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In 1939 Hilbert and Bernays proved, by arithmetizing Gödel’s original 1930

proof of the completeness of quantification theory, that every satisfiable sentence

of first-order predicate logic has a model over N in which the predicates are

all arithmetically definable. Here and below, by “predicate logic” we mean a

language that includes predicate letters of arbitrary adicity but no function

signs or individual constants. Once the relevant tools were in place, their proof

was shown to yield predicates that are ∆0
2. Kreisel [1953] and Mostowski [1953]

independently showed that the predicates could not always be taken to be

recursive; Putnam [1957] strengthened this result by showing that they could

not always be taken to be recursively enumerable (r.e.) or co-r.e.

In [1965] Putnam refined the positive result by showing that the predicates

could always be taken to be Σ∗1, that is, Boolean combinations of r.e. predicates.

Putnam’s proof, however, applied only to logic without identity.

Hensel and Putnam [1969] presented a proof that the result could be extended

to first-order predicate logic with identity. This paper was almost completely

unnoticed: it was not reviewed in the JSL, it is not listed, although Putnam

[1965] is, in bibliographies such as those in Odifreddi [1989] and Hájek and

Pudlák [1993].1 It was therefore unremarked that the paper is nearly unreadable,

containing inadequate notation, misleading citations, and cryptic arguments. In

particular, the crucial final argument (corresponding to §4 below) is expressed

extremely breezily, which masks several deductive gaps. Luckily, the proof can

be reframed so as to be rigorous and reasonably transparent. Here is a fully

explicit statement of the theorem to be proved:

Let T be a recursive set of sentences of first-order predicate logic

with identity containing a finite number of predicates. If T has an

infinite model, then it has a model over N in which the predicates

are Σ∗1.

In §2 we prove the theorem in the restricted case of a single sentence with no

1The question is said to be open in Goldfarb [2018] and Visser [2017].
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occurrence of ‘=’. This is just a modernized rendition of the argument from

Putnam [1965]. The proof of the full theorem occupies §§3-4.

§1. Limit-determination and modulus. An (n+1)-place number-theoretic

function f limit-determines an n-place relation R iff for all i1, . . . , in,

R(i1, . . . , in) iff limy→∞ f(i1, . . . , in, y) = 1

¬R(1, . . . , in) iff limy→∞ f(i1, . . . , in, y) = 0

The Limit Lemma, a standard result of recursion theory originally due to

Shoenfield, states that a relation is ∆0
2 iff there is a recursive function that

limit-determines it (see Odifreddi [1989] p. 373).

A function f is k-trial iff, for all i1, . . . , in, f(i1, . . . , in, y) changes value at most

k times as y increases. Putnam introduced this notion in [1965], and showed

that a relation is Σ∗1 iff for some k there is a recursive k-trial function that

limit-determines it. This result is used below in the “if” direction. The proof is

straightforward, and perhaps best presented by an example. Suppose g(i, j, y)

is a 2-trial function that limit-determines a relation R(i, j). Then R(i, j) can

be specified thus: there are two numbers y at which g(i, j, y) changes value,

and at the greater of them the value is 1; or there aren’t two numbers y such

that g(i, j, y) changes value at y but there is one number y at which g(i, j, y)

changes value, and then its value is 1, or there is no number y at which g(i, j, y)

changes value, and g(i, j, 0) is 1. Each of these clauses expresses either an r.e.

relation or a co-r.e. relation.

Let f be a recursive function that limit-determines a relation. For any i, an

i-modulus for f is a number b such that

f(i1, . . . , in, b) = f(i1, . . . , in, y)

whenever i1, . . . , in ≤ i and b ≤ y. For every i there are cofinitely many integers

b that are i-moduli. The notion of an i-modulus is not, in general, recursive.

