on the system and the particles are identical, the time-averaged

force on each particle is identical in magnitude but opposite in direction to the other
particle; a more careful justification of this fact is given in Appendix A. Using the formu-
lation of Doinikov (1994), the time-averaged force on particle 1, non-dimensionalised with
μaεV ∞, is

〈F〉 = 〈F〉(1) = − 〈F〉(2) =
∫

S(1)

n · 〈σ 2 − Sv1v1〉 dS. (3.4)

The ambient flow is uniform and oscillatory, and thus makes no contribution to the time-
averaged force. Consequently, we replace the kernel of (3.4) by the disturbance stress
〈σ 2 − Sv1v1〉d , where f d = f − f ∞ denotes the disturbance of any flow quantity f , with
f ∞ representing that quantity in the absence of the particles.

4. Reciprocal theorem for the time-averaged force
The integrand in (3.4) involves the secondary time-averaged stress 〈σ 2〉 as well as the
Reynolds stress due to the primary flow. Even in the perturbation framework, the linear
equations (3.2) and (3.3) must be solved numerically (this was the approach adopted
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by Fabre et al. (2017)), partly due to the complicated two-sphere geometry, and partly
due to the potentially large separation of length scales between δa, a and d. While the
primary flow yields to analytic approximation (§ 5), the secondary flow problem remains
analytically intractable as it involves a body force that inherits the structure of v1.

In order to gain insight into the time-averaged force without solving the secondary
problem, we utilise the Lorentz reciprocal theorem (Stone & Samuel 1996; Masoud &
Stone 2019). We introduce an auxiliary flow (v̂, σ̂ ), which we define as the steady Stokes
flow around two spheres translating with velocity ±V̂ . These fields satisfy

∇ · σ̂ = 0, ∇ · v̂ = 0, subject to v̂|S(1) = −v̂|S(2) = V̂ , v̂|r→∞ = 0. (4.1)

Combining the governing equations for the secondary time-averaged flow (3.3) (as noted
earlier, we only consider the disturbance contribution) and the auxiliary flow (4.1), we
construct a symmetry relation (Zhang et al. 2024)

∇ · 〈σ 2 − Sv1v1〉d · v̂ = ∇ · σ̂ · 〈v2〉d , (4.2)

which we then recast as

∇ · [〈σ 2 − Sv1v1〉d · v̂
] − 〈σ 2 − Sv1v1〉d : ∇v̂ = ∇ · (

σ̂ · 〈v2〉d ) − σ̂ : ∇ 〈v2〉d . (4.3)

Integrating over the fluid volume V f and applying Gauss’s theorem yields∫
S(1)+S(2)+S∞

n · 〈σ 2 − Sv1v1〉d · v̂dS −
∫

V f

〈Sv1v1〉d : ∇v̂ dV

=
∫

S(1)+S(2)+S∞
n · σ̂ · 〈v2〉d dS,

(4.4)

where n is the fluid-facing normal vector.
The integrals at the bounding surface at infinity, S∞, vanish since the secondary fields

only contain disturbance quantities that decay rapidly in the far field. Noting that the
auxiliary velocity is constant on the particle surfaces and using (3.4), the first term on the
left-hand side of (4.4) simplifies to 〈F〉(1) · V̂ + 〈F〉(2) · (−V̂ ) = 2〈F〉 · V̂ . Similarly, the
term on the right simplifies to 2F̂ · 〈V 2〉, where F̂ = ∫

S(1) n · σ̂ dS is the force on particle
1 due to the auxiliary flow (the auxiliary force on particle 2 is equal and opposite), and
〈V 2〉 is the time-averaged velocity of particle 1. Note that the time-averaged velocity of
particle 2 is equal and opposite due to symmetry; see Appendix A. We note that 〈V 2〉 = 0
for stationary particles, but we retain it in the interest of generality (later we will relax the
assumption of stationary particles). Thus, we obtain

〈F〉 · V̂ − F̂ · 〈V 2〉 = S
2

∫
V f

〈v1v1〉d : ∇v̂ dV . (4.5)

The above result allows for the computation of the secondary force on either particle along
an arbitrary direction V̂ , without requiring a solution to the secondary flow. However, the
integrand in (4.5) decays slowly at large distances from the particles, making numerical
evaluation (and later, analytic approximations) inconvenient. We therefore recast this
integrand in terms of the primary vorticity ω1 = ∇ × v1, which decays exponentially
away from the particles on length scales of O(δ). To this end, we write the integrand
in (4.5) according to the identity v1v1 : ∇v̂ = ∇ · (v1v1 · v̂) − (v1 · ∇v1) · v̂ − v1 · v̂
(∇ · v1), where the last term is zero due to incompressibility. We then use the identity v1 ·
∇v1 = (1/2)∇|v2

1| − (v1 × ω1). Substituting these relations into (4.5) and using Gauss’s

1018 A38-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10510


X. Zhang and B. Rallabandi

theorem, we obtain

〈F〉 · V̂ − F̂ · 〈V 2〉 = S
2

[∫
V f

〈v1 × ω1〉d · v̂ dV −
∫

S(1)+S(2)

n ·
〈
v1v1 − |v1|2

2
I
〉d

· v̂ dS

]
.

