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Abstract

We consider the distribution p of numbers whose binary digits are generated from infinitely many
tosses of a biased coin. It is shown that, if E has positive fi measure, then some «-fold sum of E with
itself must contain an interval. This contrasts with the known result that all convolution powers of /x
are singular.

1980 Mathematics subject classification (Amer. Math. Soc): primary 60 B 15; secondary 43 A 05.

1. Introduction

Let I be a random variable in the unit interval the digits of whose binary
expansion are determined by tossing a biased coin (0 with probability p, 1 with
probability 1 — p, p =£ 0, 1/2,1). Then it is well known that every «-fold sum of
independent copies of X has a purely singular distribution: for a proof, note that
the characteristic function of X does not vanish at infinity. By way of counter-
point we show here that if E is any Borel set within which there is a positive
probability of locating X, then some w-fold sum of E must contain an interval.

Our result is perhaps the most natural probabilistic way to exhibit a phenome-
non previously discussed in the context of Banach algebras of measures [2], [3].
Following [3] we call a measure n basic provided that

/ i ( £ ) > 0 = » G p ( £ ) = R,
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where Gp(£) is the subgroup of the additive reals generated by the elements of
E, Lebesgue measure is obviously basic, but the algebraic property of interest is
the existence of basic measures all of whose convolution powers are singular.
Cantor measure / i c (or, more accurately, Lebesgue's singular measure on Cantor's
middle third set!) was shown in [2] to be of this type, the case of (most) Riesz
products was covered in [3], and the result is extended here to coin-tossing
distributions.

We follow the pattern of proof of [2] where the inequality

(X Lebesgue measure, /tc Cantor measure, a = Iog3/log4) was established. Our
main theorem gives analogous inequalities for n-fold sums involving the coin-toss-
ing distributions. Related inequalities for different classes of measures can be
found in [1], [5].

The work reported here was started while the first-named author visited
Heriot-Watt University partially supported by SERC.

2. Main result

For 0 < p < 1, let np denote the infinite convolution

M,= • (p80+(l-p)82-*),
n = 1

where Sx denotes the positive unit mass at x. Thus pp is the distribution of the
random variable X described in the introduction. Let X denote Lebesgue measure
on the real line (so that X restricted to [0,1] is ̂ 1/2)-

THEOREM 1. Let a = [max(/>, 1 - p)]'1. Suppose that a > 21 / n and let a = an

= log2/« log a. Suppose that Ex, E2,..., En are Borel subsets of R. Then

X{EX + E2 + • • • +En) > ^(E.y^iE,)" • • • pp(En)
tt.

We will show, in the next section, how to reduce the proof of Theorem 1 to a
purely combinatorial result which will be established in Section 4. For now, let us
show how the corollary follows from the theorem. In fact, given p (0 < p < 1),
we have a > 1, and hence there exists a positive integer n such that a > 21/n.
Suppose now that £ is a Borel set of positive ji^-measure and apply the theorem
with E1 = E2= • • • = En = E. This shows that the «-fold sum, (n)E, of E with
itself has positive X-measure. By a classical theorem of Steinhaus (cf. [4], page
143) the sum of («)£ with itself must contain an open interval. If is now clear
that the group generated by E covers the entire line, in other words, that \ip is
basic.
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REMARK. The key property in the preceding argument is the fact that some
n-fold sum of every set of positive /^-measure has positive Lebesgue measure. It is
appropriate to note the extraordinary fact (cf. [2]) that there exist basic measures
supported by (closed) null sets all of whose n-fold sums are Lebesgue null.

3. Reduction step

Our object in this section is to eliminate the measure theory from the proof of
Theorem 1. In the first stage we shift attention to measures having finite support.

Fix p, a, n as in the statement of Theorem 1. For each positive integer k let

U 2 - 1 :*,. = <>, l j ,j
/**= * (pS0+(l-p)S2-,),

i = l

and let X̂  be defined on the «-fold sum, (n)Sk, of Sk with itself by the property
X*{*}=2-* (xe(n)S).

Eventually we will prove

T H E O R E M 2. Let k be a positive integer and suppose that Bv B2,..., Bn are

subsets of Sk. Then

\k(Bl + B2+--+Bn)> iik(B1)
a
PLk(B1)

a • • • iik{Bn)
a.

The first task is to prove

LEMMA 1. Theorem 2 implies Theorem 1.

