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Stability of Almost Periodic Nicholson’s
Blowflies Model Involving Patch Structure
and Mortality Terms

Chuangxia Huang, Xin Long, Lihong Huang, and Si Fu

Abstract. Taking into account the effects of patch structure and nonlinear density-dependent mortal-
ity terms, we explore a class of almost periodic Nicholson’s blowflies model in this paper. Employing
the Lyapunov function method and differential inequality technique, some novel assertions are devel-
oped to guarantee the existence and exponential stability of positive almost periodic solutions for the
addressed model, which generalize and refine the corresponding results in some recently published lit-
eratures. Particularly, an example and its numerical simulations are arranged to support the proposed
approach.

1 Introduction

The qualitative theory of differential equations model has been an attractive topic be-
cause of its significance and applications in areas such as physics, mathematical biol-
ogy, and control theory [9,11,21,26]. In population systems, due to factors such as sea-
sonal variation of weather, mating, harvesting and so on, the periodic fluctuations are
a widely occurring process and play key roles in modeling [12,13,15]. However, when
there are nonintegral multiples periods (also called incommensurable) for different
components of the temporally nonuniform environment, more and more scientists
realize that assuming the environment has almost periodicity instead of periodicity
might be a better candidate [4,7,25,27]. Nowadays, the investigations of almost pe-
riodic dynamics systems have been the new world-wide focus (see [5,6,10,14,16,18]).
In particular, the existence and global stability of almost periodic solutions for the
famous scalar Nicholson’s blowflies model with a nonlinear density-dependent mor-
tality term,

L) x'(t) = —a(t) + b(t)e ™ + fj/sj(t)x(t —1j(t))e I (Ox(t=T (1)
j=1

and the Nicholson’s blowflies systems with patch structure and nonlinear density-
dependent mortality terms,
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(12) xf(t) = —a,-i(t) + bii(t)e_xi(t) + Zn: (a,-j(t) - bij(t)e_xj(t))

j=1,j#i

+ 3 Bij(1)xi(t = 7iy(2))e N T0) e Q= {1,2,..,m},

j=1

have been extensively investigated in previous studies [16, 22] and [3], respectively.
Here, the information on the delay and coefficient functions presented in (1.1) and (1.2)
can found in [1, 2, 20, 23] and the references cited therein. For the feedback function
xe™™ and its derivative 1;", the author of [17] pointed out that there exist two fixed

x

positive numbers x and ¥ such that

~ 1-« 1
Kk ~ 0.7215355, K ~ 1.342276, =—,
ex e?
1-x 1 ~ %
sup | |=—, ke “=%Ke "
xzk € e?

It should be pointed out that the global exponential stability of almost periodic solu-
tions of (L.1) has been shown in [16,22] under the restriction that the almost periodic
solution exists in a small interval [«,%]. The global exponential stability of (1.2) was
established in [3], where the authors adopted the restraint that the almost periodic
solution exists in a small domain

[re, & x [1e, K] x - x [, %]

n

Obviously, the above restriction and restraint do not correspond to the biological sig-
nificance of the population models. In particular, to the best of our knowledge, no
research has been conducted on the global stability of almost periodic solutions of
Nicholson’s blowflies systems with patch structure and nonlinear density-dependent
mortality terms when the almost periodic solutions do not belong to the above
domain.

According to the above discussions, in this paper, without adopting

[ &) [, &] - x [, 7]

n

as the existence domain of almost periodic solutions, we establish the existence and
global exponential stability of positive almost periodic solutions for Nicholson’s
blowflies systems (1.2) involving patch structure and nonlinear density-dependent
mortality terms. The proposed criterion improves and complements some existing
results in the recent publications [3,16,20,22,24], and its effectiveness is demonstrated
by a numerical example.