(4.6)

The surface integrals go to zero due to the no-slip condition, leading to

〈F〉 · V̂ − F̂ · 〈V 2〉 = S
2

∫
V f

(v1 × ω1) · v̂ dV . (4.7)

Equation (4.7) is an exact writing of (3.4). It directly involves the primary vorticity,
which is confined to near-surface regions around the particles (Stokes boundary layers) of
thickness δ. Outside these regions, the vorticity – and thus the integrand – is exponentially
small, making (4.7) much more computationally efficient than (4.5). Later we will see
that the ‘localisation’ of the integrand to the Stokes layer makes the integral amenable to
analytic approximations.

5. Primary and auxiliary flows: dual multipole expansions
We have shown that the only pieces of information needed to calculate the time-averaged
force are the primary and auxiliary flow. Since exact solutions to these problems are
not generally possible in two-sphere geometries, we develop approximations using dual
multipole expansions.

5.1. Primary flow
Equation (3.2) governing the primary flow is linear, and its temporal structure is set by
the oscillatory far field. Noting that the equation is separable in time, we represent all
primary flow quantities as complex phasors ∝ eit , the real parts of which represent the
solution to (3.2); see e.g. Agarwal et al. (2021) and Zhang et al. (2024). We write the
primary velocity as a superposition of the ambient and disturbance flows created by each
particle v1 = V∞

1 + v
d(1)
1 + v

d(2)
1 . We approximate the disturbance flow of each particle by

a truncated multipole expansion, retaining terms corresponding to translating and straining
modes of flow.

To construct a multipole solution, we view each particle as being immersed an ‘effective’
oscillatory background flow that is the combination of the ambient flow V∞ and the
disturbance created by the other particle (Pozrikidis 1992; Kim & Karrila 1993). The local
background flow can be approximated by a Taylor expansion about the particle’s centre. At
linear order, the effective oscillatory background around particle j is (V( j) + r j · E( j))eit ,
where r j = x − x j is the position vector relative to the centre of particle j . The quantities
V( j) and E( j) are the ‘effective’ velocity and rate of strain (symmetric and traceless) felt
locally by the particle. The particle responds to this background by exciting a disturbance
flow, which has the general structure (Agarwal et al. 2024; Zhang et al. 2024)

v
d( j)
1 (x, t) =

(
D(r j , λ) ·V( j) + Q(r j , λ) : E( j) + . . .

)
eit , (5.1)

where λ= √
iS = (1 + i)/δ. Defining R = λr , the dipole D and quadrupole Q tensor

fields are solutions of (3.2), given by (Zhang et al. 2024)
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D(r, λ) = d1

[
I

r3 − 3
r r
r5

]

+ d2

[
e−R

(
1
R

+ 1
R2 + 1

R3

)
I − e−R

(
1
R

+ 3
R2 + 3

R3

)
r r
r2

]
,

(5.2a)

Q(r, λ) = q1

[
6

I r
r5 − 15

r r r
r7

]

+ q2

[
e−R

(
1 + 3

R
+ 6

R2 + 6
R3

)
I r
r2 − e−R

(
1 + 6

R
+ 15

R2 + 15
R3

)
r r r
r4

]
,

(5.2b)

with coefficients

d1 = −3 + 3λ+ λ2

2λ2 , d2 = 3eλλ

2
, q1 = 15 + 15λ+ 6λ2 + λ3

9λ2(1 + λ) , q2 = − 5eλλ

3(1 + λ) , (5.3)

chosen to satisfy no slip on S( j).
As noted earlier, the ‘effective’ local velocity and strain rate V( j) and E( j) felt by particle

j are the combined result of the oscillating background flow and the disturbance created
by the other particle. We thus obtain the relations

V(1) =V∞
1 + v

d(2)
1 (x1), (5.4a)

V(2) =V∞
1 + v

d(1)
1 (x2), (5.4b)

where represents the symmetric and traceless part of a rank-2 tensor T . Equation (5.4)
is a linear system of equations for the effective quantities V( j) and E( j), and can be solved
either analytically or numerically for any configuration of the particles. On solving for V( j)

and E( j), the primary flow is fully determined. We then use (5.1) to calculate the primary
vorticity ω1. We note that we have neglected contributions due to the antisymmetric part of
the velocity gradient tensor, since these terms decay exponentially away from the particles
on length scales of δ.