PROOF. Let us start with another reduction by noting that it will suffice to
prove Theorem 1 for closed sets. For suppose we have that limited form of the
result and are given Borel subsets Elt E2, . . . ,£„ of [0,1]. Fix TJ > 0 and choose
e > 0 such that (1 + e)"" < 1 + ij. By regularity of \ip we may choose closed sets
Fx, F2,...,Fn such that Ft c Et and

Then

+£„).
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Since TJ was an arbitrary positive number, we have verified the opening remark of
the proof.

Observe next that we may write any clsoed set Fj in [0,1] as an intersection

F,= n Ft
k,

k = \

where

Fk = Bf +[0,2~k].

A simple compactness argument shows that

F l + F 2 + ••• + F H = f \ ( F k + F k + ••• + F k ) .
k-1

We have, as k -> oo,

p p ( F k ) - ^(FJ, \(Fk + F2
k + • • • + F n

k ) -*\(F1 + F 2 + - - - + F n ) .

Moreover,

p p ( F k ) = n k ( B k ) , \{Fk + Fk + • • • + F n
k ) > \ k { B k + B k + - - - + B k ) ,

and so the statement of the lemma is true.
Now we must set about proving Theorem 2. We shall use an inductive

argument to reduce it to a purely combinatorial result. This reduction is similar to
the argument of Lemma 2.6 of [2]. That proof is unfortunately somewhat garbled
so we take the opportunity to note that the sets D°, D\ defined there should be
given as

) D\ = ( E ek3-k + 2 • 3"" :ek

k=i I U = i
Then the induction works "for the tail" in similar fashion to the following
argument.

REDUCTION OF THEOREM 2. Suppose that we have the result of Theorem 2 for
some positive integer k. Let Bx,..., Bnbe subsets of Sk+l. For _/ = 1,.. . ,«, we
write

k+\

Note that the sum set, Bx + B2 + • • • +Bn, is a union of sum sets each of the
form

B2,j(2) + • • • + Bn,j(n)>
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where j(i) e {0 ,1} . Let us write <€ for the collection of all those sum sets given
as in (1) for which j(l) +j(2) H ^ j(n) is even and 2 for those sum sets for
which j(l) +j(2) + • • • + j{n) is odd. Then every set in # is disjoint from every
set in 2. It follows that

Ce #} + max{\k+1(D):D e 2).

Let us use a prime to denote projection from Sk+1 to Sk. Thus we write

(3)

also

provided

Bij0) -

that

1 k

\ m - l

r" — i
C — 1

k

2 : L,
m = \

1.XD 2:,y(2)

m+>(i)2-*-1

«.>(»)•

Using the notation introduced in (3), (4), (5), we may rewrite (2) as the inequality

The inductive hypothesis will enable us to replace a term such as Xk(C) in (6) by
an expression of the form

(7) M*(^.ya))V*(^(2,)"---M*(^(-,)".

Now observe that

(8) ^k+i(BlJ(i)) = Plik(B'iJ0)) or (l-p)pk(B;j0)),

with the first or second alternative occurring according to whether j(i) is even or
odd. Moreover,

(9) M* + i(£,,o) = x,nk^(B,), lik+1(Btl) = (1 - JC, . )M*+I(^) ,

for some 0 < JC,- < 1. Combining (8) and (9) we find that

Now we may substitute (10) and (7) to see that (7) can be rewritten as an
expression of the form

(11) M* + i (*x)y k +i(B 2 V • • • Vk+l(Bn)
a(yiy2 • • • yn),

where each yt is of the form (x,//>)a or ((1 - x,)/(l -/»))", the choice being
determined by the parity of the sequence j(l), j(2),..., j(n) which is in turn
determined by C. Accordingly, let us relabel y1y2 • • • yn as y(C) and deduce
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from (6), using the inductive hypothesis, that

^ + i ( £ i + # 2 + ••• +Bn)

[ { y ( D ) : D e 9}\

It is immediately clear that the inductive step will be accomplished once we can
prove that
(12) max{j>(C):Ce <&} + max{y(D):D e ^ } > 2.

This is the purely combinatorial theorem which we shall isolate and prove in the
next section.

It remains to ground the induction by checking the case k = 1. Each Bt c
{0, \). If, in fact, Bi = (0, ^} for some /, then weseethat X^B^ + B2 + • •• + Bn)
> \ > /x1(.B1)

a • • • HiiB^". We maysuppose then that each Bt is a singleton and
that Xi(B1 + B2 + • • • + Bn) = \. We must verify that [max(/>, (1 - p)]na < 1/2.
But this is the requirement that ana > 2, and we have already chosen a =
log2 /« log a, so the case k = 1 is indeed true.

