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Abstract
This paper presents a hierarchical framework that allows online point-to-point dynamic-stability-constrained opti-
mal trajectory planning of a mobile manipulator robot working on rough terrain. First, the kinematics model of
a mobile manipulator robot and the zero moment point stability measure are presented as theoretical background.
Then, a sampling-based quasi-static planning algorithm modified for stability guarantee and traction optimization in
continuous dynamic motion is presented along with a mathematical proof. The robot’s quasi-static path is then used
as an initial guess to warm start a nonlinear optimal control solver which may otherwise have difficulties finding
a solution to the stability-constrained formulation efficiently. The performance and computational efficiency of the
framework are demonstrated through an application to a simulated timber harvesting mobile manipulator machine
working on varying terrain. The results demonstrate feasibility of online trajectory planning on varying terrain
while satisfying the dynamic stability constraint. Qualitative and quantitative comparisons with existing methods
are also presented.

1. Introduction
Mobile manipulation is a popular topic in robotics research due to the omnipresence of this task in
robotic applications. From home assistance [1] to Mars exploration [2], mobile manipulators find appli-
cation in a variety of domains. To further expand their utility in uncontrolled outdoor environments,
significant research effort has been allocated to increasing the resiliency of mobile manipulators to their
operating environment. Among numerous harshness that can arise in outdoor environments, terrain vari-
ation [3] is one of the most common, and it can be dangerously harmful to the performance of a mobile
robot if rollover or sliding occurs.

Heavy machines commonly used in mining, logging, and construction, such as excavators, feller
bunchers, and loaders, can also be treated as mobile manipulators. Due to the slow progress of automa-
tion in these industries, the issues related to terrain variation and its effect on the machine operation
have rarely been addressed in mobile manipulation research. The aforementioned machines are prone
to roll over as they have a high center of mass, manipulate heavy objects, and inevitably have to operate
on slopes and in adverse weather conditions. The prevention of rollover and sliding is critical, as such
failures pose numerous risks to the operator, machine, as well as the environment; these considerations
provide the main motivation for the present work.

To ensure the upright stability of robots during mobile manipulation, passive methods such as novel
mechanical design [4, 5] and steep slope avoidance [6, 7] can be utilized. However, the former solution
does not address the needs of machine designs currently employed in the field, and slope avoidance is
simply not a viable solution for applications such as steep slope logging. Therefore, in this article, we
propose a framework to plan the trajectory and reconfiguration of a mobile manipulator robot under
dynamic stability constraint so that a robot of common design can access its work areas in rough terrain
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with safety assurance. Before the proposed approach is presented, past literature on stability measures,
stability-constrained trajectory planning, and autonomous industrial machines is reviewed.

1.1. Stability measures
Several measures designed to quantify proximity to rollover through force/moment measurements
include the measure that relies on static force and moment analysis introduced in ref. [8], the force-
angle stability measure in refs. [3, 9, 10], and the lateral load transfer parameter employed in refs. [11,
12, 13]. However, these measures are based on the forces/moments experienced at joints or wheels and
cannot provide direct guidelines for trajectory planning. For humanoid robots, the zero moment point
(ZMP) stability measure was introduced in ref. [14] to achieve quantitative stability inference based on
joint motions and robot inertia parameters. Since mobile manipulation planning has to account for the
robot’s and the manipulated object’s inertia parameters and the robot’s joint motions, the ZMP stability
measure is naturally chosen for our work.

An early implementation of the ZMP measure for a mobile manipulator is presented in ref. [15], and
further work on mobile robots with stability constraint evolved from it. Guided by the ZMP formula-
tion, a mobile manipulator’s base generates stability-compensating motions, while the manipulator arm
is executing tasks [1, 16]. By using potential functions derived from the ZMP formulation, stability-
compensating motion can also be generated for manipulator arms, as demonstrated in refs. [17, 18, 19,
20]. However, requiring a mobile manipulator robot to continuously generate motion that compensates
for stability during operations will reduce the robot’s efficiency for task completion; ideally, stability-
compensating motion should only occur when rollover risk is imminent. This approach also assumes
that the robot has enough control authority to maintain balance on the path.

The ZMP measure has also been transformed into linear state inequality constraints in Model
Predictive Control (MPC) formulations for the special cases of a car-like [21] and a forklift-like [22]
mobile robot operating on planar surface. Nonetheless, in rough terrain applications, the ZMP measure
linearization cannot be generalized, and it can be impossible to find a trajectory satisfying the stability
constraint along a path that was generated without accounting for stability apriori. Considering the lim-
itations in the aforementioned recent works that address ZMP-constrained trajectory planning [16, 19,
21], we next review previous work on constrained mobile manipulation planning in general.

1.2. Constrained mobile manipulation trajectory planning
The trajectory planning problem of a mobile manipulator robot under a kinodynamic constraint such as
the ZMP constraint can be solved, at least in theory, by using two types of planning methods: sampling-
based methods [23, 24] and optimization-based methods [25, 26, 27, 28, 29]. A sampling-based method
can generate motion trajectories by randomly sampling the search space, and it can accommodate dis-
crete dynamics and any nonlinear constraint. An optimization-based method involves constructing a
nonlinear optimal control problem (NOCP) from a user-defined cost and constraint functions.

However, the time complexity of a sampling-based approach becomes impractically high when the
search space includes accelerations, especially for high DoF systems such as mobile manipulators. As
a result, previous works utilized sampling-based methods [23, 24] to only address the path generation
problem. On the other hand, for an NOCP structure, the nonlinearities in robot kinematics and con-
straints make it difficult to directly obtain a solution for the trajectory in a timely manner because the
associated nonlinear programming scheme relies heavily on a good initial guess to arrive at a feasible
optimum. Hence, none of the previously reported NOCP-based solutions [25, 26, 27, 28] can be applied
to solve our problem since they focused on generating trajectories, given an existing path. A recent
NOCP-based work that addresses path and trajectory planning with dynamic obstacle avoidance [29]
only demonstrated computation efficiency for a potential field (PF) formulation under constant obstacle
velocity assumption; this method cannot accommodate dynamic stability constraints such as the ZMP
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constraint due to their non-convexity and the fact that constant velocity assumptions do not hold in our
case.

A hierarchical planning structure solves the trajectory planning problem by breaking it down into
multiple stages to exponentially reduce the problem dimensionality and to take advantage of both the
versatile sampling-based methods and the mathematically efficient optimization-based methods. Under
the hierarchical structure, sampling-based path planners, such as the Rapidly-exploring Random Tree
(RRT) [23] method, can efficiently address quasi-static path planning problems under nonlinear kine-
matic and state constraints. The NOCP-based trajectory generation can then be warm-started by using
the quasi-static path as a “close enough” initial guess.

In recent years, hierarchical planning has been used with some success in autonomous driving and
for UAVs, as demonstrated in refs. [30, 31, 32, 33]. However, the aforementioned hierarchical plan-
ning examples only apply to the specific applications they were designed for and cannot accommodate
the dynamic stability constraint. Hence, the need for a hierarchical framework specifically designed to
address the mobile manipulator rough terrain trajectory planning problem is justified.

1.3. Robotics in timber harvesting
Timber harvesting, which is the targeted application of our work, is a very important industry for many
countries including Canada. The majority of modern timber harvesting businesses worldwide employ
feller bunchers and timber harvesters to fell trees, and use skidders and forwarders to transport felled trees
for further processing. The aforementioned machines can be considered as a type of mobile manipulator
since they consist of mobile bases and hydraulically powered mechanized arms with multiple degrees
of freedom. Nowadays, the machines still fully rely on operator’s judgment and control in order to
function [4]. However, with operator shortages in the forecast, there is a strong impetus for developing
an autonomous harvesting system.

Some progress has been made to increase the timber harvesting machines’ autonomy. The dynam-
ics model of a timber harvester is presented in ref. [34]; the teleoperation of a forestry manipulator is
showcased in ref. [35]; the hydraulic actuator control of a forwarder machine has been discussed in refs.
[36] and [37], and the motion control of a forestry manipulator along a fixed path is presented in ref.
[38]. However, a versatile trajectory planning algorithm that can handle the terrain-related challenges of
timber harvesting is yet to be developed. Therefore, the goal of this paper is to introduce a method that
addresses the issue of stability-constrained mobile manipulation path and trajectory planning problem,
inspired by the operational requirements on the timber harvesting machinery.

1.4. About this paper
Encompassing our earlier work in ref. [39] that mainly deals with online dynamic-stability-constrained
manipulation planning, the framework presented in this paper consists of the following main advances
compared to existing result in the literature:

• The dynamic-stability-constrained time-optimal trajectory planning is formulated and solved as
a hierarchical planning problem for mobile manipulation on varying 3D terrain.