5.2. Auxiliary flow multipole expansion
The auxiliary flow is constructed similarly to the primary flow using a multipole
expansion. We decompose the auxiliary velocity as a superposition of disturbance flows
created by each particle v̂ = v̂

d(1) + v̂
d(2). A particle j translating with velocity V̂

( j)

exposed to a linear flow (V̂ ( j) + r j · Ê( j)
) produces a disturbance flow

v̂
( j) = D̂(r) ·

(
V̂

( j) − V̂( j)
)

+ Q̂(r) : Ê( j) + · · · , (5.5)

where the tensor fields D̂(r) and Q̂(r) are (Leal 2007)

D̂(r) = 3
4

[(
I
r

+ r r
r3

)
+ 1

3

(
I

r3 − 3r r
r5

)]
, (5.6a)

Q̂(r) = −5
2

[
r r
r5 + 1

5

(
I

r5 − 5
r r
r7

)]
r. (5.6b)
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(a) (b)

V̂

V̂

−V̂

−V̂

v̂(x)
v̂(x)

Figure 2. Auxiliary flow: particles translating with opposite velocities ±V̂ . (a) Particles moving towards each
other. (b) Particles moving normal to their line of centres.

The effective velocity V̂( j)
and rate of strain Ê( j)

are due to the disturbance created from
the other particle evaluated at the centre of particle j . We also include Faxén corrections
as is standard in particle hydrodynamics in Stokes flows, making use of standard results
for spheres (Batchelor & Green 1972). Thus, the effective velocities and rates of strain are
governed by (Durlofsky, Brady & Bossis 1987; Brady & Bossis 1988)

V̂(1) =
(

1 + 1
6
∇2

)
v̂

d(2)
(x1), (5.7a)

V̂(2) =
(

1 + 1
6
∇2

)
v̂

d(1)
(x2), (5.7b)

∇

∇

It is useful to note that −6πμa(V̂
( j) − V̂( j)

) and (20π/3)μa3Ê( j)
are, respectively,

the force and stresslet exerted by the auxiliary flow on the particle. Similarly to the

primary flow, we solve the linear system (5.7) to calculate the effective quantities V̂( j)
and

Ê( j)
, thereby determining the auxiliary flow. There are two auxiliary flow configurations

of interest: particles moving towards each other, and particles moving normal to their
connecting axis in opposite directions (figure 2). These configurations, respectively, let
us calculate components of 〈F〉 in the e‖ and e⊥ directions, as we will discuss in the
following section.

6. Time-averaged forces on stationary particles

6.1. Calculation of the force
We first consider fixed particles (〈V 2〉 = 0) and compute the time-averaged forces. In § 7
we calculate time-averaged drift velocities of freely suspended particles. Both primary and
auxiliary flows are now known up to the level of force and mass dipoles and depend on the
parameters S , D = d/a, and θ . We substitute these fields into the expression (4.7), where
all quantities in the integrand are now analytically known. We execute the volume integral
numerically since the fluid volume has a somewhat complicated geometry. However, since
the primary vorticity decays exponentially outside Stokes layers, the domain of integration
only needs to be a few multiples of the Stokes layer thickness δ to achieve convergence.
This procedure yields the projection of 〈F〉 along an arbitrarily chosen direction V̂ .
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To identify the general structure of the force, we appeal to tensor symmetries. The
force depends on the ambient velocity V∞ (which in dimensionless units is just e), the
unit vector e‖ connecting the particles, the oscillatory Stokes number S and the distance
D. Furthermore, the secondary flow is governed by a linear system (3.3), subject to
the body force ∝ ∇ · 〈v1v1〉. As we have already seen v1(x, t) is linear in the ambient
oscillatory flow V∞, so the body force in (3.3) is quadratic in V∞. It follows directly from
the linearity of (3.3) that the time-averaged secondary force is quadratic in oscillatory
velocity V∞ = V ∞e. The most general expression for a secondary force that satisfies this
constraint is (restoring dimensions and using an inertial scale)

〈F〉 = ρ(V ∞)2a2[α (e · e) e‖ + β(e · e‖)2e‖ + γ (e · e‖)e
]
, (6.1)

where α, β and γ are scalar functions of D and S . We substitute e = e‖ cos θ + e⊥ sin θ

to recast the above expression in terms of θ , finding

〈F〉 = ρ(V ∞)2a2[FAA cos2 θ e‖ + FTT sin2 θ e‖ + FAT sin θ cos θ e⊥
]
, (6.2)

where FAA = (α + β + γ ), FTT = α, and FAT = γ (all functions of S and D). Equations
(6.1) and (6.2), obtained here through straightforward tensorial symmetries, are identical
to the result obtained by Fabre et al. (2017) through more detailed arguments involving
the spatial structure of the secondary flow field. The AA contribution is quadratic in the
axial component of the ambient flow (cos θ ), the T T contribution is quadratic in the
transverse velocity component (sin θ ), while the AT contribution involves a product of
axial and transverse velocity components. We observe that FAA and FTT contributions are
both associated with forces along the axis connecting the particle (positive values indicate
attraction), while the FAT term is associated with “reorienting” forces transverse to the
connecting axis.