2 Preliminaries

The following notation will be used throughout the rest of this paper. Let

sup g(1), g™ = infg(1),

te[tg,+00) te[

sup _

g
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n

0; = max Tf'.”’, C,=TI1C([-0i, 0],[0,+00)).
1<jsm Y iz
For x = (x1,...,x,) € R", define |x| = (|x1], ..., |xn|) and || x| = max;eq |xi].

Definition 2.1 (See [7,27]) Letu(t): R - R” be continuous in ¢. Then u(t) is said
to be almost periodic on R, if for any € > 0, the set T(u, ¢) = {8 : |u(t+8) —u(t)| <
¢ forall t € R} isrelatively dense, i.e., for any & > 0, it is possible to find a real number
I =1(¢&) > 0, such that for any interval with length I(¢), there exists anumber & = §(¢)
in this interval such that |u(t + 8) — u(t)| < ¢ forall ¢t eR.

Hereafter, for i € Q, j € I = {1,2,..., m}, it will be assumed that a;;, b;;, yij: R -
(0,+00), a;j(i # j), bij(i # j), Bij»Tij: R = [0, +00) are almost periodic functions
and there exist two positive constants S_ and S* such that
bii(t) = Xy, jei bij (1) )}
aii(t) - Z?:],j#i aij(t)/ )’

bii(t) = Y0y i bij(t
S+:max{limsupln( n( )~ e J(m)lﬂ"(t) )}
Q% oo a;ii(t) = Xy jei(aij (1) + Tty 5 y:;(t)
Furthermore, the following admissible initial conditions will be considered:

xi(to +0) = ¢:(0), 6 €[~0:,0],

¢=(¢1,...,9,) €Cy 9:(0)>0,i€Q.

We designate x(t; ¢, ¢) to be a solution of the initial value problem (1.2) and (2.1),
and denote the maximal right-interval of existence of x(; tg, ) by [to, 7(¢)).

S_ = min {lim infIn (

i€eQ t—>+o0

(2.1)

Lemma 2.2 (see [23, Lemma 2.1) For any two fixed positive constants w; and w,,
(e —e")sgn(s—t) <—e |s—t|, where s,t€[w), w2], w; < Wy,
and
1- w1
w1

1
|se‘s—te_’|£max{7’ }|s—t|, where s,t € [w;, +00).
e

Lemma 2.3  Assume that

22 bu(®)>an(t)— S (ay(t)—biy(0), forall te [to, +00), i€ Q.

j=Lji
and
: & Bii () 1 .
(2.3) sup —a;i(t) a;;(t)+ -1 <0,ieQ.
te[to, +<>o){ ! j:%]:#i K ]Z:; yii(t) e}
Then x(t) = x(t; to, @) is positive and bounded on [ty, +o0), and
(2.4) 0<S_ slitm+infxi(t) <limsupx;(t) <S*, ieQ.
oo t—+o00

Proof First, we claim that

x;(t) >0 forall te[ty, n(g)), icQ.
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Otherwise, we can pick ig € Q and #;, € (¢, n(¢@)) to satisfy
xiy(tiy) =0, x;(t) >0 forall te[ty, t;), jeQ.
Apparently, (1.2) and (2.2) yield
02> x; ()

— n —
= —aigiy (Fig) + bigiy (Fig )€ ) 4 S (aiy(Tiy) = biyj (£ )e (0

j=L,j#ig
m B B B - _ _
3 Bioi i iy (B = Tig (1)) 00020 P~ )
j=1

2 _afoio(?io) + bioio(?io) + Z (aio]'(?io) - bio]'(?io)) >0,

j=1,j#io

which is a contradiction and proves the claim proves the claim.
Now, we demonstrate that x(¢) is bounded on [t, 7(¢)). For t € [ty — 0, 7(¢))
and i € Q, we define

M;(t) =max{&: E<t,x; (&) = ) Ei}gqxi(s)}.