• The proposed hierarchical framework allows for both path and trajectory generation online and
utilizes the manipulator arm’s reconfiguration capability to traverse steeper terrain.

• A theoretical analysis of the ZMP measure is provided to allow for modifications to sampling-
based path planning algorithms so that satisfaction of the non-convex ZMP constraint is
guaranteed in continuous motion.

• To ensure the NOCP is “warm-started” with a feasible initial guess, the ZMP-constrained quasi-
static trajectory is proven to have guaranteed finite completion time.
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Figure 1. Overview of local manipulation problem and relocation planning problem.

Thanks to the hierarchical framework, online planning computation is achieved. To the best of the
authors’ knowledge, the framework presented in this paper is the first to enable point-to-point 3D ter-
rain mobile manipulation planning with a focus on time-optimal task completion, rather than stability
compensation along pre-existing path. In other words, a stability measure acts as a constraint that does
not interfere with the robot’s task execution unless the constraint is violated. In addition to compu-
tational efficiency, the benefits of the proposed framework include the ability to utilize manipulator
reconfiguration for rough terrain traverse and to generate locally time-optimal motions, as compared
to previous works [1, 16, 17, 19, 20] which mainly focus on generating motions to compensate for
stability.

In this paper, a feller buncher machine employed for timber harvesting is considered as a mobile
manipulator robot. For the remainder of the paper and previously, the term reconfiguration refers to
changes in the manipulator pose; the term relocation refers to changes in the position and heading direc-
tion of the mobile base; quasi-static path refers to a trajectory with sufficiently low velocity so that it
can be considered as a geometric path. At any point on the quasi-static path, the robot can be treated as a
static, as opposed to dynamic system, the former descriptor implying zero velocities and accelerations.
Onwards, the paper is organized as follows.

In Section 2, kinematics model of the machine, the ZMP measure, and the NOCP formulation to
solve the dynamic-stability-constrained trajectory planning problem are introduced as theoretical back-
ground for the paper. In Section 3, the dynamic-stability-constrained manipulation planning problem
is addressed through dimension reduction for online computation. In Section 4, online rough terrain
mobile relocation planning under dynamic stability constraint is addressed by employing a hierarchical
framework. The relationship and interaction between the local manipulation planner and the relocation
planner are illustrated in Fig. 1. Simulation results showcasing the proposed motion planning framework
will be presented in Section 5; that Section also includes a qualitative comparison to another NOCP-
based approach, and a quantitative comparison to the popular MPC path following solution. Conclusions
and future work will be stated in Section 6.

2. Theoretical background
2.1. System model and ZMP constraint
We first derive the full kinematic model of a mobile manipulator (a.k.a., system), an example of which
is shown schematically in Fig. 2 (left). The manipulator arm of the robot has n ∈Z0+ joint DoFs, and the
mobile base is modeled as a unicycle on arbitrary, but known terrain. A unicycle model is commonly
used to represent the kinematics of differential drive robots and skid-steered machines [40], which is the
case of the feller buncher.
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Figure 2. On the left, schematic diagram of a tracked mobile manipulator with 5 manipulator DoFs; the
three axes of each link frame xi, yi, and zi are represented by red, green, and blue arrows, respectively.
On the right, rectangular support polygon Conv(S).

Frame O is the inertial frame, and frame Fi is fixed to the i-th link of the robot for i ∈ {0, 1, . . . , n}.
Here, link 0 refers to the robot’s mobile base, links 1 to n− 1 refer to the manipulator arm compo-
nents, and link n refers to the robot’s end effector. We denote the angle of joint i between link i− 1
and i with qi ∈R (i= 1, 2, . . . , n) and collect all joint angles into a column vector q ∈Rn. We consider
the base-fixed frame F0 to undergo translation, as measured with pO

b , and a z-x-y rotation from initial
attitude through angles ψ (yaw), θ (pitch), and φ (roll), respectively; this allows the base to be located
on arbitrary-sloped terrain. The generalized coordinates of the base and the manipulator are assembled
in q̄= [pOT

b ,ψ , θ , φ, qT
]T

. Then, defining x= [q̄T , ˙̄qT
]T , the mobile manipulator’s kinematics equations

can be written in state space form as:
ẋ= g(x, u). (1)

where we introduced the kinematic control input u= [ua, uψ , uT
q

]T , with ua, uψ , and uq as accelerations
along heading direction, yaw angular acceleration, and manipulator arm joint accelerations, respectively.
Eq. (1) serves as the model of the robot for the overall optimal trajectory planning problem. Note that
the terrain information is embedded in (1) through the orientation of the base.

In addition to the kinematics Eq. (1), a geometric construction called the support polygon will be
used throughout this paper. The support polygon, denoted by Conv(S), is a convex hull formed by the
contact points between the robot’s mobile base and the ground (see Fig. 2, right.)

The ZMP measure, central to this paper, allows to quantify the rollover stability margin of a mobile
manipulator on arbitrary terrain using only its kinematic model and inertia parameters, instead of full
dynamics model or force measurements. It is therefore our method of choice due to the potential benefit
of faster trajectory planning calculations and its practicality. To compute the ZMP location, we define
the Cartesian coordinates of each component’s center of mass relative to pb expressed in F0 as pF0

i =
[xi, yi, zi]T and the corresponding accelerations p̈F0

i = [ẍi, ÿi, z̈i]T . By employing kinematics, these can be
obtained from:

pF0
i = f i(q̄)

p̈F0
i = J̇pi(q̄) ˙̄q+ Jpi(q̄) ¨̄q,

(2)

where we introduced the position kinematics Jacobian, Jpi(q̄)= ∂f i

∂ q̄
. Then, according to ref. [15] and

using the gravitational vector gF0 = [gx, gy, gz]T , the coordinates of the ZMP in the base frame pF0
zmp =

[xzmp, yzmp, 0]T are given by1:

xzmp =
∑n

i=0 mi(z̈i − gz)xi −∑n
i=0 mi(ẍi − gx)zi∑n

i=0 mi(z̈i − gz)

yzmp =
∑n

i=0 mi(z̈i − gz)yi −∑n
i=0 mi(ÿi − gy)zi∑n

i=0 mi(z̈i − gz)
.

(3)

1Note that differently from the formulations presented in previous works [15], the signs in front of the gravitational acceleration
components are negative since gravity should be treated as an external force on the system.
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Note, by definition, ZMP lies in the plane of the support polygon so that its z-coordinate in F0 is zero.
Also, the mass of the manipulated object, assumed to be known in this work, can be easily accounted
for in (3). The robot is dynamically (ZMP-) stable when the constraint pzmp ∈Conv(S) is satisfied; it
has a tendency to rollover otherwise. Equation (3) can be evaluated by substituting from the kinematics
equations (2), once the base and the manipulator motions have been planned, to produce the ZMP locus,
that is, the trajectory of ZMP in F0 during the motion of the robot. The ZMP stability constraint is a
major contributor to the high computational cost when enforced in optimal control formulations as it is
nonlinear and non-convex with respect to the system’s states.

2.2. Optimal control problem formulation
We consider this problem in full generality by allowing the robot to be situated on slopes of different
grades. With the view to optimizing the efficiency of manipulation tasks, the motions should be carried
out within the shortest possible time, without the robot rolling over. Naturally, to minimize the overall
time required for the robot to reach final state xf from an initial state x0 safely, we formulate a constrained
NOCP of the form:

min
u

∫ tf

t0

1 dt.

s.t. ẋ= g(x, u) x(t0)= x0 x(tf )= xf

pzmp(x, u) ∈Conv(S)

x≤ x≤ x

u≤ u≤ u,

(4)

where� is defined as vector component-wise inequality, x and x stand for the lower and upper bounds on
the system state x, and u and u stand for the lower and upper bounds on the control input u, respectively.
The state and input constraints ensure that the robot’s configuration, rates, and accelerations are realistic
and therefore feasible when tracked; we also point out the inclusion of the ZMP stability constraint
in (4).

Problem (4) is a NOCP with standard initial and final state constraints and the additional non-convex
path constraint to enforce ZMP stability. Without pre-defined constraint arc sequence and boundaries
(i.e., no a priori knowledge of ZMP-constrained motion occurrence), the optimality condition becomes
impossible to formulate, and indirect formulations that aim to approach optimality conditions cannot be
applied [41]. Hence, the two-point boundary value problem constructed from the NOCP problem has to
be solved with a direct formulation using numerical methods, such as the shooting method.

Additionally, because of the nonlinear terrain function and the highly nonlinear ZMP constraint, the
numerical methods must rely on a “close enough” initialization to find a solution in reasonable time [42].
Since finding an appropriate initialization is a nontrivial task, it is impossible to solve (4) reliably using
existing solution techniques for NOCP alone. To address this issue, the rough terrain mobile manipula-
tion problem will be decomposed into two sub-problems: a robot arm manipulation planning problem
and a mobile base relocation planning problem. Further, the dimension reduction technique to speed up
the manipulation planning solution will be introduced in Section 3, and the techniques involved with
generating the quasi-static path to warm start the relocation planning will be introduced in Section 4.