4. Combinatorial result

It remains to prove the combinatorial theorem which corresponds to assertion
(12) of the last section.

THEOREM 3. Suppose that 0 < p < 1 and that n is a positive integer. Let
a = [max(/>,(l — p))]'1 and let a = an = Iog2/«loga. Suppose that a > 21/n

andthat 0 < x, < 1 fori = l,...,n. Let Ybe the set ofall products yx • • • _yy • • • yn

of n terms in which thejth term yj satisfies one or the other of

(i) yj'(xj/p)m, (ii) yj= [(l-Xj)/(l -p)]'.

Write Y as the disjoint union Y0U Yv where YQ is the set of all products in which
the second choice is made an even number of times and Y1 is the set of products in
which the second choice is made an odd number of times.

Then
maxY0 + maxTj > 2.

We have another reduction in mind.

LEMMA 2. // will suffice to prove that, for 1 > x > p, we have
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P R O O F O F LEMMA. In tackling T h e o r e m 3 we can ( and do) assume wi thou t loss
of generality that

(13) x l >x2> ••• >xn.

The first case to be considered occurs when we also have xn ^ p. Now the
product (xl/p)"(x2/p)a •••(xn/p)a belongs to Yo, and the product
(x1/pnx2/p)a • • • ((*n_1)//>)a((l - *„)/(! - P)V belongs to Yv Therefore

Combining (13) and (14) and setting x = xn, we obtain

(15) maxy0 + maxyx > G(x),

where x > p.
A similar argument is available when we have p > xlt because we interchange

the roles of p, 1 - p; xt, 1 - xt. This gives

(16) maxy0 + maxr,

where x = JC1; and thus 1 — x > 1 - p.
Let us now consider the case where

(17) x 1 > ••• > x k > p > x k + 1 > ••• > x n .

There are two sub-cases. Suppose first that

(18) xk/

Of the two products

i - P

and

k+iYli-xk+2y n-x,
I-P

one belongs to Yo and the other to Yv Hence their sum gives a lower estimate for
max Yo + max Yx. Using (17) and (18) together, we see that each term in the
product labelled (19) exceeds ((1 - xk+l)/(l - p))a. A similar argument shows
that the product labelled (20) exceeds ((1 - xk+1)/(l - p))("~1)a(xk+l/p).
Accordingly we set x = xk+l and obtain (16) once more (with, of course,
1 — * > 1 — p). The other sub-case occurs when

(21) ^ iL^
PP 1 ~P
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This time we consider the products 

and 

We use (17) and (21) to see that the first exceeds (xk/p)"a while the second 
exceeds (jc f o / /») {" _ 1 ) a ' ((l - xk)/(l - p)). We set x = xk to obtain (15) with 
x > p. This completes the proof of the lemma. 

It remains to check that the inequality mentioned in the statement of Lemma 2 
really does hold. This is the first occasion on which the condition a > 21/n bites, 
so let us recall the standing asumptions. 

LEMMA 3. Suppose that 0 < p < 1, that a [max(/?,(l — p))]'1, that n is a 
positive integer such that a > 2l/n and that a = log2//iloga. 

Then 

F(t) = t n a + t^-^YZJ^ >2> / o r l < / < l//>. 

PROOF. F( l ) = 2, Fip'1) = p'"a > a"a = 2. Accordingly it will suffice to 
check that F'(t) = 0 implies F(t) > 2. In fact, 

F'(t) = nat""-1 +(n - y z j ) " 

1 -/>< 
l - / > -apt^"l\^Y~\i-py 

= a((n-l)a-l 

Thus F'(t) = 0 entails 

When (22) holds, we have 

F(t) = fn" + t("-1)anta(l - pt){npt - » + l ) " 1 

= tna(npt - n + \)'l{npt - n + l+ n-npt) 

= p-n«{Pt)na{npt-n + \)-\ 
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Since p'na > 2, it will suffice to prove that

(23) {pt)"">npt-(n-l).

Let us write s = pt, so that (23) becomes

(24) s " a > ns - ( n - 1 ) , f o r p ^ s ^ l .

The condition a > 2l/n implies that a < 1, so to prove (24) it will be enough to
prove that

(25) H(s) = s" - ns+(n - 1) > 0, iorp^s^l.

But H'(s) = ns"'1 - n < 0 and i/(l) = 0, so (25) holds, this completes the proof
of the lemma and hence of Theorem 3 and the results depending upon it.
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