Suppose that x(t) is unbounded on [#y,#(¢)). Then we can choose i* € Q and a
strictly monotone increasing sequence {{, } %} such that

xi*(Mi*((n)) = gleeax{x,(M,({n))},

(2.5)
lim xp« (M« (§0)) = +oo,  lim &, =n(p),

n

and then lim,_ 0o Mi<({,) = #(¢). According to (1.2) and the fact sup,,,ue™

= 1 jt follows from (2.5) that

0< x;*(M,-*((,,))
= e (M () + bjeis (Mo (8, ) 75 (M (6))

+ i (ai*j(Mi*((n)) — bl*](M((n)) e—xj(M,.*((n)))

j=1,j#i*

N 2 Binj(Mix ($n))
j=1 Vi*j(Mi*((n))
o (Mix (@) e (M ()=, (M0 (02))

Yirj (M= ($n))xix (M= ($n) = Tix j(Mi=(C0)))

< —ai*i*(Mi*((n)) + bi*i*(Mi*((n)) o (M (&)
+ i (ai*j(Mi*(Cn)) _bi*j(M((n))efxi*(Mi*((n)))
j=1,j#i*

—, forall M;«({,) > to.
Sy (M (1) e '
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Taking n — +oo leads to

e (Mo (e 4 S ani( Mo () 4 S Pri (M (6)) 1
0<nl_1>m [ ivir (M= (C)) j=lzj;i* z](Mz ((n)) jz_;Yi*j(Mi*({n)) e]

< sup [ ap+i(t) + Z aij(t) + Zﬁz J(t)l]

te[ty, +oo) j=1,j#i* 1 Yix ](t)

which is absurd and suggests that x(t) is bounded on [#y,7(¢)). By [Theorem
2.3.1][8], we easily show (@) = +oo.
Next, we prove that (2.4) is true. Designate i', i* € Q such that
I= hm 1nfx a(t) = mmhm 1nfx,(t) L =limsupx;: (t) = math sup x; (¢).

t—>+o0 t—>+o0

By the fluctuation (by [19, Lemma A.L]), we can select two sequences {f; };5 and

{t;*}1ss satisfying
(2.6) 1_1)131c><> ty = +o0, kl_i)Too xp(ty)=1= litrllgollfx,-z(t), kl_i)lg() x;(tp) =0,
and

(2.7) kl—i>II100 ;" =+oo,  lim xu(#*) =L =limsupx (), kEer xi(57) =0,

k—+o00 t—+o00

respectively. From the almost periodicity of (1.2), we can select a subsequence of
{k} k1, still denoted by {k}x»1, such that

khm apj(te)s kE‘Poobi’j(tZ)’ lim ﬂi’q(ﬁt)’ kE?MYi’q(tZ)’ kETooxj(t;)’

lim x;(t —7,(8)), hm aL; (tk , lim bu(87),  lim B, (7).
k—+o00 1 k—+o0 / k—+o0 1
Tim g (1) kggnwx,(tk ) and D (6 - g (1))

exist for all j € Q, g € I. Furthermore, by taking limits, we have from (2.6) and (2.7)

that
0= kETooxi/l(tZ)
> - LiIPooailil(tZ) + kli{rnoo bili’(tlt)eil
n
+ Z ( hm ailj(t;:)_ hm bilj(t;:)e_l))
jeljeil KT ke
and

0= lim x;L(t;*

=— hm aLL(t *)+ lim biLiL(t]):*)e_L
k—+ k—+o00

n

+ Z ( llm aiLj(t )_ llm bl ](tk *limkﬁwrocxj(t:*))
jel,jeit  Koteo

B g B

m Vi'-j
J 1k—>+oo yl j(

t**) k—+o00
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(Vs (17 = (1) i Pt 5 6~ ()

<—khm aii(ty” )+ hm b (t;*)e ™™

EERT L *%\ —L
+] IZJ;,L( 11m a,LJ(t ) kEwal](tk e t)
m i t
+ > lim Ptk H)l
jo1 koo Pyt ](t )6

which entail that
b (t) - 7 1,j#i! bi’j(t)