The following is a recursive notion that approximates it and yields an i-modulus

in the limit. An r-seeming i-modulus for f is a number b ≤ r such that

f(i1, . . . , in, b) = f(i1, . . . , in, y)

whenever i1, . . . , in ≤ i and b ≤ y ≤ r. Note that if b is an i-modulus for f ,
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then b is also an r-seeming i-modulus for f for every r ≥ b; and if b is not an

i-modulus for f , then b fails to be an r-seeming i-modulus for f for cofinitely

many r.

§2. Proof for sentences without identity. Let F be a satisfiable sentence

of first-order predicate logic without identity. As noted above, there exists

a model M for it with universe N in which the predicates are interpreted as

∆0
2 relations. By the Limit Lemma, for each predicate P of F there exists

a recursive function fP that limit-determines PM. We call an integer b an

i-modulus (simpliciter) iff it is an i-modulus for every function fP , and an

r-seeming i-modulus (simpliciter) iff it is an r-seeming i-modulus for every

function fP .

Let 〈., .〉 be a standard primitive recursive bijective pairing function. Define

ϕ : N→ N by:

ϕ(p) =

{
i if p = 〈i, b〉 and b is an i-modulus

0 otherwise.

Clearly ϕ is onto. Now let N be the structure with universe N such that, for

each n-adic predicate P of F and all p1, . . . , pn,

N |= Pp1 . . . pn iff M |= Pϕ(p1) . . . ϕ(pn)

Since F does not contain identity and ϕ is onto, it follows that N |= F . (This is

a general model-theoretic fact: if a structure N is the preimage of a relational

structure M under a function from the universe of N onto the universe of M,

then M and N model the same sentences of predicate logic without identity.)

We now show that the relations of the structure N are Σ∗1 by constructing

k-trial recursive functions that limit-determine them. For each r define ϕr by:

ϕr(p) =

{
i if p = 〈i, b〉 and b is an r-seeming i-modulus, or if r < b

0 otherwise.

Let p = 〈i, b〉. If b is an i-modulus, then ϕr(p) = i for all r. If b is not an

i-modulus, then ϕr(p) = i for r up to some point, but = 0 for all greater r.

Thus for any fixed p, the value of ϕr(p) can change at most once as r increases,
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and the eventual value of ϕr(p) is ϕ(p) for all sufficiently large r.

Let P be any predicate of F , say P is n-place, let p1, . . . , pn be any numbers,

with pk = 〈ik, bk〉 for 1 ≤ k ≤ n, and let b0 be a 0-modulus. We define

gP (p1, . . . pn, r) = fP (ϕr(p1), . . . , ϕr(pn), b)

where b is the maximum of b0, b1, . . . , bn.

It is easy to see that, for each n-ary predicate P and all p1, . . . , pn,

lim
y→∞

gP (p1, . . . pn, y) = lim
y→∞

fP (ϕ(p1), . . . , ϕ(pn), y)

since there will be a q such that gP (p1, . . . , pn, r) = fP (ϕ(p1), . . . , ϕ(pn), b) for

all r ≥ q, and b is an i-modulus for i such that ϕ(p1), . . . , ϕ(pn) ≤ i. Hence

each function gP limit-determines PN.

If P is n-adic, gP is an n-trial function. For as noted above as r increases, a

value ϕr(p) can change only once, from a nonzero value to 0. This implies that

as r increases gP (p1, . . . pn, r) can change value at most n times.

This proof generalizes without difficulty to recursive sets of sentences without

identity, provided that there are finitely many predicates in the sentences, since

the basic Hilbert-Bernays ∆0
2 result so generalizes.

§3. Proof with identity: specification of the model. The mapping ϕ in

the proof just given is not injective, and hence the preimage does not preserve

identity. This makes the proof inapplicable to sentences containing “=”. To

obtain a suitable mapping that is injective as well, Hensel and Putnam’s strategy

is to start with a ∆0
2 model that contains infinitely many indiscernibles. These

indiscernibles provide distinct objects to be the images of distinct arguments.

In order to be injective the mapping ϕ can take 〈i, b〉 to i for at most one b. To

insure this, a minimality condition needs to be put on b. This requires much

more fine-grained information about the approximation procedure than was

needed in §2.