To extract the F coefficients from (4.7), we fix the particle orientation and make specific
choices of θ (which sets the ambient flow orientation e) and the auxiliary velocity V̂ . For
example, picking θ = 0 and V̂ = e‖ and comparing with (6.2) leads to FAA. Choosing
θ = π/2 for the same auxiliary flow yields FTT, whereas picking θ = π/4 and V̂ = e⊥
determines FAT.

With these three combinations we identify all three F coefficients for any D and S . We
plot them in figure 3 against D for different S . The results of our semi-analytic theory are
shown as solid curves, while the results of Fabre et al. (2017), which involve numerical
solutions of both primary and secondary flows, are indicated as symbols. The present
results are in very good agreement with those of Fabre et al. (2017) for all separation
distances, despite the fact that we truncated the multipole expansion (formally accurate at
large D) at just two terms for both the primary and auxiliary flows. The two-term theory
is essentially indistinguishable from the numerical solutions for D � 4 (corresponding to
one diameter of surface separation), and the agreement remains reasonably accurate down
to contact (D = 2).

In figure 3(a,b), positive values represent attractive forces while negative values
represent repulsion. As we can see from the plots, the direction of the force is determined
by a combination of distance, oscillatory Stokes number and configuration. In general, the
magnitude of the force drops as distance increases. For both very large and very small S
values, the forces are either attractive or repulsive regardless of the distance. However, for
intermediate S values (e.g. S = 5; yellow curves), there is a sign change in both the axial
and transverse configurations as we move along the distance axis, indicating a reversal
in the corresponding force. The locations of the force reversal constitute equilibrium
points along either axial or transverse directions. This equilibrium point is unstable when

1018 A38-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10510


X. Zhang and B. Rallabandi

1.4

1.2

1.0

0.8

0.6

0.4

0.2

2 3 4

D

F A
A

5 6 2 3 4

D
5 6 2 3 4

D
5 6

−0.2

−0.4

0

(a)
0.4 2.5

S = 0.3
S = 1
S = 3
S = 8
S = 15
S = 30
S = 100

2.0

1.5

1.0

0.5

0

0.2

0

−0.2

−0.4

F T
T

F A
T

−0.8

−1.0

−0.6

(b) (c)

Figure 3. Comparison of time-averaged forces in all configurations – (a) axial (AA), (b) transverse (AT ), (c)
reorienting (AT ) – showing the numerical calculations of Fabre et al. (2017) (symbols) and the present semi-
analytic theory (solid) for different distances D and oscillatory Stokes numbers S . Each curve corresponds to
a single value of S; curves and circles which share the same colour are of the same value of S .

particles are aligned along the oscillation axis, while it is stable for particles aligned
transverse to the oscillation axis. For moderately large values of S (between around 5
and 15) the equilibrium point moves towards smaller D, where the two-term multipole
theory is less accurate.

The force also shows significant variation with S at fixed distance. For example, the
axial configuration in figure 3 shows that the force starts attractive for small S , but flips
sign and becomes repulsive at large S . For large S , all the curves appear to approach an
‘envelope’ curve, deviating from it only at small D.

Figure 3(c) shows the ‘reorienting’ component of the force, which is positive for all
S for small to moderate D. At larger D, FAT decays rapidly while also changing sign,
although this reversal is rather subtle. From (6.2) we see that positive FAT corresponds
to forces tending to reorient the particles into an orientation that is transverse to the
oscillation axis.

6.2. Analytic approximations for D � δ

The advantage of the formulation (4.7) is that it allows us to gain analytic insight
into the behaviour of the force. We focus on the limit of large separation between the
particles (D � 1) and further consider non-overlapping Stokes layers (D � δ, or D2S �
1). Recalling (4.7), the force integral needs three inputs

v1 = V∞ + v
d(1)
1 + v

d(2)
1 , (6.3a)

ω1 = ω
d(1)
1 + ω

d(2)
1 , and (6.3b)

v̂ = v̂
d(1) + v̂

d(2)
. (6.3c)

The oscillatory vorticity decays exponentially outside Stokes layers of thickness δ around
each particle. Consequently, the integral in (4.7) splits into two ‘localised’ integrals around

1018 A38-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10510


Journal of Fluid Mechanics

2.0 250

200

150

100

50

−50

0

(a) (b)