3. Manipulation planning under dynamic stability constraint with simplified kinematics
A common task for a mobile manipulator is to interact with objects by securing, lifting, and placing them
at a location either nearby or at a distance. When dissected into two general modes of operation – mobile
relocation and local manipulation – any mobile manipulation task can be defined as a combination of
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Figure 3. Schematic diagram of a simplified mobile manipulator.

these two modes, either taking place simultaneously or separately. Therefore, it is desirable to solve the
two stages separately in order to avoid the computational burden caused by a high-dimensional NOCP.

The local manipulation planning of the mobile manipulator robot is addressed in this section. During
this stage, the robot has to execute joint motions in order to reconfigure itself or interact with an object.
The dynamic stability of the robot is likely to be compromised when the robot has high center of mass,
when the joint motions are aggressive, when the terrain is steep, and when the object is heavy. Trajectory
planning for the mobile relocation stage will be introduced in Section 4.

Due to the high dimensionality of the kinematics model (1), the nonlinearity that resides in the for-
ward kinematics equations (2) and the ZMP formulation (3), the solution of the optimal manipulation
planning problem (4) requires longer than practical computation time for online guidance, even for a
case where the base does not move. In order to develop an online trajectory planner for the robot, a
model simplification is called upon.

To simplify the optimal control problem by reducing the dimensionality of the problem, and consid-
ering typical modes of operation such as of a feller buncher in timber harvesting or excavators in mining
and construction, the n-DoF manipulator arm is simplified to have 2 DoFs including the first link yaw
angle q1(t) and variable end effector distance d(t) from the yaw joint axis. The simplified model is illus-
trated schematically in Fig. 3. For local manipulation planning only, the following assumptions are
made:

Assumption 1. (a) The mobile base has a fixed attitude and accelerates along y0 direction. (b) The
z-coordinate (height) of end effector does not change in F0. (c) The inverse kinematics mapping between
end effector distance d and full model arm joint angles q except for q1 is known up to the second order
derivative with respect to time. �

The reductions in computation costs resulting from the use of the simplified model will be demon-
strated in Section 5.2. Note that in practice, local manipulation tasks such as picking and placing rarely
require complex movements of the mobile base, Assumption 1(a) can be justified for cases such as exca-
vation and timber harvesting. A formulation that allows the execution of complex mobile maneuvers
is presented in Section 4 in the context of a relocation problem. To mitigate the limitations caused by
Assumption 1(b), a specially designed motion planner can manipulate the end effector into or out of the
x-y plane of F0, without significant loss in performance as the vertical movements required are usually
small. Assumption 1(c) is easily satisfied as inverse kinematics resolution method mentioned in ref. [43]
is well established.

In the simplified model, the control inputs are uq1 , acceleration of q1, and ud, the second derivative
of d with respect to time. The kinematics model of the simplified model is straightforward to derive and
can be written in state space form:

˙̃x= g̃(x̃, ũ), (5)

where x̃= [q1, q̇1, d, ḋ]T , and ũ= [uq1 , ud].
To ensure that the ZMP location of the full model follows that of the simplified model, a mapping

between the DoFs of the simplified model and those of the full model of the robot needs to be established.
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From Assumption 1(c), the robot’s joint angles, angular rates, and accelerations can be expressed using
the states and control inputs of the simplified model as:

q= [q1, IK(d)]T

q̇= [q̇1, IK1(ḋ, d)]T

q̈= [uq1 , IK2(ud, ḋ, d)]T .

(6)

Here, IK represents the inverse kinematics mapping referred to in Assumption 1(c) equation and the
superscript signifies its order of derivative with respect to time. Therefore, using the mapping provided
in (1), (3), and (6), the ZMP location of the full kinematics model can be expressed using the simplified
kinematic quantities x̃ and ũ as p̃zmp(x̃, ũ).

To shorten the computational time so that the trajectory planner can provide online guidance, the full
kinematic model (1) is replaced by the simplified kinematic model (5) in the optimal control problem
(4). It is noted that although the kinematic model’s dimension has been reduced, the ZMP constraint is
still derived from (3) using information of all joints obtained from (6). Hence, the motions generated
by solving the NOCP with the simplified model will guarantee ZMP constraint satisfaction for the full
model. Also, we point out that in employing the simplified model, the dimension of the NOCP kinematic
constraints has been reduced from 2n+ 12 to 4, and the number of control inputs has been reduced
from n+ 2 to 2. However, the input constraints can no longer be placed directly on joint accelerations,
although in practice, this can be resolved by tightening the bound on ū until all joint accelerations are
feasible. We also note that the control bounds are considered to be independent from terrain.

4. Rough terrain relocation planning
In this section, dynamic-stability-constrained trajectory planning of the relocation stage of mobile
manipulation is addressed. During relocation, a mobile manipulator has to navigate a constantly undulat-
ing terrain and, sometimes, shift its ZMP through reconfiguring the manipulator to safely move through
steep slope. As noted earlier, the topographic map of the 3D terrain, as well as the goal point for the
robot are assumed to be known.

To solve this problem, a hierarchical planning framework that consists of a sampling-based planning
level and a NOCP solution level is proposed. The framework relies on the sampling-based planning to
first conduct quasi-static path and reconfiguration planning. The quasi-static result is then used as an
initial guess to warm start the NOCP level (4) for fast computation.

As defined in previous works [44] and [45], quasi-static planning considers a robot to have near
zero velocity and acceleration so that the kinodynamic constraints of the path planning problem can be
simplified to static constraints. A disadvantage of the quasi-static planning is that it does not provide any
guarantees on constraint satisfaction under dynamic conditions. As a result, the path has to be followed
by the robot at slow speed to avoid constraint violation. Hence, the latter NOCP level is added to form
the proposed hierarchical framework and to generate safe dynamic trajectories.

4.1. Quasi-static path planning algorithm
Sampling-based approach is chosen to solve the path and reconfiguration planning problem due to its
theoretical completeness, ability to deal with nonlinear constraints, and efficiency when search space is
purposefully constructed. The sampling-based planning structure used in our implementation is based
on the RRT algorithm proposed in ref. [23]. The pseudo-code of what we call “RRTS” is shown
in Algorithm 1, and it includes two main modifications: the first to accommodate the ZMP stability
constraint on line 9 highlighted in blue and the second modification made to allow manipulator recon-
figuration, lines 13-14 highlighted in red. The RRT algorithm, specifically, is chosen due to its ability to
quickly find a path when new terrain and obstacles such as human, fallen trees, or large rocks appear on
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Algorithm 1 ZMP-constrained path planning
1: procedure RRTS(pinit, pgoal, qrobot)
2: V← pinit

3: E←{}
4: Q← qrobot

5: fori= 1, 2, . . . , n do
6: prand← SampleFree(i)
7: pnearest←Nearest(V , prand)
8: pnode← Steer(pnearest, prand)
9: ifObstacleFree(pnearest, pnode) and ZMPStable(pnearest, pnode, qrobot)then
10: V← V ∪ {pnode}
11: E← E ∪ {(pnearest, pnode)}
12: Q←Q∪ {qrobot}
13: if TreeGrowth(V , i) ≤ threshold then
14: qrobot← Reconfigure(qrobot) � Change robot configuration when size of V grows slowly.

return G= (V , E)

the map. However, the ZMP constraint accommodation can also be directly implemented within other
sampling-based planning algorithms.

4.1.1. Stability guarantee
Since the sampling-based algorithm only checks constraint satisfaction at every sampling point, it does
not guarantee that the constraints are met between sampling points. To ensure the sampling-based algo-
rithm generates a quasi-static path that is guaranteed to be ZMP-stable in continuous execution, the
ZMPStable function on line 9 of Algorithm 1 checks that the stability conditions to be introduced in
Section 4.3 are met.

4.1.2. Reconfiguration
To reduce the search space dimension for online path generation with RRT, the robot is considered to be
quasi-statically moving through the terrain. As the path planning tree growth reaches the steep Section in
a terrain map, new nodes will become less likely to be added to the tree. This is due to stability constraints
becoming harder to satisfy. To remedy this problem, random joint reconfiguration is executed whenever
the number of new nodes added to the tree is lower than a threshold after certain number of iterations,
as indicated in lines 13 and 14 of Algorithm 1. In this way, the robot will be able to navigate through
steep slopes by reconfiguring its arm. The method introduced in Section 3 is used to further plan the
motion trajectory of each reconfiguration. In this manner, our implementation is designed to allow for
exploration of the robot’s configuration space for higher mobility on rough terrain without unnecessarily
reconfiguring at every sampling point.