Let T be a recursive set of sentences of first-order predicate logic with identity

containing a finite number of predicates. Let T S be the Skolemization of T .

Let Eq be the (purely universal) axioms of identity (that is, reflexivity and
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substitutivity) for the language of T S. Let a0, . . . , ak, . . . be distinct constants

foreign to T S, and let In be the set of axioms asserting that these a-constants

are order-indiscernible, with respect to the atomic formulas of T S, i.e., axioms

F (ai1 , . . . , ain)↔ F (aj1 , . . . , ajn)

whenever F (x1, .., xn) is an atomic formula of L(T S), i1 < . . . < in and

j1 < . . . < jn.

Finally, let T+ be the theory T S ∪ Eq ∪ In ∪ {a1 6= a2}. An argument using

Ramsey’s Theorem shows that if T has an infinite model then T+ has a model.

(See Chang and Keisler [1973], pp. 147-148.) Note that T+ implies ai 6= aj

whenever i 6= j.

Let D be the set of terms that can be built from the function signs and constants

appearing in formulas in T+. We assume a standard gödelization of D, and let

τ(1), τ(3), . . . , τ (2i+ 1), . . . be a listing in order of increasing gödel numbers of

the members of D that are not a-constants, while τ(2i) = ai for each i. Thus

τ is a bijection between N and D. We assume that if τ(i) is a proper subterm

of τ(j) then i < j.

Since T+ has a model, every conjunction of substitution instances of members

of T+ over D is consistent. Compactness then yields the consistency of the set

of all such instances, and by König’s Lemma (as in Gödel’s completeness proof)

this immediately yields a quasi-model M0 of T+ with universe D. “Quasi-

model” here means a structure in which all the axioms of T+ hold, but the

interpretation of the identity sign “=” may not be true identity. Due to

the inclusion of the axioms Eq, however, “=” will be interpreted in M0 as a

congruence relation relative to the other predicates and the function signs of

T+.

Let M be the isomorphic copy with universe N of M0, via the bijection τ . The

interpretations in M of the predicates of T+ can be taken to be ∆0
2. Hence for

each predicate P of T+ there is a recursive function fP that limit-determines

PM. As before, we say an integer b is an i-modulus iff it is an i-modulus for

each function fP , and similarly for “r-seeming i-modulus”.

By the definition of τ , the even numbers are the indiscernibles of M. Indeed,
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the reason we started with the Skolemization of T and built up the quasi-model

M0 over universe D was to insure not only that the predicates were ∆0
2 but

also that the indiscernibles comprised a recursive set.

Let (i1, . . . , in) be an n-tuple of integers, and let i be the largest odd integer

among the ik, if there is one, and let i = 0 if all the ik are even. An n-tuple

(j1, . . . , jn) is similar to (i1, . . . , in) iff:

1) for each k if ik ≤ i then jk = ik;

2) the tuples obtained from the two n-tuples by eliminating all entries ≤ i

are order-isomorphic.

Note that if ik is an even integer > i, then the a-constant τ(ik) does not occur

in any term τ(ij) for ij ≤ i. Consequently, the axioms In imply the following:

if P is an n-place predicate and (i1, . . . , in) and (j1, . . . , jn) are similar, then

M |= Pi1 . . . in ↔ Pj1 . . . jn

We now introduce a different pairing function. Let π(i, b) = i+ 1
2
b(b+ 1). π

is a bijection between N and pairs (i, b) such that i ≤ b. π is monotonic in

each argument Moreover, if π(j, c) < π(i, b), where j ≤ c and i ≤ b, then c ≤ b.

This “ordering property” will be crucial for the proof of Lemma 3(iii) in §4.

A pair (i, b) is ideal iff i is odd and b is the smallest number ≥ i such that

(i) b is an (i+ 2n0)-modulus, where n0 is the largest adicity of any predicate

letter of T ; and

(ii) for all j < i, f=(j, i, b) = 0.