1.5

1.0

0.5A2 A4

A2AA

A4AA

−A4AT

(27/80) π (1 − 2δ) −(1/350) π (1023 + 3177δ)
−0.5

−1.0

0 0.5

δ

0.3501 1.0 1.5 0 0.5

δ

1.0 1.5 2.0

0

Figure 4. Analytic force coefficients A2 and A4 with respect to δ = √
2/S . Panel (a) shows A2AA and its

asymptote for large δ. At δ ≈ 0.3501, A2AA changes sign. Panel (b) shows A4AA and −A4AT (both are nearly
identical, note that A4AT = −A4AA − (9/4)A2AA) and their asymptote for small δ.

each particle. We take advantage of the symmetry to evaluate the integral in the volume
surrounding just one of the particles; the integral in the volume surrounding the other
particle is identical. To perform the integral centred at particle 1, we approximate the
primary disturbance and auxiliary velocity fields created by particle 2, vd(2) and v̂

d(2), by
a Taylor expansion around the centre of particle 1, retaining terms up to O(D−4). Since
the vorticity decays exponentially, we do not need to involve ωd(2) in the integral around
particle 1 in the regime where Stokes layers do not overlap.

With these approximations, we perform the integral in spherical coordinates around
particle 1 using Mathematica. This yields analytic expressions for the three F components
in (6.2), valid in the limit D � 1, D � S−1/2. These expressions take the general shape

Fi = A2i

D2 + A3i

D3 + A4i

D4 + O
(
D−5), (6.4)

where i denotes AA, T T or AT , and the Ani coefficients (9 in total) depend only
on S . Detailed expressions for these coefficients are in the supplemental Mathematica
file. We find that the coefficients are interrelated. In particular, A3i = (3/2)A2i for all
configurations. The AA and T T coefficients have similar shapes but opposite signs,
specifically AiT T = −(1/2)Ai AA for i = {1, 2, 3}. We also find that A2AT = A3AT = 0,
and A4AT = −(A4AA − (9/4)A2AA). Introducing the shorthand notation A2 = A2AA and
A4 = A4AA, (6.4) therefore simplifies as

FAA = A2

D2

(
1 + 3

2D

)
+ A4

D4 , (6.5a)

FTT = −1
2

FAA = − A2

2D2

(
1 + 3

2D

)
− A4

2D4 , (6.5b)

FAT = A4AT

D4 = −
A4 − 9

4
A2

D4 . (6.5c)

The simplified formulation (6.5) involves only two distinct coefficients, plotted in figure 4.
We see that all A coefficients reverse sign with S . We also see that A4AA is nearly identical
to −A4AT as their difference scales with A2, which is much smaller than A4 (figure 4).

The leading contribution scales as D−2. We interpret it as the drag force on a
particle held fixed in the far-field streaming flow created by oscillations around the
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Figure 5. Comparison between the results of the semi-analytic calculations (symbols) and the analytic
expression (6.5) (curves). Solid lines and filled circles represent positive values, while dashed lines and open
circles represent negative values.

other particle (Li et al. 2023). The (1 + 3/2D) correction factor is due to hydrodynamic
interactions between approaching particles in viscous flows; see (Brenner 1961; Rallabandi
et al. 2017). The D−4 terms are more complicated, and arise from a combination of
(i) Faxén corrections and hydrodynamic interactions due to particles suspended in the
streaming field, and (ii) a generalisation of secondary radiation forces (accounting for
both viscous and inertial contributions) due to a product of the oscillatory flow velocity
(dominated by the ambient oscillation) and its gradient (∝ D−4) felt by each particle
(Zhang et al. 2024).

Figure 5 shows the analytical large-D results obtained from (6.5) (curves) against
the semi-analytic calculations (symbols). Positive values are indicated as solid curves
and filled symbols, while negative values are indicated as dashed curves and open
symbols. We see that the analytic theory reproduces the calculations for large D with
quantitative precision. Forces along the axis connecting the particles (attraction/repulsion)
decay as D−2, while the force normal to the axis (FAT) decays more quickly
as D−4.

From figure 4, we can also get a sense of how the force changes sign. At large D, the
A2 terms dominate, so the reversal of sign of the force is associated with the change in
sign of A2, which occurs at δ ≈ 0.3501 (S ≈ 16.317). Notably, this is the same value of S
reported by Li et al. (2023) at which the streaming flow due to oscillations around a single
sphere reverses direction in the far field. The agreement of the predicted force reversal
with the flow reversal of Li et al. (2023) indicates that for sufficiently large separations,
the time-averaged force on one particle is a direct consequence of the streaming due to
the other particle. We note that A4 is approximately two orders of magnitude greater than
A2, so even though the streaming term of (6.5) ∝ A2 D−2 is longer ranged for large D,
the A4 D−4 term due to radiation forces can be numerically larger at moderate distances.
The crossover into the streaming-dominated regime occurs when D � |A4/A2|1/2. For
large δ (small S), we find the asymptotic behaviour A2 ∼ (27/80)π(1 − 2δ), whereas in
the inviscid limit δ → 0 (S → ∞), A2 approaches zero. By contrast, the A4 coefficient
asymptotes to −(1/350)π(1023 + 3177δ) at small δ. Notably, A4 does not vanish as δ → 0
and thus becomes the leading term in this limit.