4.2. Finite-time feasibility guarantee
Due to the quasi-static nature of the path planning stage, the inertial terms in the ZMP constraints are
ignored. Therefore, a quasi-static path generated with Algorithm 1 does not guarantee that there exists
a trajectory for the robot to travel to its destination without violating the dynamic stability constraint
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when the robot’s components experience non-zero linear and angular accelerations. In order to address
this issue, the following theorem is introduced:

Theorem 4.1. For a robot with unicycle kinematics traveling along a geometric path τ : I→ x, where
I = [0, 1] is a unit interval, if the ZMP location pzmp(τ ) belongs to the interior of Conv(S) ∀ τ , ∃ u for the
constrained trajectory planning problem (4) such that tf = T <<∞.

A proof of Theorem 4.1 is provided in Appendix A. With Theorem 4.1 backing, the method to
find a quasi-static path that satisfies the ZMP constraint is presented in the following subsections. It is
worth pointing out that Theorem 4.1 also shows that a ZMP-constrained quasi-static path is a controlled
invariant set of robot state x as defined in ref. [46].

4.3. Stability-guaranteed sampling-based path search for continuous motion
To plan a robot path on 3D terrain using a sampling-based algorithm, such as RRT, nonlinear constraints
are checked at each sampling point to ensure constraint violations do not occur. However, to keep the
computation time reasonable, constraint satisfaction cannot be verified continuously in between sam-
pling points. Since the ZMP constraint (3) is non-convex with respect to the robot’s base orientation,
even if the robot is dynamically stable at two neighboring sampling points, it is not guaranteed to be
dynamically stable between two sampling points. To resolve this issue, an analytical method to determine
the ZMP stability between sampling points is desired.

In the stability-constrained RRT implementation, ZMP constraint satisfaction is unchecked in the
following two scenarios. The first is when the robot’s base changes its heading direction at a particular
sampling location and the second is the robot quasi-statically “slides” from one sampling location to
the next. Since the two instances happen separately in the RRT implementation, they can be dealt with
individually. In the following analysis, we will make use of gz > 0, since we do not expect the robot to
drive up vertical walls. In addition, under the quasi-static condition, (3) reduces to

xzmp = Mxgz −Mzgx

Mgz

, yzmp = Mygz −Mzgy

Mgz

, (7)

where Mx =∑i mixi, My =∑i miyi, Mz =∑i mizi, and M =∑i mi. When the same robot is located on
the horizontal terrain, according to (7), its ZMP location is further simplified to:

xzmp,0 = Mx

M
, yzmp,0 = My

M
. (8)

4.3.1. Mobile base attitude
To analyze the ZMP stability of the two aforementioned scenarios, we first need to define the robot base
attitude on arbitrary 3D terrain. With pb = [sx, sy, sz]T representing the 3D coordinate of terrain surface
in inertial frame O at the location of the mobile base, the terrain can be expressed by the following
nonlinear function:

sz = h(sx, sy). (9)

Let us denote the rotation matrix that describes the attitude change of the base-fixed frame F0 from
the inertial frame O as R= {rij} (i, j= 1, 2, 3), and since the base-fixed z0 axis of a mobile manipulator
remains perpendicular to terrain surface under normal operations, defining the directional gradients of

the terrain hx =
[

1, 0,
∂h

∂sx

∣∣∣
sx ,sy

]T

and hy =
[

0, 1,
∂h

∂sy

∣∣∣
sx ,sy

]T

, the third column of R can be represented as:

r̂3 = hx × hy∣∣∣∣hx × hy

∣∣∣∣ .
Let us denote the heading angle defined by the projection of the mobile base’s heading vector onto

the 2-D plane xO-yO as ψ̄ . The second column of R describes the mobile base’s heading direction on
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the 3D surface and can then be written as:

r̂2 = [hx, hy]
[−sin ψ̄ , cos ψ̄

]T∣∣∣∣∣∣[hx, hy]
[−sin ψ̄ , cos ψ̄

]T
∣∣∣∣∣∣ .

Hence, the first column of R can be found using:

r̂1 = r̂2 × r̂3∣∣∣∣r̂2 × r̂3

∣∣∣∣ .

4.3.2. Stability guarantee during base turn
Inspecting (7), it is clear that gx, gy, and gz are the only quantities that vary with the robot’s orientation.
As a robot whose attitude is described by the rotation matrix R executes a skid-steered turn through
angle ψ t, the gravity components are affected by the yaw angle ψ t and can be expressed as:⎡

⎢⎣
gt

x

gt
y

gt
z

⎤
⎥⎦=

⎡
⎢⎣

cosψ t sinψ t 0

−sinψ t cosψ t 0

0 0 1

⎤
⎥⎦
⎡
⎢⎢⎣

r̂T
1

r̂T
2

r̂T
3

⎤
⎥⎥⎦

︸ ︷︷ ︸
RT

⎡
⎢⎣

0

0

g

⎤
⎥⎦

=
⎡
⎢⎣

r13 cosψ tg+ r23 sinψ tg

−r13 sinψ tg+ r23 cosψ tg

r33g

⎤
⎥⎦ .

(10)

The ZMP after the turn is then found from:

xt
zmp =

Mxgt
z −Mzgt

x

Mgt
z

, yt
zmp =

Mygt
z −Mzgt

y

Mgt
z

. (11)

To aid in the illustration of stability guarantee during a skid-steered turn, the following claim is
presented with a proof that follows:

Proposition 1. As a wheeled/tracked robot executes a continuous unidirectional quasi-static turn
through angleψ t about its yaw axis, the ZMP of the robot traces, monotonically on the support polygon,

an arc of angle ψ t, radius
r2

13M
2
z + r2

23M
2
z

r2
33M2

, and center [xzmp,0, yzmp,0]T .

Proof 1. By defining�xzmp = xt
zmp − xzmp,0, and�yzmp = yt

zmp − yzmp,0, the difference between (11) and
(8) can be represented as:

�xzmp = Mzgt
x

−Mgt
z

, �yzmp =
Mzgt

y

−Mgt
z

. (12)

Substituting (10) into (12), we obtain

[
�xzmp

�yzmp

]
=
[

cosψ t sinψ t

− sinψ t cosψ t

]⎡⎢⎢⎣
r13Mz

−r33M

r23Mz

−r33M

⎤
⎥⎥⎦ . (13)

The above represents a rotation in the x0-y0 plane of ZMP location by angle ψ t with respect to
[xzmp,0, yzmp,0]T . �

With the help of Proposition 1, graphically illustrated in Fig. 4(a), the ZMP stability of a robot during
a quasi-static turn can be checked analytically for a given initial base attitude, arm configuration, and
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(a) Arc formed by
ZMP trajectory during
a turn.

(b) ZMP trajectory
and its rectangular
bound (red) during
relocation.

Figure 4. Graphical illustration of ZMP trajectory during robot base turn and mobile relocation.

turn angle. As a result, the path planning algorithm is able to generate turns that are guaranteed to be
continuously ZMP-stable.

4.3.3. Stability guarantee during base relocation
During base relocation between two neighboring sampling points, it is reasonable to represent the
terrain-induced attitude change of the robot’s base as a pitch-roll sequence. By restricting the distance
between two sampling points to be “small” during sampling point generation, we expect the changes
of pitch and roll angle to be small and monotonic. With pitch and roll angle changes from the given
base orientation R represented by θ r and φr, respectively, the perturbed gravity components can be
written as: ⎡

⎢⎣
gr

x

gr
y

gr
z

⎤
⎥⎦=

⎡
⎢⎣

cos φr sin φr sin θ r − sin φr cos θ r

0 cos θ r sin θ r

sin φr − cos φr sin θ r cos φr cos θ r

⎤
⎥⎦
⎡
⎢⎢⎣

r̂T
1

r̂T
2

r̂T
3

⎤
⎥⎥⎦

︸ ︷︷ ︸
RT

⎡
⎢⎣

0

0

g

⎤
⎥⎦

=
⎡
⎢⎣

r13 cos φrg+ r23 sin φr sin θ rg− r33 sin φr cos θ rg

r23 cos θ rg+ r33 sin θ rg

r13 sin φrg− r23 cos φr sin θ rg+ r33 cos φr cos θ rg

⎤
⎥⎦ .

(14)

Substituting (14) into (7), the following is obtained to describe the ZMP location as a function of
pitch and roll angles due to relocation:

xr
zmp =

Mx

M
− Mz

M
G1

yr
zmp =

My

M
− Mz

M
G2,

(15)

where

G1 = r13 cos φr + r23 sin φr sin θ r − r33 sin φr cos θ r

r13 sin φr − r23 cos φr sin θ r + r33 cos θ r cos φr

G2 = r23 cos θ r + r33 sin θ r

r13 sin φr − r23 cos φr sin θ r + r33 cos θ r cos φr
.

