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In 1939 Hilbert and Bernays proved, by arithmetizing Godel’s original 1930
proof of the completeness of quantification theory, that every satisfiable sentence
of first-order predicate logic has a model over N in which the predicates are
all arithmetically definable. Here and below, by “predicate logic” we mean a
language that includes predicate letters of arbitrary adicity but no function
signs or individual constants. Once the relevant tools were in place, their proof
was shown to yield predicates that are AY. Kreisel [1953] and Mostowski [1953]
independently showed that the predicates could not always be taken to be
recursive; Putnam [1957] strengthened this result by showing that they could

not always be taken to be recursively enumerable (r.e.) or co-r.e.

In [1965] Putnam refined the positive result by showing that the predicates
could always be taken to be X7, that is, Boolean combinations of r.e. predicates.

Putnam’s proof, however, applied only to logic without identity.

Hensel and Putnam [1969] presented a proof that the result could be extended
to first-order predicate logic with identity. This paper was almost completely
unnoticed: it was not reviewed in the JSL, it is not listed, although Putnam
[1965] is, in bibliographies such as those in Odifreddi [1989] and H4jek and
Pudldk [1993] E] It was therefore unremarked that the paper is nearly unreadable,
containing inadequate notation, misleading citations, and cryptic arguments. In
particular, the crucial final argument (corresponding to §4 below) is expressed
extremely breezily, which masks several deductive gaps. Luckily, the proof can
be reframed so as to be rigorous and reasonably transparent. Here is a fully

explicit statement of the theorem to be proved:

Let T be a recursive set of sentences of first-order predicate logic
with identity containing a finite number of predicates. If T" has an
infinite model, then it has a model over N in which the predicates

are 7.

In §2 we prove the theorem in the restricted case of a single sentence with no

!The question is said to be open in Goldfarb [2018] and Visser [2017].
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occurrence of ‘=". This is just a modernized rendition of the argument from
Putnam [1965]. The proof of the full theorem occupies §§3-4.

§1. Limit-determination and modulus. An (n+1)-place number-theoretic

function f limit-determines an n-place relation R iff for all iy,...,4,,

Rliy, ... in) iff iy oo fit, .- in,y) =1
_\R<17 Ce ,Zn) lﬁ hmy%oo f(ily Ce ,in,y) = O

The Limit Lemma, a standard result of recursion theory originally due to
Shoenfield, states that a relation is AJ iff there is a recursive function that
limit-determines it (see Odifreddi [1989] p. 373).

A function f is k-trial iff, for all i1, ..., i, f(i1,...,in,y) changes value at most
k times as y increases. Putnam introduced this notion in [1965], and showed
that a relation is X7 iff for some £ there is a recursive k-trial function that
limit-determines it. This result is used below in the “if” direction. The proof is
straightforward, and perhaps best presented by an example. Suppose ¢(i, j, y)
is a 2-trial function that limit-determines a relation R(i,j). Then R(i,j) can
be specified thus: there are two numbers y at which ¢(i, j,y) changes value,
and at the greater of them the value is 1; or there aren’t two numbers y such
that ¢(i, 7,y) changes value at y but there is one number y at which g(z, j, y)
changes value, and then its value is 1, or there is no number y at which ¢(i, j, y)
changes value, and ¢(i, 7,0) is 1. Each of these clauses expresses either an r.e.

relation or a co-r.e. relation.

Let f be a recursive function that limit-determines a relation. For any ¢, an
i-modulus for f is a number b such that

f(i17"'7in>b>:f(ila"'ainagD

whenever iy, ...,i, < iand b < y. For every i there are cofinitely many integers
b that are --moduli. The notion of an i-modulus is not, in general, recursive.
The following is a recursive notion that approximates it and yields an i-modulus

in the limit. An r-seeming i-modulus for f is a number b < r such that

f(il,...,in,b):f(?:l,...,in,y)

whenever i1,...,7, <7 and b < y < r. Note that if b is an -modulus for f,

https://doi.org/10.1017/bsl.2025.10125 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2025.10125

then b is also an r-seeming i-modulus for f for every r > b; and if b is not an
t-modulus for f, then b fails to be an r-seeming i-modulus for f for cofinitely

many r.

§2. Proof for sentences without identity. Let I’ be a satisfiable sentence
of first-order predicate logic without identity. As noted above, there exists
a model 9 for it with universe N in which the predicates are interpreted as
AY relations. By the Limit Lemma, for each predicate P of F' there exists
a recursive function fp that limit-determines P™. We call an integer b an
i-modulus (simpliciter) iff it is an i-modulus for every function fp, and an
r-seeming i-modulus (simpliciter) iff it is an r-seeming i-modulus for every

function fp.