For smaller distances D = O(1), the analytic theory is strained as the Taylor and
multipole expansions are less accurate, and because the Stokes layers are more likely
to overlap. It nonetheless produces useful insights, particularly at large S . Comparisons
between the analytic theory (curves) and the computations of Fabre et al. (2017) (symbols)
are shown for D between 2 and 6 in figure 6. Since the theory is only valid for D � δ, it
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Figure 6. Comparison between the numerical calculations of Fabre et al. (2017) (circles) and the analytic result
(6.5) (solid curves) for moderate separations D. As expected, the agreement becomes better for S � 1 (δ � 1),
where the Stokes layers do not overlap. The dashed curve is the limit δ = 0, where the D−4 term is dominant.

becomes restricted to δ � 1 (or S � 1) when separation distances become comparable to
the particle radius (D = O(1)). The theoretical FAA and FTT coefficients corroborate this
expectation, becoming more accurate at large S (figure 6). In the inviscid limit S → ∞,
the A2 contribution vanishes while the A4 contribution survives. The dashed curves in
figure 6(a, b) represent this limit of the theory, which appears to approximately define an
envelope of the data. The data ‘peel off’ from this envelope at different D (at smaller D
for larger S), which we expect is the result of overlapping Stokes layers. It is interesting to
note that the analytic theory captures that transverse force contribution FAT for large S all
the way down to contact, while it is somewhat less accurate for smaller S .

7. Freely suspended particles
We have so far assumed that the particles are fixed, and calculated the time-averaged
inertial forces. We now relax this assumption and consider the case where the particles
are freely suspended. They now oscillate in response to the ambient flow, and also acquire
time-averaged drift velocities from a balance of time-averaged inertial forces with viscous
drag.

We consider particles of identical size and density ρp. Due to symmetry and linearity
of the primary flow, they oscillate at identical velocity, in phase with each other, when
subject to oscillatory ambient flow; see Appendix A for a careful justification. We denote
this particle velocity (in dimensionless units) by V 1 ∝ eit , and place the frame of reference
at the instantaneous centre of one of the particles (say particle 1) when solving for
disturbance flow. In the particle-attached reference frame, the ambient flow becomes
effectively replaced by the relative velocity V∞ − V 1. To calculate this relative velocity
between the particle and the flow, we invoke conservation of momentum of the oscillating
particle. For this purpose we approximate each particle as being isolated, neglecting the
O(D−3) corrections to the oscillating velocity due to interactions between the particles.
These corrections lead to time-averaged velocities of O(D−5), which are smaller than the
accuracy of the two-term multipole expansion used here. Then, we invoke the known result
for the relative oscillation velocity (Settnes & Bruus 2012; Zhang et al. 2024)

V 1 − V∞ =RV∞, with R= − 2λ2 (ρ̃ − 1)

λ2 (2ρ̃ + 1) + 9λ+ 9
, (7.1)
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where ρ̃ = ρp/ρ is the density ratio between the particles and the fluid. The oscillating
flow (both ambient and disturbance) in the co-moving reference frame is therefore identical
to the one obtained for fixed particles, but for the mapping V∞ �→ −RV∞.

In addition to this change in the oscillatory flow, the particles are also able to execute
a drift over many cycles. If the particles are allowed to move without the application
of an external force (〈F〉 = 0), the particles will drift at equal and opposite velocities
〈V 2〉 = 〈V 2〉(1) = −〈V 2〉(2) by symmetry (Appendix A). Then, the left-hand side of (4.7)
becomes −F̂ · 〈V 2〉, while the right-hand side is unchanged from before. The force in the
auxiliary problem F̂ is related to the auxiliary velocity V̂ according to F̂ = −R · V̂ , where
R= μa(R‖e‖e‖ + R⊥e⊥e⊥) is a Stokes resistance matrix. The resistance coefficients R‖
and R⊥ correspond to steady motion of particles along and perpendicular to their line of
centres, and depend on the separation D (figure 2). Although they can be computed within
the two-term multipole expansion by the Faxén relation F̂ = −6πμa(V̂ − V̂), such an
expansion does not capture contributions from lubrication theory when the particles are
close to contact. Instead, we use known results (Brenner 1961; Jeffrey & Onishi 1984) for
these resistances that are valid for all separations (see Appendix B). The right-hand side
of (4.7) remains unchanged from before.