Note that if (i, b) is ideal, then i will be the smallest member of its =M-

equivalence class.

Now define ϕ : N → N by ϕ(p) = i if p = π(i, b) for an ideal pair (i, b); and

otherwise ϕ(p) is the least even number not among ϕ(0), . . . , ϕ(p− 1). Since

for every i there is at most one b such that (i, b) is ideal, it follows that ϕ is

injective and its range includes all even numbers.

Lemma 1. The range of ϕ includes exactly one element from each =M-

equivalence class.

Proof. First we show that the range of ϕ contains at least one element from

each =M-equivalence class. Since the range contains every even number, we
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need consider only those =M-equivalence classes all of whose members are odd

integers. Suppose i is the least member of such a class. Thus M |= ¬j = i

for each j < i. Hence if b is the smallest (i + 2n0)-modulus ≥ i, we have

f=(j, i, b) = 0 for each j < i. Consequently (i, b) is ideal, so that ϕ(π(i, b)) = i.

Next we show uniqueness. If i is an odd number in the range of ϕ, then i is

the smallest member of its =M-equivalence class. So the only other number

that could be in this =M-equivalence class and in the range of ϕ is an even

integer j > i. But then the pair (i, j) is similar to the pair (i, j + 2), so by

indiscernibility, M |= i = j ↔ i = j+ 2. Thus if M |= i = j, by the transitivity

of identity we would also have M |= j = j + 2, a contradiction. �

Now let N be the structure with universe N such that, for each n-place predicate

P of L(T ) and all p1, . . . , pn,

N |= Pp1 . . . pn ↔M |= Pϕ(p1) . . . ϕ(pn)

Thus ϕ is an isomorphism between N and the substructure of M whose universe

is the range of ϕ. From Lemma 1 it follows that =N is the identity relation,

and that N is a model of T .

§4. The predicates of N are Σ∗1.

As in §2, we define recursive functions that approximate those used in the

specification of N. A pair (i, b) is r-ideal iff i is odd and b is the smallest

number ≥ i such that

(i) b is an r-seeming (i+ 2n0)-modulus; and

(ii) for all j < i, f=(j, i, b) = 0.

For each r, if p = π(i, b) for an r-ideal pair (i, b), let ϕr(p) = i; otherwise let

ϕr(p) be the earliest even number not among ϕr(0), . . . , ϕr(p− 1). Note that

ϕr(p) is recursive in both arguments.

Because r-seeming moduli are either moduli for cofinitely many r or non-moduli

for cofinitely many r, for every m there is a number ρ(m) with the following

property: for every r ≥ ρ(m) and all pairs (i, b) with i ≤ b such that π(i, b) ≤ m,

b is an r-seeming (i + 2n0)-modulus iff b is an (i + 2n0)-modulus. Hence for

every r ≥ ρ(m) and every p ≤ m, ϕr(p) = ϕ(p).

For any n-tuple (i1, . . . , in) let Ji1, . . . , inK be the earliest n-tuple similar to
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(i1, . . . , in). Let P be any predicate of T , say P is n-adic, let p1, . . . , pn be

any numbers, with pk = π(ik, bk) with ik ≤ bk for 1 ≤ k ≤ n, and let b0 be a

2n0-modulus. We define

gP (p1, . . . , pn, r) = fP (Jϕr(p1), . . . , ϕr(pn)K, b)

where b is the maximum of b0, b1, . . . bn. Note that each gP is recursive.

Lemma 2. For each predicate P , gP limit-determines PN.

Proof. It is enough to show, for each predicate P and all p1, ..., pn, that

lim
y→∞

gP (p1, . . . , pn, y) = lim
y→∞

fP (Jϕ(p1), . . . , ϕ(pn)K, y).

Let m be the largest of p1, . . . , pn. Then for any r ≥ ρ(m), gP (p1, . . . , pn, r) =

fP (Jϕ(p1), . . . , ϕ(pn)K, b) where b is chosen as above. Hence

lim
y→∞

gP (p1, . . . , pn, y) = fP (Jϕ(p1), . . . , ϕ(pn)K, b)

for this b.