Let (.,.) be a standard primitive recursive bijective pairing function. Define
¢ :N — N by:

i if p=(i,b) and b is an i-modulus
p(p) = .
0 otherwise.

Clearly ¢ is onto. Now let 9t be the structure with universe N such that, for

each n-adic predicate P of F' and all py,...,p,,

N Ppy...p, iff M= Po(pr) ... o(pn)

Since F does not contain identity and ¢ is onto, it follows that 91 = F'. (This is
a general model-theoretic fact: if a structure 91 is the preimage of a relational
structure 9 under a function from the universe of 1 onto the universe of 91,

then 9t and M model the same sentences of predicate logic without identity.)

We now show that the relations of the structure 91 are »] by constructing

k-trial recursive functions that limit-determine them. For each r define ¢, by:

i if p= (i,b) and b is an r-seeming i-modulus, or if r < b
or(p) = .
0 otherwise.

Let p = (i,b). If b is an i-modulus, then ¢,(p) = i for all r. If b is not an
i-modulus, then ¢, (p) = i for r up to some point, but = 0 for all greater r.

Thus for any fixed p, the value of ¢,(p) can change at most once as r increases,
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and the eventual value of ¢,(p) is p(p) for all sufficiently large .

Let P be any predicate of F', say P is n-place, let py,...,p, be any numbers,
with pg = (ix, by) for 1 < k < n, and let by be a 0-modulus. We define

gP(pl’ .. 'pmr) = fP(90T<p1)v s 790T(pn)7 b)

where b is the maximum of by, by, ..., b,.

It is easy to see that, for each n-ary predicate P and all py,...,p,,

lim gp(p1,...pn,y) = im fe(e(p1),...,0(@n),y)
Y—00 Yy—00

since there will be a ¢ such that gp(p1,...,pn,7) = fr(e(P1), ..., ©(pn),b) for
all » > ¢, and b is an i-modulus for ¢ such that ¢(p1),...,o(p,) < i¢. Hence

each function gp limit-determines P™.

If P is n-adic, gp is an n-trial function. For as noted above as r increases, a
value ¢, (p) can change only once, from a nonzero value to 0. This implies that

as r increases gp(pi,...pn,T) can change value at most n times.

This proof generalizes without difficulty to recursive sets of sentences without
identity, provided that there are finitely many predicates in the sentences, since

the basic Hilbert-Bernays AJ result so generalizes.

§3. Proof with identity: specification of the model. The mapping ¢ in
the proof just given is not injective, and hence the preimage does not preserve
identity. This makes the proof inapplicable to sentences containing “=". To
obtain a suitable mapping that is injective as well, Hensel and Putnam’s strategy
is to start with a A9 model that contains infinitely many indiscernibles. These
indiscernibles provide distinct objects to be the images of distinct arguments.
In order to be injective the mapping ¢ can take (i, b) to ¢ for at most one b. To
insure this, a minimality condition needs to be put on b. This requires much
more fine-grained information about the approximation procedure than was
needed in §2.

Let T be a recursive set of sentences of first-order predicate logic with identity
containing a finite number of predicates. Let T be the Skolemization of T

Let Eq be the (purely universal) axioms of identity (that is, reflexivity and
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substitutivity) for the language of T”. Let ay, ..., ay,... be distinct constants
foreign to T, and let In be the set of axioms asserting that these a-constants

are order-indiscernible, with respect to the atomic formulas of 77, i.e., axioms
F(ail, Ce ,ain) < F(ajl, . ,Cljn)

whenever F(xy,..,,) is an atomic formula of £(T°), i1 < ... < 4, and

1n1<...<Un.

Finally, let T+ be the theory T° UEq U In U {a; # as}. An argument using
Ramsey’s Theorem shows that if 7" has an infinite model then 7T has a model.
(See Chang and Keisler [1973], pp. 147-148.) Note that T implies a; # a;

whenever ¢ # j.

Let D be the set of terms that can be built from the function signs and constants
appearing in formulas in 7. We assume a standard godelization of D, and let
7(1),7(3),...,7(2i +1),... be a listing in order of increasing gédel numbers of
the members of D that are not a-constants, while 7(2¢) = a; for each ¢. Thus
7 is a bijection between N and D. We assume that if 7(i) is a proper subterm
of 7(j) then i < j.