The general reciprocal expression given by (4.7), for freely suspended (force-free)
particles, yields the secondary velocity of particle 1 as (in dimensional form)

〈V 2〉 = ε2aω S|R|2
(

FAA

R‖
cos2 θe‖ + FTT

R‖
sin2 θe‖ + FAT

R⊥
sin θ cos θe⊥

)
, (7.2)

where we recall that ε = V ∞/(aω) is the dimensionless oscillation amplitude. The
velocity of particle 2 is equal in magnitude and opposite in sign, and FAA, FTT and FAT are
force coefficients defined in (6.2). Thus, we obtain the secondary velocity with very little
extra effort. The resistance coefficients R⊥ and R‖ depend on D only, approaching 6π for
large D and diverging at contact. The factor of S in (7.2) reflects the balance between the
inertial force scale in (6.2) and viscous drag.

In figure 7 we plot the time-averaged particle velocity (with coefficients calculated
by the semi-analytic procedure in § 6.1) against distance under the same values of S in
figure 3. The magnitudes of the velocities are consistent with the corresponding forces,
while the peak values are shifted further from the contact point D = 2. This is due to the
fact that the resistance to motion becomes infinite at contact (where inertial forces remain
finite), while the force coefficients decay with distance (with the resistance being finite).
The location and stability of the equilibrium points of the motion are inherited from those
of the forces. It is possible to study the kinematics of the particle pair over long time scales
by integrating (7.2) through time. We leave this task to a future study.

We close this section by comparing our results with those of Kleischmann et al. (2024),
where the Navier–Stokes equations were solved numerically to simulate the coupled flow
and particle motion over time. From the trajectory data in figure 4 of Kleischmann et al.
(2024) (particle of density ratio ρ̃ = 4.68 in the θ = 0 configuration), we extract the time-
averaged particle velocities at 50 cycles from the initial condition (long enough to avoid
transient effects). We analyse 7 sets of data ranging from S = 0.63 to S = 18.81, the entire
range considered in Kleischmann et al. (2024). Due to the set-up of these DNS, each
velocity datum occurs at a slightly different D. We use these values of S , D and ρ̃ as
direct inputs to the semi-analytic theory (7.2), and plot the resulting velocities in figure 8,
without any fitting parameters. The theory is in good agreement with the DNS, capturing
both the direction and magnitude of the particle motion across S values. The direction
of motion reverses with S , although the location of the reversal appears to be slightly

1018 A38-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10510


Journal of Fluid Mechanics

0.035

(a) (b) (c)
F A

A/
R ‖

F T
T/

R ‖

F A
T/

R ⊥

0.030

0.025

0.020

0.015

0.010

0.005

−0.005

−0.010
2 3 4

D
5 6 2 3 4

D
5 6 2 3 4

D
5 6

0

0.005

0

−0.005

−0.010

−0.015

−0.020

−0.025

−0.030

0.09

0.06

0.07

0.08

0.05

0.04

0.03

0.02

0.01

0

S = 0.3
S = 1
S = 3
S = 8
S = 15
S = 30
S = 100

Figure 7. Secondary velocities corresponding to different configurations: (a) axial velocity due to axial
oscillations (AA), (b) axial velocities due to transverse oscillations (T T ), (c) transverse velocities (AT )
corresponding to a reorientation of the particles with respect to the flow.
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Figure 8. Dimensionless time-averaged velocity of particle 1 comparing value extracted from the DNS
trajectory data of Kleischmann et al. (2024) (squares) and the present semi-analytic theory (circles).

underpredicted by the theory. Differences between the theory and the DNS may be in part
due to presence of walls in the simulations. These walls would add additional viscous
resistance to particle motion. Furthermore, Stokes layers are also established at the walls,
exciting secondary streaming flows in addition to those generated by the particles. Such
flows would cause even an isolated off-centred particle to drift, whereas a single particle
in an unbounded domain will not drift due to symmetry. Despite these differences, it is
clear that the present theory provides a useful means to predict secondary particle motion
with relatively low computational effort. Accounting for external boundaries could form
the basis of future work.
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−〈F〉(1)

Rotate 180◦

Figure 9. Symmetry argument for zero net time-averaged force on the particles. Rotating by 180◦ causes the
forces to flip sign, while preserving the configuration of the system.

8. Conclusions
To conclude, we have explored the interactions between two identical particles in an
oscillatory flow accounting for the leading effects of inertial nonlinearities. Through
a theoretical approach involving small-amplitude expansions, multipole expansions and
the application of the Lorentz reciprocal theorem, we derived a method to calculate the
time-averaged secondary forces acting between the particles. The analysis demonstrated
that, while the full nonlinear flow is complex, it is possible to reduce the problem to
an analytically tractable form by focusing on vorticity effects near the particle surfaces.
By using the reciprocal theorem, we circumvented the need for direct computation of
secondary stress, leading to an efficient framework for understanding particle interactions
in oscillatory flows. By providing new analytic insight, the present framework fills the gap
between existing work on direct numerical solutions and numerical solutions of scale-
separated equations from perturbation theory. Due to its low computational cost, the
present work can cover a broader range of frequency and separation distances.