(16)

The stability guarantee during base relocation between neighboring sampling points is presented as
the following proposition with a proof in Appendix B:
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Proposition 2. As a wheeled/tracked robot relocates from one sampling point to the next through a
continuous motion, the ZMP locations are guaranteed to be bounded by a rectangle whose edges are
parallel and perpendicular to the robot’s heading direction; as well, the rectangle’s non-neighboring
corners are the ZMPs at the two sampling points that the robot is transitioning between.

With Proposition 2 introduced and graphically illustrated in Fig. 4(b), we claim that as long as the
rectangle derived above is contained within the convex support polygon, the robot is guaranteed to be
stable during relocation on the quasi-static path. Hence, in addition to verifying ZMP constraint satis-
faction at each sampling step, the planner also checks if the “arc” of Proposition 1 and the “rectangle”
of Proposition 2, as defined by the sampling point and its parent node, are within the support polygon
to form a quasi-static path that is guaranteed to be continuously ZMP-stable.

4.4. Traction optimization
The results obtained thus far focused on the rollover stability constraint for the robot. However, relocating
on 3D terrain, which may be steep and loose, also requires us to consider traction limits in order to ensure
the robot does not experience traction loss and unstable sliding. Since mobile manipulators with only
two actuated wheels or tracks are more prone to traction loss and resulting slippage, this Section will
be focused on this type of robot with common symmetrical drive layout, including both wheeled and
tracked robots.

To conduct a force analysis for the robot’s two wheels/tracks, we denote the total normal force experi-
enced by the robot as f n, the static friction coefficient asμ, and the friction force generated by the robot’s
wheels/tracks to remain static on a hill as f 0

f , where ‖ f 0
f ‖2 ≤ ‖μf n‖2. In order to avoid unplanned sliding

as the robot accelerates, the minimum available friction force f avail
f along the heading direction of the

mobile base should be optimally distributed between the two wheels/tracks.
To avoid sliding, the following inequality has to hold:

‖ f 0
f + f a

f ‖2 ≤ ‖μf n‖2, (17)

where f a
f is the friction force additional to f 0

f that results in base acceleration. Applying a more restrictive
bound, we get

‖ f 0
f ‖2 + ‖ f a

f ‖2 ≤ ‖μf n‖2

‖ f a
f ‖2 ≤ ‖μf n‖2 − ‖ f 0

f ‖2

f avail
f = ‖μf n‖2 − ‖ f 0

f ‖2.

(18)

Note that (18) gives the magnitude of traction force f a
f a more restrictive bound than (17), and hence,

it is named “minimum available traction force.” It is a conservative quantity that is ideal for safety
assurance.

Let the distance between the left wheel/track and the ZMP be denoted with l, and the distance between
the right wheel/track and the ZMP be denoted with r. We also denote the magnitude of f n and f 0

f

with scalars fn and f 0
f , respectively. Then, the normal force distribution on each of the left and right

wheel/track can be respectively expressed as:

‖μf n‖L
2 =μfn

r

l+ r
, ‖μf n‖R

2 =μfn

l

l+ r
. (19)

The friction forces on the two sides that counter sliding due to gravity can be written as

‖f 0
f ‖L

2 = f 0
f

r

l+ r
, ‖f 0

f ‖R
2 = f 0

f

l

l+ r
. (20)
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Figure 5. Two sets of path generated to compare the effect of traction optimization.

The amount of minimum available traction force on each side can then be found using (18) by
subtracting (20) form (19):

f avail,L
f = (μfn − f 0

f

) r

l+ r
, f avail,R

f = (μfn − f 0
f

) l

l+ r
. (21)

Then, traction optimization can be achieved by maximizing the minimum available traction forces
on both the left and right wheels/tracks using the following formulation:

max
pzmp

min
(

f avail,L
a (pzmp), f avail,R

a (pzmp)
)

. (22)

In order to achieve (22), l= r allows available friction forces in (21) to be equal on both wheels. Note
that (22) does not guarantee the elimination of slippage. Rather, optimally positioning the ZMP in a way
to reduce the occurrence of slipping and maintain the control authority of the drives on both sides.

It is therefore claimed that vehicle traction is optimized when ZMP lies along the longitudinal center
line of Conv(S). However, constraining the ZMP to the center line eliminates the flexibility of robot
reconfiguration and would drastically reduce the robot’s ability to traverse through terrain. A varying
factor that allows the ZMP to deviate from the support polygon’s center line on milder terrain will be
implemented in the planning phase.

A comparison between a robot’s path generated with and without traction optimization is shown in
Fig. 5. With traction optimization, the robot’s path in Fig. 5(a) is smoother when compared to that in
Fig. 5(b). This means that with traction optimization, the robot will tend to descend/ascend the steep
sections along the direction of steepest descent/ascent in order to evenly distribute available traction
forces between the two driving wheels/tracks to avoid sliding.

5. Simulation results
In order to showcase the importance of ZMP constraints in mobile manipulator trajectory planning, and
the effectiveness of our formulations, the trajectory planning framework is applied to a feller buncher
machine. In timber harvesting scenarios, the purpose of a feller buncher is to cut trees, grip them, drop
them off, and relocate to another spot to continue performing these tasks. The machine is operated
throughout the year, in greatly varying terrain conditions and often on slopes of different grades. In this
section, the local manipulation capability of the framework (per Section 3) will be demonstrated by an
example where the manipulator tries to relocate a heavy tree on a slope with the base fixed. Then, the
reconfigurable relocation capability (per Section 4) will be demonstrated by commanding the machine to
relocate on a test terrain without carrying a tree. Finally, a comparison between the proposed hierarchical
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Table I. Mobile manipulator parameters for the test case.

Link Number 0 1 2 3 4 5 Tree
Length, li (m) 1.60 0.96 3.27 3.27 0.458 0.677 8
Mass, mi (kg) 13, 000 5000 2000 1000 50 2600 4000

Table II. Denavit-Hartenberg parameters table of the
feller buncher manipulator.

ai αi di θ i

1 0 0 l1 q1

2 0 q2 0 0
3 0 q3 l2 0
4 0 q4 l3 0
5 0 0 l4 q5

framework and a traditional method will be presented. Since the purpose of the planner is to provide
motion guidance for low level controllers to follow, the effect of control error is neglected and perfect
trajectory tracking is assumed.

5.1. Kinematics model of a feller buncher
The feller buncher machine is modeled after the Tigercat 855E, and its kinematics can be described
with the schematic diagram in Fig. 2 and the Denavit-Hartenberg parameters in Table II. The machine
is considered to be holding onto a tree in the manipulation planning example, and the length li and mass
mi of each of the machine’s links and the tree are summarized in Table I. The machine’s support polygon
is a 3.23 m× 5 m rectangle.

The optimal control results in this Section are achieved by running the general optimal control
solver GPOPS [47] under MATLAB environment on a Windows desktop with Intel Core i7-4770
3.40 GHz processor. The solver formulates a NOCP, through direct method, into a nonlinear program-
ming problem. Despite the theoretical advantage of indirect method, due to the non-convexity of the
ZMP inequality constraint, the necessary optimality condition is impossible to find without a priori
knowledge on constraint occurrence [41]. Hence, direct method is chosen to solve problem (4) based on
a quasi-static path.

Since the simplified manipulator model has 2 arm DoFs while the full model has 5 arm DoFs, to
ensure that the ZMP location of the full model follows that of the simplified model, a relationship
between the DoFs of the simplified model and those of the full model of the machine needs to be estab-
lished. To satisfy Assumption 1(b), for the specific machine geometry in this example, we choose to
constrain the machine’s joint angles such that

[q3, q4, q5]T = [−π −2q2,
π

2
+ q2, constant]T , (23)

and the corresponding relationship between joint accelerations follows:

[q̈3, q̈4, q̈5]T = [−2q̈2, q̈2, 0]T . (24)

The relationship between d and q2 can be written as:

q2 = sin−1

(−d

2l2

)
. (25)
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Then, taking the first and second derivative of (25) with respect to time, we can obtain:

q̇2 = −ḋ

2l2

√
1− d2

4l2
2

q̈2 =− d̈

2l2

√
1− d2

4l2
2

− dḋ2

8l3
2

√
1− d2

4l2
2

3 .

(26)

Therefore, using the mapping provided in (23) and (24), and the relation between joint angles and
accelerations as given in (25) and (26), the ZMP location of the full kinematics model can be written as
pzmp(x̃, ũ).