Since T has a model, every conjunction of substitution instances of members
of T over D is consistent. Compactness then yields the consistency of the set
of all such instances, and by Konig’s Lemma (as in Gédel’s completeness proof)
this immediately yields a quasi-model 91, of T with universe D. “Quasi-
model” here means a structure in which all the axioms of T hold, but the

(13 2

interpretation of the identity sign “=" may not be true identity. Due to
the inclusion of the axioms Eq, however, “=" will be interpreted in 91, as a
congruence relation relative to the other predicates and the function signs of

T+.

Let 991 be the isomorphic copy with universe N of 9,, via the bijection 7. The
interpretations in 9 of the predicates of TT can be taken to be AJ. Hence for
each predicate P of T there is a recursive function fp that limit-determines
P As before, we say an integer b is an i-modulus iff it is an i-modulus for

each function fp, and similarly for “r-seeming i-modulus”.

By the definition of 7, the even numbers are the indiscernibles of 9. Indeed,
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the reason we started with the Skolemization of 7" and built up the quasi-model
M, over universe D was to insure not only that the predicates were A but

also that the indiscernibles comprised a recursive set.

Let (i1,...,i,) be an n-tuple of integers, and let i be the largest odd integer
among the i, if there is one, and let i = 0 if all the iy are even. An n-tuple
(J1s -+ -+ Jn) is similar to (iy,...,4,) iff:

1) for each k if ix, < i then jj = iy;

2) the tuples obtained from the two n-tuples by eliminating all entries < i

are order-isomorphic.

Note that if i is an even integer > 4, then the a-constant 7(ix) does not occur
in any term 7(i;) for i; <i. Consequently, the axioms In imply the following:

if P is an n-place predicate and (i1, ...,i,) and (j1,...,J,) are similar, then

We now introduce a different pairing function. Let 7 (i,b) =i+ 3b(b+1). 7
is a bijection between N and pairs (i,b) such that ¢ < b. 7 is monotonic in
each argument Moreover, if 7(7,¢) < m(7,b), where j < c and i < b, then ¢ < b.

This “ordering property” will be crucial for the proof of Lemma 3(iii) in §4.

A pair (i,b) is ideal iff i is odd and b is the smallest number > ¢ such that

(i) bis an (i +2ng)-modulus, where ny is the largest adicity of any predicate
letter of T'; and

(ii) for all j < i, f=(4,4,b) = 0.
Note that if (i,b) is ideal, then i will be the smallest member of its ="'-

equivalence class.

Now define ¢ : N — N by ¢(p) =i if p = 7(4,b) for an ideal pair (i,b); and
otherwise ¢(p) is the least even number not among ¢(0),...,¢(p —1). Since
for every i there is at most one b such that (i,b) is ideal, it follows that ¢ is

injective and its range includes all even numbers.

Lemma 1. The range of ¢ includes exactly one element from each =™'-

equivalence class.

Proof. First we show that the range of ¢ contains at least one element from

each ="-equivalence class. Since the range contains every even number, we
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need consider only those =™-equivalence classes all of whose members are odd
integers. Suppose ¢ is the least member of such a class. Thus M = —j =i
for each j < i. Hence if b is the smallest (i + 2ny)-modulus > i, we have
f=(j,i,b) = 0 for each j < i. Consequently (i, b) is ideal, so that p(m(i,b)) = i.

Next we show uniqueness. If ¢ is an odd number in the range of ¢, then 7 is
the smallest member of its =™"-equivalence class. So the only other number
that could be in this ="-equivalence class and in the range of ¢ is an even
integer j > i. But then the pair (,7) is similar to the pair (i,j + 2), so by
indiscernibility, M =i = j <> i = j +2. Thus if M |= i = j, by the transitivity
of identity we would also have 9 |= j = j + 2, a contradiction. U

Now let 91 be the structure with universe N such that, for each n-place predicate
P of L(T) and all py, ..., pn,

Ni= Ppr...pn < M Po(pr) .. o(pn)

Thus ¢ is an isomorphism between 91 and the substructure of 9 whose universe
is the range of ¢. From Lemma 1 it follows that =" is the identity relation,
and that 91 is a model of T'.

§4. The predicates of 91 are >7.

As in §2, we define recursive functions that approximate those used in the
specification of M. A pair (i,b) is r-ideal iff 7 is odd and b is the smallest
number > ¢ such that

(i) b is an 7r-seeming (i + 2ng)-modulus; and

(ii) for all j < i, f=(4,4,b) = 0.
For each r, if p = m(i,b) for an r-ideal pair (i,b), let ¢,(p) = i; otherwise let
©r(p) be the earliest even number not among ¢,.(0),...,¢,(p — 1). Note that

©r(p) is recursive in both arguments.