Our findings not only enhance our understanding of particle dynamics in fluid systems
but also provide useful theoretical tools for further exploration in practical applications.
Although we focused on a single pair of particles for the theoretical development here,
the framework has the potential to be extended to multiple particles of identical size
and density. Such an extension would be useful to understand particle pattern formation
in oscillatory flows. It would also be interesting to extend the ideas here to systems of
particles with different sizes, shapes or densities.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.10510.

Funding. The authors thank the National Science Foundation for support through award CBET-2143943.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Symmetries of forces and motion

A.1. Symmetry of time-averaged forces
Consider the time-averaged force acting on particle i , 〈F〉(i), in the configuration shown
in the left panel of figure 9. We now rotate the geometry by 180◦ (or alternatively rotate
the frame of reference). Then, the force vectors also rotate by 180◦, transforming to
− 〈F〉(i), while the particles simultaneously swap positions, as shown in the right panel of
figure 9. We note that the oscillatory velocity also changes sign, but this is inconsequential
to the time-averaged forces, which depend quadratically on V∞. If the particles are
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−V∞

Figure 10. Symmetry argument to show that particles must oscillate with identical velocity. Flipping
the sign of the ambient velocity and also rotating by 180◦ swaps particle velocities but recovers the original
configuration.

identical, both panels describe same configuration, so we conclude that 〈F〉(1) = − 〈F〉(2).
If the particles are free to drift, the same argument applies to their time-averaged (drift)
velocities.

A.2. Symmetry of oscillatory motion
We show here that both particles must oscillate at identical velocities regardless of
their separation distance and orientation relative to the ambient flow. We start with the
configuration in the top left panel of figure 10, in which the particles oscillate with
generally distinct velocities V ( j)

1 (t), in response to the ambient flow V∞. The primary flow
is governed by the linear system (3.2), with boundary conditions on the particle surfaces
now accounting for V ( j)

1 . Since there are no external (i.e. non-hydrodynamic) oscillatory
forces acting on the particles, V ( j)

1 are linear in V∞. Furthermore, although (3.2) involves
time derivatives, the oscillatory fields depend parametrically on time as eit , as there is no
reference to initial conditions (which are presumed to have occurred in the distant past).

We now apply two different transformations to the situation depicted in the top left panel
of figure 10. On the one hand, a 180◦ rotation leads to the bottom left panel, where particle
swap places and the velocities change sign. On the other hand, a change in sign of the
ambient flow (V∞ �→ −V∞) leads to the top right panel, where the particle velocities
change sign (V ( j)

1 �→ −V ( j)
1 ) due to linearity, but the particles remain in their original

positions. Applying both a rotation and a sign flip leads to the bottom right panel.
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Figure 11. Stokes resistances showing the approximate large-D result from the two-term multipole expansion
with Faxén’s law (solid curves) and uniformly valid results valid for all inter-particle separations (dashed
curves). (a) Parallel configuration. The dashed curve denotes the exact result of Brenner (1961). (b)
Perpendicular configuration. The dashed curve denotes a two-term approximation, valid for all D, due to
Jeffrey & Onishi (1984). In both configurations we use resistances corresponding to the dashed curves to
calculate the velocities in figure 7.

If the particles are identical (in size and density), the scenarios on either diagonal of
figure 10 are physically identical. We thus conclude that V (1)

1 = V (2)
1 = V 1.

Appendix B. Resistance coefficients
We plot the resistance coefficients for both axis-parallel and axis-perpendicular motion
in figure 11. Calculations from Faxén’s law with the two-term multipole expansion
are indicated as solid curves. They are accurate at large distances (D � 3) but do not
account for lubrication effects when particles are near contact. We remedy this by
using a combination of known exact and asymptotic results. For R‖ we use the exact
result of Brenner (1961), which diverges as the inverse of surface separation distance,
R‖ ∼ (6π/4)(1/(D/2 − 1)), as the particles approach contact (figure 11a). The
perpendicular resistance behaves as R⊥ ∼ (6π/3) log[(D/2 − 1)−1] close to contact, and
approaches 6π for large D. We use the approximation in § 5.3 of Jeffrey & Onishi (1984),
truncated at two terms, to obtain R‖ = 6π[1 + (1/3) log(1 + (D/2 − 1)−1)]. Including
more terms in the series leads to deviations of at most 2.5 %. This expression is accurate
for all D and is plotted as a dashed curve in figure 11(b).
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