What remains to be established is that

fP (Jϕ(p1), . . . , ϕ(pn)K, b) = lim
y→∞

fP (Jϕ(p1), . . . , ϕ(pn)K, y)

Let q be the largest integer in the n-tuple Jϕ(p1), . . . , ϕ(pn)K; it suffices to show

that b is a q-modulus. If all the ϕ(pj) are even, then Jϕ(p1), . . . , ϕ(pn)K will con-

tain only even numbers≤ 2n0. Since b is a 2n0-modulus, it is indeed a q-modulus.

Otherwise, let ϕ(pj) be the largest odd number among ϕ(p1), . . . , ϕ(pn). Then

Jϕ(p1), . . . , ϕ(pn)K will contain only numbers ≤ ϕ(pj) + 2n0, that is, q ≤
ϕ(pj) + 2n0. But (ϕ(pj), b

′) is ideal for some b′ ≤ b, so that b is a (ϕ(pj) + 2n0)-

modulus. �

Lemma 3. Suppose b is an r-seeming i-modulus but not an (r + 1)-seeming

i-modulus. Then for any c ≤ r and any j ≥ i, c is not an (r + 1)-seeming

j-modulus.

Proof. The supposition on b implies that for some predicate P and some

i1, . . . , in ≤ i,

fP (i1, . . . , in, r) 6= fP (i1, . . . , in, r + 1).
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The existence of such i1, . . . , in imply that c is not an (r+1)-seeming j-modulus,

so long as c ≤ r and j ≥ i. �

Lemma 4. (i) Suppose i < j and both (i, b) and (j, c) are r-ideal. Then b ≤ c.

(ii) Suppose c ≤ r and (j, c) is (r + 1)-ideal. Then (j, c) is r-ideal.

(iii) Suppose (j, c) is r-ideal and (r + 1)-ideal. Then for every q < π(j, c),

ϕr(q) = ϕr+1(q).

Proof. (i) By definition, b is the least number ≥ i that is an r-seeming

(i + 2n0)-modulus and such that f=(k, i, b) = 0 for each k < i. We show

that c also has these properties; consequently b ≤ c. Since i < j and c is

an r-seeming (j + 2n0)-modulus, c is also an r-seeming (i + 2n0)-modulus.

Since c ≥ j also c ≥ i. Since (j, c) is r-ideal, c ≤ r, so that for every k < i,

f=(k, i, c) = f=(k, i, b). Hence, for every k < i, f=(k, i, c) = 0.

(ii) If (j, c) is (r + 1)-ideal but not r-ideal, there must be a number b < c such

that (j, b) is r-ideal but not (r + 1)-ideal. And this, in turn, can happen only

if b is not an (r + 1)-seeming (j + 2n0)-modulus. But then, by Lemma 3, c is

not an (r + 1)-seeming (j + 2n0)-modulus, contradicting the (r + 1)-ideality of

(j, c).

(iii) For reductio, suppose q is the least number < π(j, c) such that ϕr(q) 6=
ϕr+1(q). Let (i, b) be the unique pair with i ≤ b and q = π(i, b). Note that, by

the ordering property of π, b ≤ c, so that b ≤ r. Now (i, b) cannot be r-ideal and

(r+1)-ideal, since then ϕr(q) = ϕr+1(q) = i. If (i, b) were neither neither r-ideal

nor (r + 1)-ideal, then ϕr(q) = ϕr+1(q) = the least even number not among

ϕr(0), . . . , ϕr(q− 1), which by hypothesis are equal to ϕr+1(0), . . . , ϕr+1(q− 1).

By (ii), (i, b) cannot be (r + 1)-ideal but not r-ideal.

The only possibility remaining is that (i, b) is r-ideal but not (r + 1)-ideal. If

i = j, then by minimality b = c, so that π(i, b) = q, contrary to the choice of q.