Because r-seeming moduli are either moduli for cofinitely many r or non-moduli
for cofinitely many r, for every m there is a number p(m) with the following
property: for every r > p(m) and all pairs (¢, b) with ¢ < b such that 7 (i,b) < m,
b is an r-seeming (i + 2ng)-modulus iff b is an (i + 2ng)-modulus. Hence for

every r > p(m) and every p < m, o, (p) = ¢(p).

For any n-tuple (iy,...,4,) let [i1,...,4,] be the earliest n-tuple similar to

https://doi.org/10.1017/bsl.2025.10125 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2025.10125

(i1,...,i,). Let P be any predicate of T, say P is n-adic, let py,...,p, be
any numbers, with py = 7(ig, by) with i < by for 1 < k < n, and let by be a
2no-modulus. We define

gP(ph cee ,me) = fP([[SOT(pl)a SR cpr(pn)]]v b)

where b is the maximum of by, by, ... b,. Note that each gp is recursive.

Lemma 2. For each predicate P, gp limit-determines P™.

Proof. It is enough to show, for each predicate P and all py, ..., p,, that

lim gP(pla <y Dn, y) = lim fP([[SD(pl)v s agp(pnﬂ]?y)
Y—00 Yy—00

Let m be the largest of py,...,p,. Then for any r > p(m), gp(p1,- .., Pn,7) =
fe([e(p1), -, ©(pn)], b) where b is chosen as above. Hence

yllg)lo gp(D1, - pny) = fe(lep), -, en)],b)

for this b.

What remains to be established is that

fe(le(p1), -, 0(pn)], b) = Jlim fe(le(p1), -5 0(Pn)], v)

Let ¢ be the largest integer in the n-tuple [ (p1),. .., ¢(ps)]; it suffices to show
that b is a g-modulus. If all the (p;) are even, then [¢(p1), ..., ¢(p,)] will con-
tain only even numbers < 2ng. Since b is a 2ng-modulus, it is indeed a g-modulus.
Otherwise, let ¢(p;) be the largest odd number among ¢(p1), ..., ¢(p,). Then
le(p1), .., e(ps)] will contain only numbers < ¢(p;) + 2ng, that is, ¢ <
©(pj) + 2no. But (p(p;), V) is ideal for some b < b, so that b is a (¢(p;) + 2no)-

modulus. O

Lemma 3. Suppose b is an r-seeming i-modulus but not an (r 4 1)-seeming
i-modulus. Then for any ¢ < r and any j > 4, ¢ is not an (r + 1)-seeming

J-modulus.

Proof. The supposition on b implies that for some predicate P and some
'L.lv"'vin S’L,
fP(ila s 72‘7177.) 7£ fP(ila s 7Z‘n7r + 1)
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The existence of such iy, . .., 4, imply that ¢ is not an (r+1)-seeming j-modulus,

so long as ¢ < r and j > 1. OJ

Lemma 4. (i) Suppose ¢ < j and both (i, b) and (j, ¢) are r-ideal. Then b < c.
(ii) Suppose ¢ < r and (j,c) is (r + 1)-ideal. Then (j,¢) is r-ideal.

(iii) Suppose (j,¢) is r-ideal and (r + 1)-ideal. Then for every q < 7n(j,c¢),
er(9) = ria(a).

Proof. (i) By definition, b is the least number > ¢ that is an r-seeming
(i + 2ng)-modulus and such that f_(k,i,b) = 0 for each k£ < i. We show
that ¢ also has these properties; consequently b < ¢. Since ¢ < j and c is
an r-seeming (j + 2ng)-modulus, ¢ is also an r-seeming (i + 2ng)-modulus.
Since ¢ > j also ¢ > i. Since (j,¢) is r-ideal, ¢ < r, so that for every k < 1,
f=(k,i,c) = f—(k,i,b). Hence, for every k < i, f_(k,i,c) =0.