5.2. Full kinematics vs. simplified formulation vs. phase plane method
In the first test case, we consider the feller buncher to be situated statically on a slope that results in a
30-degree vehicle roll to the left. The machine starts from this initial condition and the goal is to have
the cabin yaw 180 degrees towards left. The initial joint angles and velocities are:

q(t0)= [0,−π/6,−2π/3, π/6,−π/2]T rad

q̇(t0)= [0, 0, 0, 0, 0]T rad/s,
(27)

and the desired final joint angles and velocities are:

q(tf )= [π ,−π/6,−2π/3, π/6,−π/2]T rad

q̇(tf )= [0, 0, 0, 0, 0]T rad/s.
(28)

The joint rate and acceleration constraints are:

−π
4
≤ q̇i ≤ π

4
rad/s ∀ i

−π
2
≤ q̈i ≤ π

2
rad/s2 ∀ i.

The ZMP loci of motions generated using the optimal trajectory planning formulation (4) with full
kinematics model, the simplified kinematics model, and the classic phase plane method that considers
joint angle, rate, and acceleration limits without stability constraints [25] are presented in Fig. 6. These
results show that if the feller buncher follows the time-optimal trajectory prescribed by the phase plane
method, the ZMP locus (green) of the machine will travel outside of the support polygon. In this case, the
machine is at risk of rolling over. However, the motion generated through solving (4) with full kinematics
model and the simplified kinematics model would result in safe (red and blue) ZMP loci. It is noted
that although the starting and ending states of the machine for the three trajectory planning methods
are the same, the ZMP loci do not start and end at the same points due to different initial accelerations.
Additionally, even though the ZMP locus generated from the simplified model (blue) displays chattering
behavior, the corresponding joint accelerations shown in Fig. 7(a) are sufficiently smooth. The unsafe
motion generated by the phase plane method takes 4.5 s to complete; the safe motion generated by
solving the NOCP (4) also takes 4.5 s to complete; and the safe motion generated with the simplified
kinematics model takes 5.0 s to complete.

For the solutions of (4) and (4) with simplified kinematics, the planned joint accelerations, rates, and
angles are displayed in Fig. 7(a), (b), and (c), respectively. It is noted that all initial and final conditions,
and state and input constraints are satisfied for both the full and simplified formulations. However, for
this example, the computation time to solve (4) is more than 5 h, while the computation time to solve
with simplified kinematics is 1.34 s.
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Figure 6. ZMP loci of constrained trajectory planning vs. phase plane method.

(a) Joint accelerations. (b) Joint velocities. (c) Joint angles.

Figure 7. Joint accelerations (a), velocities (b), and angles (c) plots. Blue line indicates results from the
simplified model, red line indicates results from the full model, black dashed lines indicate constraints.
Note that all blue values of q5 are zero due to this DoF being reduced in the simplified model.

5.3. Monte Carlo simulations for reconfiguration on different slopes
To test the performance of the simplified model for different initial and final conditions, additional sim-
ulations were carried out for four different machine base attitudes of 0,15, 20, and 30-degree roll, each
with 3000 pairs of randomized initial and final cabin yaw angles from the set [−2π , 2π ] with other initial
and final joint angles the same as in (27) and (28). The trajectory planning success rate is presented in
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Table III. Trajectory planning success
rate with simplified kinematics model for
four base attitudes.

Base Attitude Success Rate
0-degree Roll 0.989
15-degree Roll 0.988
20-degree Roll 0.796
30-degree Roll 0.406

Figure 8. Computation time for reconfiguration maneuver of four slope angles using simplified model.

Table III. The distribution of successful trajectory planning times for the four base attitudes is presented
in Fig. 8.

It can be observed from these results that the planning success rate decreases with increasing slope
angle, and computation time increases with increasing slope angle. The decreasing trend in success rate
is due to the more frequent appearance of infeasible initial and final conditions. The distribution in Fig. 8
shows that the dimension reduction applied in the simplified model allows the computation time to be
low enough for online guidance in most cases.

5.4. Mobile relocation planning
To test the performance of mobile relocation trajectory planning of Section 4, a test terrain described by
the sinusoidal function:

sz = 10 cos

(√
sx

2 + sy
2

10

)
(29)

is created. To formulate the NOCP (4) of this example, the terrain surface function (29) is integrated
into the feller buncher’s simplified kinematics (5). It is also noted that the simplified kinematics will be
used for the remainder of the simulation results.

The machine itself, without the tree, is then commanded to start from the peak of a mountain (sx = 0,
sy = 0, sz = 10) and to relocate to a point (sx = 0, sy = 63, sz ≈ 10) on the surrounding ridge (see Fig. 9).
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Figure 9. Planned path and point of reconfiguration of the feller buncher machine on a sinusoidal test
terrain.

Denoting the base’s linear velocity as v, the initial and final states for the machine’s base and arm are:

[x0, y0, v, ψ̄ , ˙̄ψ]T(t0)= [0, 0, 0, 0, 0]T

q(t0)= [0,−π/6,−2π/3, π/6,−π/2]T

q̇(t0)= [0, 0, 0, 0, 0]T

[x0, y0, v, ψ̄ , ˙̄ψ]T(tf )= [0, 63, 0, free, 0]T

q̇(tf )= [0, 0, 0, 0, 0]T ,

https://doi.org/10.1017/S0263574722000777 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000777


Robotica 4109

and we note that the final heading angle of the base and arm joint angles are left free. The constraints
on the mobile base’s linear and angular rates and accelerations are:

0≤v≤ 2.78 m/s

−1≤ua ≤ 1 m/s2

−2≤ψ̇ ≤ 2 rad/s

−2

3
≤uψ ≤ 2

3
rad/s2.

Algorithm 1 first generates a quasi-static path with guaranteed stability for continuous motion for the
machine indicated by the blue crosses in Fig. 9. The run time for path generation is 2.00 s. The resulting
path requires the machine to reconfigure its cabin angle q1, as shown by Fig. 9(a) and (b), to shift the
ZMP so the machine does not rollover towards the front as it is descending the slope. The sampling
point (sampling point #13) where this configuration change happens is highlighted in Fig. 9(c) by a red
circle.

Then, based on the quasi-static path and configuration change generated by Algorithm 1, an initial
guess is given to the NOCP solver to generate linear and angular accelerations for the machine to allow
for time-optimal relocation. The solver generates the trajectory of each segment with the initial and final
location of a segment being two consecutive sampling points. To create an initial guess of each segment
for the NOCP solver, the machine is constrained to be static at each sampling point but is given small
constant linear velocity and heading rate to satisfy the quasi-static property. The resulting trajectories
of all segments are then combined. The continuous path of the machine is represented by the red line in
Fig. 9, the motion trajectory is shown in Fig. 10, and the ZMP trajectory is shown in Fig. 11. Note that
the machine’s velocity remains 0 in segment 14 due to arm reconfiguration.

The result in Fig. 10 shows that all state and stability constraint variables remained within their
bounds, indicated by horizontal black dashed lines, and the overall trajectory takes≈ 180 s to complete.
Each motion segment separated by vertical dashed lines took ≈ 0.30 s to calculate, and the entire tra-
jectory took 18.30 s to plan. This shows that the framework proposed in this paper can be implemented
to provide online stability-constrained trajectory planning.

The resulting ZMP trajectory is shown in Fig. 11 with black dashed horizontal lines indicating the
boundaries of Conv(S). During sampling-based path planning, the deviation of xzmp from the centerline
of Conv(S) is constrained to change linearly with respect to the slope angle from 50% of the total width of
Conv(S) on flat ground to 10% on 45o slopes. The machine’s xzmp is shown to have stayed close to 0, that
is, the centerline of the support polygon, during ascent and descent as a result of the traction-optimized
path as mentioned in Section 4.4. The location of yzmp is shown to generally move forward as the machine
is moving down the slope and then move backward as the machine is climbing the slope. However, due
to the quasi-static inter-segment constraint, the overall motion of the machine is not satisfactory: the
velocities and accelerations are highly oscillatory (see the subfigures for a and ψ̈ ) and can cause less
than ideal performance, along with excessive hardware wear. To remedy this, a receding horizon NOCP
solution scheme is implemented.

For the result shown in Fig. 10, more than one trajectory segment can be treated as a whole and thus
used as the initial guess of a new NOCP segment. The length of time interval in the new combined seg-
ment will be called “horizon length.” For this specific example, the horizon length is chosen to be≈ 4 s.
For each segment, when the solver cannot converge to a solution within a user specified time threshold,
the re-planning is considered “unsuccessful,” and the solver is terminated for the current segment and
the re-planning carries on to the next segment. When a re-planning is unsuccessful, the iterative result
computed for the original segment is kept. This way, the motion trajectory can be optimized where
possible to reduce the occurrence of machine stop-and-go.

The receding horizon scheme enhanced motion trajectory is shown in Fig. 12, with the corresponding
ZMP trajectory shown in Fig. 13. It can be observed that, compared to Fig. 10, the motion trajectory
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Figure 10. Motion trajectory generated by iteratively solving NOCP of each segment. Dashed vertical
lines correspond to segments.