If j < i then by (i) we have c ≤ b, so that π(j, c) < π(i, b), that is, π(j, c) < q,

also contrary to the choice of q. Hence i < j. Since (i, b) is not (r + 1)-ideal,

b is not an (r + 1)-seeming (i + 2n0)-modulus, so, by Lemma 3, c is not an

(r+ 1)-seeming (j+ 2n0)-modulus, contradicting the (r+ 1)-ideality of (j, c). �

Lemma 5. Suppose P is an n-adic predicate. Then gP is a 2n-trial function.
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Proof. Let p = π(i, b) where i ≤ b and i is odd. Call p r-unready iff b > r

and r-ideal if (i, b) is r-ideal. The r-index of an n-tuple of numbers is 2α+ β,

where α is the number of entries in the n-tuple that are r-unready, and β is

the number of entries in the n-tuple that are r-ideal.

First we note that if p is neither r-unready nor r-ideal, then p is neither (r+ 1)-

unready nor (r + 1)-ideal. This follows immediately from Lemma 4(ii). Hence

the (r + 1)-index of an n-tuple is never more than its r-index.

We shall now show the following: If Jϕr+1(p1), . . . , ϕr+1(pn)K 6= Jϕr(p1), . . . , ϕr(pn)K
then the (r+1)-index of (p1, . . . , pn) is lower than its r-index. Since the maximal

r-index of an n-tuple is 2n, this will prove the lemma, since gP (p1, . . . , pn, r) 6=
gP (p1, . . . , pn, r + 1) only if Jϕr+1(p1), . . . , ϕr+1(pn)K 6= Jϕr(p1), . . . , ϕr(pn)K.

Suppose the indices are equal. Then none of p1, . . . , pn is r-unready but not

(r + 1)-unready, as this would lower the index by 1 or 2.

If none of p1, . . . , pn is r-ideal, then both ϕr and ϕr+1 take them all to even

numbers, although possibly not the same ones. Nonetheless, their order will

be the same as the order of p1, . . . , pn so that Jϕr+1(p1), . . . , ϕr+1(pn)K =

Jϕr(p1), . . . , ϕr(pn)K.

Now suppose that at least one of p1, . . . , pn is r-ideal. Let ϕr(pj) be the

largest odd number among ϕr(p1), . . . , ϕr(pn). Then pj is also (r + 1)-ideal:

if it were not then the index would decrease. By Lemma 3(i) and (iii), ϕr+1

agrees with ϕr on all the other numbers among p1, . . . , pn except possibly some

numbers pk larger than pj, which are not r-ideal, and so are taken to even

numbers larger than ϕr(0), . . . , ϕr(pk − 1). (Since at least half of the numbers

≤ pk are not r-ideal, ϕr(pk) ≥ pk, whereas, since pj is r-ideal, ϕr(pj) < pj.).

Similarly, ϕr+1 also takes these numbers to even numbers larger than ϕr(pj),

else the index would increase; the values of ϕr+1 on these numbers may be

different from those of ϕr, but the ordering of those values will be the same.

That is, (ϕr(p1), . . . , ϕr(pn)) will be similar to (ϕr+1(p1), . . . , ϕr+1(pn)), so that

Jϕr+1(p1), . . . , ϕr+1(pn)K = Jϕr(p1), . . . , ϕr(pn)K. �

Lemmas 2 and 5 show that each PN is Σ∗1, and so conclude the proof.

The proof shows that, for each predicate P , the complexity of PN depends
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only on the adicity P , and not on any quantificational structure of T , where

by complexity we mean the number of r.e. and co-r.e. sets whose Boolean

combination defines PN. No upper bound is put on this complexity. However,

there are many different techniques for encoding polyadic predicates of high

adicity by dyadic or triadic predicates. Most of these involve additional

quantifiers, so their applicability in this context would have to be very delicate.

But the question remains: is there an upper bound on the Boolean complexity

needed even for predicates of arbitrarily large adicity.2
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