(ii) If (4, ¢) is (r + 1)-ideal but not r-ideal, there must be a number b < ¢ such
that (j,b) is r-ideal but not (r + 1)-ideal. And this, in turn, can happen only
if b is not an (r + 1)-seeming (j + 2ng)-modulus. But then, by Lemma 3, ¢ is
not an (7 + 1)-seeming (j + 2ng)-modulus, contradicting the (r + 1)-ideality of

(7, ©)-

(iii) For reductio, suppose ¢ is the least number < 7(j, ¢) such that ¢,(q) #
©r+1(q). Let (i,b) be the unique pair with ¢ < b and ¢ = 7(i,b). Note that, by
the ordering property of 7, b < ¢, so that b < r. Now (7, b) cannot be r-ideal and
(r+1)-ideal, since then ¢, (q) = ¢,+1(q) = i. If (i, b) were neither neither r-ideal
nor (r + 1)-ideal, then ¢,(q) = ¢,+1(¢) = the least even number not among
©r(0),...,¢,(qg— 1), which by hypothesis are equal to ¢,11(0), ..., p.41(q —1).
By (ii), (¢,b) cannot be (r + 1)-ideal but not r-ideal.

The only possibility remaining is that (i,b) is r-ideal but not (r + 1)-ideal. If
i = 7, then by minimality b = ¢, so that 7 (i, b) = ¢, contrary to the choice of g.
If j < i then by (i) we have ¢ < b, so that 7(j,c) < m(i,b), that is, 7(j,¢) < q,
also contrary to the choice of q. Hence i < j. Since (i,b) is not (r + 1)-ideal,
b is not an (r + 1)-seeming (i + 2ng)-modulus, so, by Lemma 3, ¢ is not an

(r+ 1)-seeming (j + 2n¢)-modulus, contradicting the (r + 1)-ideality of (j, c). O

Lemma 5. Suppose P is an n-adic predicate. Then gp is a 2n-trial function.
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Proof. Let p = m(i,b) where i < b and i is odd. Call p r-unready iff b > r
and r-ideal if (i,b) is r-ideal. The r-indez of an n-tuple of numbers is 2a + 3,
where « is the number of entries in the n-tuple that are r-unready, and [ is

the number of entries in the n-tuple that are r-ideal.

First we note that if p is neither r-unready nor r-ideal, then p is neither (r +1)-
unready nor (r 4+ 1)-ideal. This follows immediately from Lemma 4(ii). Hence

the (r + 1)-index of an n-tuple is never more than its r-index.

We shall now show the following: If [i2,41(p1). - -, 2rs1(pa)] 7 [£(p1); - 0 ()]
then the (r+1)-index of (pi, ..., pn) is lower than its r-index. Since the maximal

r-index of an n-tuple is 2n, this will prove the lemma, since gp(p1,...,pn,7) #

gp(P1, -+ pny 4 1) only if [, (p1), - s e (Pa)] # [ (1), - - -5 00 (Pn)]-

Suppose the indices are equal. Then none of pq, ..., p, is r-unready but not

(r + 1)-unready, as this would lower the index by 1 or 2.

If none of py,...,p, is r-ideal, then both ¢, and ¢,; take them all to even
numbers, although possibly not the same ones. Nonetheless, their order will

be the same as the order of py,...,p, so that [p,1(p1),...,0r11(pn)] =
[er(p1), -5 0 (Pn)]-

Now suppose that at least one of py,...,p, is r-ideal. Let ¢,(p;) be the
largest odd number among ¢, (p1), ..., ¢, (ps). Then p; is also (r + 1)-ideal:
if it were not then the index would decrease. By Lemma 3(i) and (iii), ;41
agrees with ¢, on all the other numbers among py, . .., p, except possibly some
numbers p; larger than p;, which are not r-ideal, and so are taken to even
numbers larger than ¢,(0),...,¢,(pr — 1). (Since at least half of the numbers
< pi are not r-ideal, ¢, (pr) > pk, whereas, since p; is r-ideal, ¢, (p;) < p;.).
Similarly, ¢,;1 also takes these numbers to even numbers larger than ¢, (p;),
else the index would increase; the values of ¢, 1 on these numbers may be

different from those of ¢,, but the ordering of those values will be the same.
That is, (¢r(p1), - .., ¢r(py)) will be similar to (@,41(p1), ..., @r+1(Pn)), so that
[or1(p1), -5 eria ()] = [r(p1), - - 0r(P0)]- O

Lemmas 2 and 5 show that each P™ is ¥}, and so conclude the proof.

The proof shows that, for each predicate P, the complexity of P™ depends

10
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only on the adicity P, and not on any quantificational structure of 7', where
by complexity we mean the number of r.e. and co-r.e. sets whose Boolean
combination defines P™'. No upper bound is put on this complexity. However,
there are many different techniques for encoding polyadic predicates of high
adicity by dyadic or triadic predicates. Most of these involve additional
quantifiers, so their applicability in this context would have to be very delicate.
But the question remains: is there an upper bound on the Boolean complexity

needed even for predicates of arbitrarily large adicityﬂ
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