Figure 11. ZMP trajectory generated by iteratively solving NOCP of each segment.

has become significantly smoother. The relocation completion time has also been shortened to ≈ 93 s
due to the enhancement. Both the state and dynamic stability constraints are shown to be respected.
The joint motion trajectories of the arm are shown in Fig. 14. The joint variables vary only in one
segment which corresponds to 0 velocity of the machine’s base, when the robot reconfigures itself.
The successful receding horizon re-planning segments took a total 10.52 s to complete, while the 20
unsuccessful segments took a total of 10.00 s with the computational time threshold set to 0.5 s. The
time-optimal trajectories exhibit behaviors similar to bang-bang control except when ZMP constraint
violations are imminent.
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Figure 12. Motion trajectory generated through iteratively solving NOCP with existing motion
trajectory and a horizon length of 20 time steps.

Figure 13. ZMP trajectory generated through iteratively solving NOCP with existing motion trajectory
and a horizon length of 20 time steps.

5.5. Comparison to existing methods
As discussed in Section 1.2 and to the best of the authors knowledge, there are no existing methods to
address the time-optimal, dynamic-stability-constrained, point-to-point trajectory planning of a mobile
robot on 3D rough terrain. Hence, comparison to the state of the art presented here is carried out in a
more general context, by comparing the hierarchical framework solution proposed in this paper to other
general methods used in mobile robot motion planning. Since as noted in Section 1.2, the sampling-
based planning methods are generally used for geometric planning only, because of their exponential
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Figure 14. Joint motion trajectories of the machine with joint angles shown in red and joint velocities
shown in blue.

growth in computation time with planning dimension, NOCP-based methods are considered for our
comparison.

5.5.1. Qualitative comparison with NOCP method
Taking [48] as an example, the NOCP-based planners typically employ a PF to formulate the NOCP
to drive the robot towards its goal while avoiding obstacles. Then, Sequential Quadratic Programming
(SQP) [49] is applied to solve the NOCP in a timely manner. However, applying a PF-based NOCP
formulation with an SQP solver to our problem statement in (4) will pose two major difficulties: One,
the terrain map is non-convex, and the ZMP constraint is non-convex with respect to the robot’s state and
control input. It is well-known that a PF-based formulation in the presence of non-convex constraints will
trap the solution in a local minimum [50]. Although a number of previous papers presented work-arounds
to this local minimum issue in the context of static obstacle avoidance, a work-around that deals with an
acceleration input and velocity-dependent constraints has yet to be put forward. Two, the time-optimal
aspect of (4) results in difficulties in the SQP formulation. As demonstrated in [28], the kinematics of
a robot in a time-optimal robotic planning problem has to be parametrized by a path parameter for the
NOCP to be solved efficiently by SQP, which means a pre-determined geometric path that is feasible is
required.

With the above considerations, in the following, the merit of the proposed method will be demon-
strated by comparing our solution to that of a popular alternative where a MPC scheme is used to guide a
robot along an existing ZMP-stable path. Here, MPC is chosen due to its popularity in trajectory tracking
applications and its computational efficiency [51].

5.5.2. Model predictive control path following
To highlight the importance of enforcing the dynamic stability constraint during the trajectory generation
stage, the trajectory generated with the proposed framework is compared to the motion obtained with
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MPC. Since path generation is not of interest in this comparison, the same quasi-static ZMP-stable
path will be used. The path considered traverses through a sub-area of the test terrain employed in
Section 5.4, (defined with (29)) and is formed by waypoints generated using RRTS (Algorithm 1). For
easier comparison, the path is generated without considering manipulator configuration change, nor
traction optimization.

In this comparison, the MPC controller is employed to drive a linearized unicycle model along a
reference trajectory on the test terrain optimally, by iteratively minimizing the quadratic tracking error,
within a finite time horizon. A reference trajectory along the path will be generated by assigning uniform
path velocities. A detailed explanation of the formulation and implementation of MPC that we follow
can be found in ref. [52]. Even though MPC cannot easily accommodate the nonlinear ZMP constraint
and the time optimality formulation, the purpose of MPC is nonetheless similar to the NOCP portion
of our hierarchical framework in that they both aim to generate locally optimal trajectories based on
an existing path. It is worth pointing out that even though NMPC (Nonlinear MPC) has the ability to
accommodate the ZMP stability and time-optimization aspects by employing (4) in its formulation, it is
treated as a finite-horizon special case of (4) in this paper as it still requires the controlled invariant set
proof of Theorem 4.1 and other techniques from this work to perform efficiently and reliably.

5.5.3. Quantitative comparison results with MPC
For the implementation of MPC, we set the sampling period to 0.2 s, prediction horizon to 5 steps, and
control horizon to 2 steps. Further details on the setup, parameters, and performance of the MPC scheme
can be found in Appendix C. Two MPC examples are provided in this comparison: for the first, referred
to as “RRTS+MPC (slow),” the reference input to MPC is a constant velocity of 0.1 m/s, while for the
second, named “RRTS+MPC (fast),” the reference is a higher constant velocity of 1m/s. The resulting
paths and velocity profiles are shown in Fig. 15(a) and (b), respectively. In these plots, the color map
represents the velocity profile ranging from 0m/s to 1.6 m/s as the corresponding color turns from cold
(blue) to warm (yellow). The corresponding ZMP trajectories resulting from the two MPC trajectories
are shown in Fig. 15(c) where the horizontal (time) axis has been normalized for ease of comparison.
The trajectories take 180 s and 21 s to complete, for the slow and fast examples, respectively. It can be
observed that even though “RRTS+MPC (fast)” took significantly less time to reach the goal point, it
resulted in large ZMP constraint violation near 0.6 time unit. On the path shown in Fig. 15(b), this ZMP
constraint violation corresponds to the second turn where the machine is commanded to retain higher
velocity compared to “RRTS+MPC (slow)” and “Proposed” before exiting the turn. This is a direct
result of the controller only following a quasi-statically ZMP-stable path, without taking the dynamic
ZMP stability into consideration.

Following the proposed framework, the path generated with Algorithm 1 is treated as a quasi-static
trajectory with a low velocity of 0.1m/s to warm start (4). The computation time to generate the iterative
solution for all 15 segments is 4.62 s, and the receding horizon re-planning then takes a total of 5.67 s
with 8 unsuccessful segments’ computational time going over the threshold of 0.5 s. The average time to
initially plan a segment is 0.31 s, and the average successful re-planning time for each segment is 0.24.
The planned trajectory of each segment takes an average of 1.7 s to complete. The final trajectory takes
24s to complete, and the final path is plotted in Fig. 15(b), for direct comparison to “RRTS+MPC (fast)”
solution. Figure 15(b) shows that the velocity profile for the “Proposed” solution trajectory decreased to
a lower value, as compared to “RRTS+MPC (fast),” before reaching the apex of the second turn. The
ZMP trajectory corresponding to the proposed framework solution remains within the support polygon
for the whole maneuver (see Fig. 15(c)).

The comparison presented here clearly demonstrates that the dynamic stability constraint has to be
respected in both path and trajectory generation for safe and time-efficient robot motion. The proposed
hierarchical solution framework can directly accomplish this goal. Although the reference trajectory for
MPC can be tuned through trial and error to have a sufficiently slow velocity to approach the quasi-static
ZMP-stable conditions, this can drastically reduce the motion efficiency.
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(a) Path and velocity profile of the trajectory
generated using ‘RRTS+MPC’ following a
reference trajectory with uniform velocity of
0.1m/s.

(c) ZMP trajectories resulted form motion generated with ‘Proposed’, ‘RRTS+MPC (slow)’ and ‘RRTS+MPC
(fast)’ methods. Time is normalized for ease of visual comparison. Actual completion time is 24s, 180s, and 21s
for ‘Proposed’, ‘RRTS+MPC (slow)’, and ‘RRTS+MPC (fast)’, respectively.

(b) Path and velocity profile of ‘Proposed’, and the
trajectory generated using ;RRTS+MPC’ following a
reference trajectory with uniform velocity of 1m/s.

Figure 15. Comparison between MPC path tracking results with slow and fast uniform velocity
reference trajectories and the trajectory generated using the proposed framework.

6. Conclusions and future work
To conclude, this paper presented a framework that allows online time-optimal point-to-point mobile
manipulation trajectory planning to provide motion guidance for a robot to work safely and efficiently
on rough terrain. This is achieved through the formulation of a trajectory planning problem as an optimal
control problem with an additional dynamic stability constraint. To reduce the problem dimension, the
mobile manipulation task is first divided into two separate stages: the manipulation stage and the relo-
cation stage. The online trajectory planning of the manipulation stage is achieved through dimension
reduction with the help of the known inverse kinematics mapping of the robot. Then, to solve the relo-
cation planning problem, a sampling-based planning algorithm that optimizes slope traction availability
and generates results guaranteed to meet non-convex stability constraints when continuously executed is
implemented. The robot path and reconfiguration command generated by the sampling-based algorithm
are then taken to warm start a NOCP solver. The resulting trajectory is further optimized and smoothed
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with the receding horizon re-planning scheme. Both qualitative and quantitative simulation comparisons
to other popular approaches are presented to showcase the benefit of the proposed framework.