S_< 11m1nfln( )< litm inf x;i (¢) < litminfxi(t)
—+00 —+00

f—+o00 ili z(t) J -1 il tllz](t)
and
lim sup x; () < lim sup x;z ()
t—+o0 t—>+o00
biLiL t)— an iti biL‘ t
Slimsupln( Q) j=Lj#il i( )lﬁlL o )
t—+oo aLL(t) Z] lptll(allj(t) Z] ley,_](t))
<SS,
for all i € Q. This completes the proof of Lemma 2.3. ]

Lemma 2.4 Assume that (2.2), (2.3) hold, and fori € Q,

(2.8) limsup{—b,-i(t)e‘5++ Zn: bij(t)e s

t—+o0 j=Lj#i
f
1 1=y}
+Zﬁ’] t)maX{ ey:';ifs_}}<0

Moreover, suppose that x(t) = x(t; tg, ). Then for any € > 0, there exists | = (&) > 0,
such that each interval [a, « + 1] includes at least one number 8§ for which there exists
A > 0 that satisfies

(2.9) |x(t+8) —x(t)| <& forall t>A.

Proof Accordingto (2.8), forall i € Q it is easy to see that there exists ¢; > t, such
that

1- mfs_
sup{ bii(t)e T4 Z bij(t)e” S_+Z/3u(t max{el yymfs}} <0.
elii

ttgy j=lj#i

Set

Hi(u,v) =sup { = [bii(0)e™ ™) —u]+ 3 by(1)e S

21} j=Lj#i
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inf
" 1 1=y5(8--v) .
+ 3 Bty max{—, — "} fLuve[o, 1], i€ Q
j=1 € elii -

Furthermore, let B = 4 min;cq [H;(0,0)]; then B < 0. According to the continuity of
H;(u,v), one can plck a sufficiently small constant 0 < # < 1 such that

H;(u,v) <-Bforall (u,v) € [0, 4] x[0, 5], i € Q,
and then for fixed A € [0, 7], we have
(2.10) H;(\Ae) = sup{ - [b,-,»(t)e’“ug) -Al+ > b,»j(t)e’(sf’s)

t2ty j=1,j#i
f
i 1 - Y;I]l (S— - 8) Ao:
+ [3~(t)max e (€ %t <0,
JZ:; Y { e2 Vi (8-—¢) }

foralle € (0,%], i € Q,and

max{ sup H;(1,¢)} =-B<0.
€Q eefo,n]

Without loss of generality, to prove Lemma 2.4, we only need to show that (2.9)
holds for & € (0, min{#,S_}). Fori € Q, t € (o0, ty — 0;], we add the definition of
x;(t) with x;(t) = x;(ty — 07). Set

Ai(0,t) = [bii(t+8) = by (£)]e ) = S™ [bi(t+8) — byj(r)]e 1+
j=1,j#i

>3 [Bij(t+0) = Bij(D)]xi (1 + 8~ ij(1 +§)) e v rOImrrammyliro)

M=

+

-
Il
—

ﬁ (t)[ i(t+ 6_Tij(t+5))e—yij(t+6)x,-(t+6—r,-j(t+6))

Ms

Il
—

j
—xi(t—7i(t) + 5)e*yu(Hﬁ)x:(Hfj(t)ﬂ?)]
# 3 B mi(e) + 8)e D030
j=1
_ xi(t _ Tij(t) + 6)6_}’ij(t)xi(t_Tij(t)+8):|
- [a,-,-(t + 5) - a,-i(t)]

n

+ 2 [a(t+8)-aiy(t)], teR.

j=Lj#i

For any ¢ € (0, min{#, S_}), it follows from Lemma 2.2 that there exists T, > t; such
that

(2.11) S_—e<xi(t)<S"+¢, forall te[T, -0, +0), i €Q,

which implies that the right side of (1.1) is also bounded, and x!(t) is a bounded
function on [ty, +00). Thus, with the help of the fact that x;(¢) = x;(¢y — 0;) for
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t € (=00, ty—0;], we gain that x; (¢) is uniformly continuous on R. From uniformly al-
most periodic family theory in [7, Corollary 2.3, p. 19], for each € € (0, min{#, S_¢}),
there exists = I(€) > 0, such that every interval [, a + 1] € R, includes a § for which