The framework presented in this paper is the first attempt at a task-based online optimal planning
algorithm for a mobile manipulator that accommodates the nonlinear dynamic stability constraint. Some
further work can be done for the framework to be implemented in a wider variety of scenarios. For
example, the terrain map used in this paper only assumes a rough knowledge of the terrain features.
However, as the robot traverses through the terrain, more detailed terrain features can be captured by its
on-board sensors. With a more detailed local terrain map, a re-planning method or a stability-guaranteed
control law can be developed to help the robot deal with local terrain complexities.
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A. Proof of Theorem 4.1

Proof 2. A mobile robot with unicycle kinematics follows a quasi-static path with two motion primi-
tives: forward and turn. We define any state or ZMP constraint variable ( · ) found under static condition:
[ẋT , uT]T = 0 as a static variable denoted by ( · )static. Its dynamic counterpart, denoted by ( · )dynamic, is
found with any feasible [ẋT , uT]T . The Euclidean distance between pdynamic

zmp and pstatic
zmp can be characterized

using the 2-norm: ||pdynamic
zmp − pstatic

zmp ||2. Here, pdynamic
zmp and pstatic

zmp can both be found from (3).
Under the assumption that straight line segments connecting the nodes are short so that the robot’s

attitude change during forward motion is negligible, we have ẍdynamic
i = ẍstatic

i = 0, and z̈dynamic
i = z̈static

i = 0
∀i ∈ {0, · · · , n}. Therefore, xdynamic

zmp = xstatic
zmp . As a result, we obtain the following during forward

motion:
∣∣∣∣pdynamic

zmp − pstatic
zmp

∣∣∣∣
2
= ∣∣ydynamic

zmp − ystatic
zmp

∣∣
=
∣∣∣∣∣
∑

i miÿ
dynamic
i zi∑

i migz

∣∣∣∣∣
≤
∣∣∣∣
∑

i mizi∑
i migz

∣∣∣∣ ∣∣ÿdynamic
∣∣

=
∣∣∣∣
∑

i mizi∑
i migz

∣∣∣∣ |ua| .

(30)

Derivation in (30) shows that, the distance between pstatic
zmp and pdynamic

zmp during forward motion is pro-
portionally bounded by the magnitude of input ua and is independent of velocity v. Hence, there exists
input ua(t) ∀ t ∈ [t0, tf ], such that v> 0 and

∣∣∣∣pdynamic
zmp −pstatic

zmp

∣∣∣∣
2
≤ σ for arbitrarily small σ > 0 on straight

line segments.
For the unicycle turning motion, every link on the robot goes through a rotation about the z0-axis that

can be described by the following rotation matrix:

Ryaw =
⎡
⎢⎣

cosψ −sinψ 0

sinψ cosψ 0

0 0 1

⎤
⎥⎦ . (31)
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With the mobile base location fixed during the turn, the linear acceleration of each link’s center of
mass can be written as:⎡

⎢⎣
ẍi

ÿi

z̈i

⎤
⎥⎦=

⎡
⎢⎣
−cosψψ̇ 2 − sinψuψ sinψψ̇ 2 − cosψuψ 0

−sinψψ̇2 + cosψuψ − cosψψ̇ 2 − sinψuψ 0

0 0 0

⎤
⎥⎦

︸ ︷︷ ︸
R̈yaw

⎡
⎢⎣

xi

yi

zi

⎤
⎥⎦ . (32)

Then, the distance between dynamic and static ZMPs during turning motion can be written as:∣∣∣∣pdynamic
zmp −pstatic

zmp
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2
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dynamic
i zi

Mgz

∣∣∣∣∣
=
∣∣∣∣
[

m0z0

Mgz

, · · · ,
mnzn

Mgz

] [
ẍdynamic

0 , · · · , ẍdynamic
n

]T
∣∣∣∣+

∣∣∣∣
[

m0z0

Mgz

, · · · ,
mnzn

Mgz

] [
ÿdynamic

0 , · · · , ÿdynamic
n

]T
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣
[

m0z0

Mgz

, · · · ,
mnzn

Mgz

]∣∣∣∣
∣∣∣∣

2

( ∣∣∣∣[ẍdynamic
0 , · · · , ẍdynamic

n

]∣∣∣∣
2
+ ∣∣∣∣[ÿdynamic

0 , · · · , ÿdynamic
n

]∣∣∣∣
2

)

≤ 2

∣∣∣∣
∣∣∣∣
[

m0z0

Mgz

, · · · ,
mnzn

Mgz

]∣∣∣∣
∣∣∣∣

2

∑
i

(|xi|ψ̇ 2 + |xi||uψ | + |yi|ψ̇ 2 + |yi||uψ |)

= 2

∣∣∣∣
∣∣∣∣
[

m0z0

Mgz

, · · · ,
mnzn

Mgz

]∣∣∣∣
∣∣∣∣

2

∑
i

(|xi| + |yi|) (ψ̇ 2 + |uψ |)

(33)

Inequality (33) shows that the distance between pstatic
zmp and pdynamic

zmp during turning motion is propor-
tionally bounded by (ψ̇2 + |uψ |). Then, it can be inferred that there exists a positive value ε such that∣∣∣∣pdynamic

zmp −pstatic
zmp

∣∣∣∣
2
≤ σ for an arbitrarily small σ > 0 during turning motion as long as (ψ̇ 2 + |uψ |)≤ ε.

It is further claimed that, there exists ψ̇(t) and uψ (t) pair ∀ t ∈ [t0, tf ], such that sign(ψ̇)= sign(ψ),
(ψ̇2 + |uψ |)≤ ε, and ψ̇(t)= ∫ uψ (t)dt.

Hence, combining (30) and (33), there exists a trajectory u(t) ∀ t such that τ̇ > 0 over the unit interval
I, and τ→ 1 within finite time. �

B. Proof of Proposition 2

Proof 3. To find the variation in ZMP location with respect to φr and θ r each, we take the corre-
sponding partial derivatives of G1 and G2. Furthermore, with the previously stated assumption that the
distances between neighboring sampling points are small, we evaluate the partial derivatives at zero
angles φr ≈ 0 and θ r ≈ 0, and obtain:

∂G1

∂φr
=−1− r2

13

r2
33

∂G1

∂θ r
=− r13r23

r2
33

∂G2

∂φr
=− r13r23

r2
33

∂G2

∂θ r
= 1+ r2

23

r2
33

.

(34)
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Figure 16. Cost history of the MPC controller in “RRTS+MPC (slow)” and “RRTS+MPC (fast)”.

Recalling the orthonormality of the rotation matrix so that r2
13 + r2

23 + r2
33 = 1, and that r2

33 ≥ r2
13 + r2

23

for ground robot operation on slopes under 45 degrees, the following can be inferred from (34):
∂G1

∂φr
≤−1,

∂G1

∂θ r
≈ 0

∂G2

∂φr
≈ 0,

∂G2

∂θ r
≥ 1.

(35)

By substituting (35) into (15), we obtain the following constraints on the variation of ZMP
coordinates:

∂xr
zmp

∂φr
≥ Mz

M
> 0,

∂xr
zmp

∂θ r
≈ 0

∂yr
zmp

∂φr
≈ 0,

∂yr
zmp

∂θ r
≤−Mz

M
< 0.

(36)

�

C. Details of the MPC controller implementation

The discrete-time MPC controller is implemented using MATLAB’s Model Predictive Control Toolbox
in Simulink. Since no arm reconfiguration is considered for this demonstration, the states of interest
at time step k can be defined as xMPC(k)= [x0,k, y0,k, vk, ψ̄k, ˙̄ψk]T . For a time-stamped reference trajectory
xref

MPC, tracking error at time step k can be defined as e(k)= xMPC(k)− xref
MPC(k). The machine is represented

by a linearized unicycle model moving on 2-D coordinates: xMPC(k+ 1)= AxMPC(k)+ BuMPC(k), where
control input at time step k is denoted by uMPC(k)= [ua,k, uψ ,k]T .

The MPC is designed to minimize cost function Jk =∑p−1
i=0 eT(k+ i)Qe(k+ i) subject to the lin-

earized unicycle model with the same joint initial condition, state constraint, and input constraint as
in Section 5.4. The positive semi-definite cost matrix is chosen to be Q= diag[1, 1, 0.1, 1, 0] to achieve
position and heading angle tracking. No reference input tracking weight is included in cost function Jk.
The cost history of both applications of MPC is shown in Fig. 16.
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