1
|A,’(6, t)| < EBS, forall te R, i€ Q

Let Ag > max{T, + maX;eq 0i, T, + MaX;eq 0; — 0 }. For t € R, denote

u(t) = (ur(t), uza(t),...,un(t)), ui(t) =x;(t+8) — x; (1),

U(t) = (Uy(t), Us(t), ..., Un(2)), Ui(t) = eMuy(t),
where i € Q. Let i; be such an index that
(2.12) Ui, ()| = [U(0)].

Then, for all t > A, we have

(2.13) u:(t) = bii(t)[e_x‘(t+6) _ e_x"(t)]

_ Z bij(t)[e*xj(“rl?)_e*xj(f)]

joL,ji
m

+ 3 Bi (1) [ xi(t = 7ij(1) + §) e 7uDxi T (D+0)
j=1

=it = ij(0)e OO 4 A6, 0).
With the help of Lemma 2.2, one can show the following inequalities:
Yi(S- = &) <yij()x(t = ij(1)), yij(£)x(t = 7i5(t) + 8),
ieQ,jel, t> Ao,
S.—e<xi(t), ieQ,t> Ay,
(e —e)sgn(s—t)<—e C*|s— 4], [e —e | <e s
fors,te[S_—¢ 8" +¢],

1 1_Viirj}f(s— _e)}|s—t|

- -t
se " —te | < max{ — -
| | 62 > e}’:-‘}f(s—_f)

inf

fors,te [y} (S-—¢€),+00),ieQ,jel
This, together with (2.11), (2.12), and (2.13), gives us we get
(2.14)

D™ (U ()=
< AeM]u, (8)] + € (b, ()[e50D — euO]sgn (x,, (1 + 8) - x,, (1))
n m
£ Y by (D] _ O S B (1)
j=1,j%is j=1

X xi,(t — Titj(t) + 6)677)":]'([)’('}(t’T"rf(t)Jra)
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- .X,',(t - Titj(t))e_yi’j(t)x‘t(t_r"t/'(t))‘
+]A;,(8,1)[}
= Aelt|uit(t)| + e/\t{bitit(t)[e_x“(“-a) _ e_xit(t)] Sgl’l(x,',(t + 8) _ xit(t))
* Zn: bi,j(£)]e () gm0 4 i Bii(t)
j=1j#i; j=1 ylt](t)
yifj(t)xit(t - Titj(t) + S)E_Yirj(t)xi,(f—Ti,j(t)+5)

X

()t = 3, (0)e OO 414, (6, 1))

< Aelu;, ()] + e“{ b, (D€ g (D] + 3 biy(1)e (1)

j=1, j#i
m 1 1-yi(s_-e)
# 2 By (0 max { —, e (1= 71 (1)) + |44,(8,1)
j=1 e’iti

= —[bi,i, (e AUy, ()]

+ 3 by (e SIUy(e))

j=Lj#is

m 1 1-y(S--2)y
2 Bty max{ 5, i LM, (1= 74 (1)
j=1

Vi ($-=¢)
+eMA;, (8, 1) forall t> A,.
Let

E(t) = _ill&t{eh Ju(s)]}.

It is obvious that e**||u(t)| < E(t) and E(t) is non-decreasing.
Now the remaining proof will be divided into two steps.

Step one. If E(t) > e} |u(t)| for all t > Ay, we assert that
E(t) = |U(Ag)|, for all t> A,.
In the contrary case, one can pick A; > A such that E(A;) > E(Ap). Because
eMu(t)] < E(Ao) for all t< A,
there must exist f* € (Ag, Ap) such that
M |u(B)| = E(A1) 2 E(B*),

which contradicts the fact that E($*) > e*" |u(*)| and proves the above assertion.
Then, we can select A, > A satisfying

lu(t)] < e ME(t) = e ME(Ao) < ; for all t> A,.
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Step two. If there exists ¢ > Aq such that E(¢) = e*¢||u(c)||, we have from (2.14) and
the definition of E(t) that

0 <D (U, ()N _,

<-[bi (e T AU+ Y bi(e)e U (o))
Jj=Llj#ig

1 1=y —¢)

2)

e O ()

€ ey"c/

+ i/)’icj(c) max{
j=1
+e*A; (8,6)|

< { - [bicic(q)ei(yﬁrs) - /\] + Z bicj(c)ei(‘ﬁig)

j=Lj#i¢

e 1 1_yiin]f(s—_8) M ( 1
E L. -t 7 Ticj C) _ Ag
' jzlﬁl‘](c)max{ e’ rii(s-=e) }e Eq) + 3 Bee

<-BE(¢) + %Bse’\‘,
which leads to
€ €
(2.15) eMu(o)| = E(¢) < ie)“ and |u(¢)| < 3

For any ¢ > ¢ satisfying E(t) = e!||

(2.15), we can show

u(t)|, by the same method as in the derivation of

(2.16) e“|\u(t)\|<§e“ and Hu(t)||<§.

Furthermore, if E(t) > e*|u(t)| and t > ¢, one can pick A; € [¢, t) such that
E(As) = e [u(As)| and E(s) > e |u(s)| for all s (As, t],
which, together with (2.15) and (2.16), suggests that
1) Ju(as)] < 3.
With similar reasoning to that in the proof of step one, we can infer that
E(s) = E(A3) is a constant for all s € (A3, t],

which, together with (2.17), implies that

Ju(t)] < e ME(t) = e ME(As) = |u(As)|e M) < ;
Finally, the above discussion infers that there exists A> max{¢, Ag, Ay} such that
(2.18) lu(t)] < g < forall t> A,

which finishes the proof of Lemma 2.4. ]
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3 Global Exponential Stability of Almost Periodic Solutions
Combining Lemma 2.2 with Lemma 2.3, we have the following theorem.

Theorem 3.1  Assume that all assumptions of Lemma 2.4 are satisfied. Then (1.2) has
a globally exponentially stable, positive, almost periodic solution x* (t). Moreovet, there
exist constants Ky y+ and t, .+ such that

|x(t:to, @) = x*(t) ]| < Kpxre ™™ forall t >ty .

Proof Letv(t) = v(tto, ") be a solution of equation (1.2) with initial conditions
satisfying the assumptions in Lemma 2.4. We also define v;(t) = v;(t, — 0;) for all
t e (—o0,tg—0;],i€ Q. Define

Hi,k(t) = [b,‘i(t + tk) - bii(t)]e_vi(“—tk)
n
- % [bij(t+t) = bij(£)]e 1
e
m
=1

J#1

+ 2 [ Bij(t+ ) = Bij(£)] vi

=
x (t+t—1i(t+ tk))e_yij(t"'tk)Vi(t+tk_7ij(t+tk))

+ iﬁij(t) [vi(t+te —7ij(t+ tk))e—)’ij(t*'fk)vi(1+ik—Tij(t+tk))
=1
- ii(t —7;;(t) + tk)efy.-,-(tﬂk)v,-(tfr.-,-(t)+tk)]
- 3Bt (1) # e RO
i1
— ‘V,‘(t - T,‘j(l’) + tk)e_yij(t)vi(t_rij(t)+tk)] - [a,-,»(t + tk) - (Ili,'(t)]

b3 ot ) —ay(D], teR, ieQ,

j=1,j#i

where {#; } is any sequence of real numbers. For any ¢ € (0, min{#, S_}), by Lemma
2.3, we can choose t,v > t( such that

S_—e<vi(t)<S"+¢, forall t>ty, icQ,

which, together with the boundedness of v}(¢) and the fact that v;(t) = v; (¢, — 0;)
for t € (—oo, ty — 0;], entails that v(¢) is uniformly continuous on R. Then, from the
almost periodicity of a;j, b;j, 7ij, yij» and B;j, we can select a sequence {f;} — +oo

such that
1 1
(3.1) Jaij (£ + ) = ai (D) < b3t + 1) = byy(D)] < 1
1 1
|Tij(t+tk)_7ij(t)|§% |ﬁ,-]-(t+tk)—/3ij(t)|g?
1 1
[yai (8 + 1) = yii () < ek D)l <

forall i, j, t.
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Since {v(t + t;)};2 is uniformly bounded and equi-uniformly continuous, from
Arzala-Ascoli Lemma and the diagonal selection principle, we can select a subse-
quence {f, } of { }, such that v(t + #; ) (which for convenience we still designate by
v(t + tx)) uniformly converges to a continuous function x*(¢) = (x; (¢), x5 (¢),...,
x5 (t)) on any compact set of R, and
(3.2) S_—e<x/(t)<ST+e forallteR, icQ.

Now, we prove that x*(t) is a solution of (1.2). In fact, for any ¢ > ¢, and At € R,
from (3.1), we have

(33) xI(t+At)-x/(¢)
= klim [vi(t+ At +t,) —vi(t+ty)]

t+At
= lim [ —a;i(s)+ bii(s)e—w(sﬂk)
k—+oo Jt
+ Z (a,-j(s) - b,’j(s)e_vf(s"'tk))
=1, j#i

#3 Bug(s)vils + 1 = 13j(5))e OO L ()] ds
j=1

:[tHAt[ _aii(5)+b,»,-(s)e_x?(5) + z": (aij(s)_bij(s)e_xf(S))

j=1,j#i
m
+ 30 Bij(s)x; (s = Tij(s))e v (577”(5))] ds,
j=1

where t, t+ At > tg, i € Q. Consequently, (3.3) suggests that

SO} = =an(0) + b0 O+ 3 (1) - by()e i D)

jeLjei
+ 3B (0)xr (8= 75(1)) e i Ox () i e
i1

Hence, x*(¢) is a solution of (1.2).

Furthermore, from Lemma 2.4 and (2.18), for any ¢ > 0, there exists | = I(¢) > 0,
such that every interval [ @, a + 1] contains at least one number 8 for which there exists
A > 0 obeying

Iv(t+8) —v(t)] < ; <, forallt > A.

Given s € R, one can pick a sufficiently large positive integer N; > A such that, for any
k>N, 1>

s+t > A, ||v(s+tk+6)—v(s+tk)\|§§<£.

Letting k — +o0 gives us
[x*(s+8)—x"(s)] <&

which suggests that x*(¢) is a positive almost periodic solution of (1.2).
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Next, we validate that x* () is globally exponentially stable. Let x () = x(#; ¢, ¢),

and
zi(t) = x;(t) = x7 (t), W;(t) = |zi(t)|e* forall te [ty — i, +00).
Clearly,
(34) Z(t) = bi(t)[e™ M — e O] S (1) [e D) — e (O]
j=Lji

+ Z[)’U(t ) xi(t - 73 (1)) e v Oxit=mi () _ oy (t))e—y.-,-(t)x?(t—m(t))].
For any ¢ € (0, min{#x,S_}), it follows from Lemma 2.4 that there exists Ty« > to
such that
(3.5) S_—e<xi(t) <S8 +¢, forall te [Ty —0j, +00), i €Q.

By (3.4) and calculating the upper-right Dini derivative of W;(t), we obtain
(3.6) D™ (Wi(t))

<bii(t)[e M) - e (V] sgn(x;i (1) - x7 (£))e™
£ by - e O]

j=Lji
+Zﬁ1](t | t—T, (t))e_ylj(t)x1(t 7ij(1))

—xi(t- Tij(t))e—yfj(f)X?(t—Tfj(t)) M
+Mz;(t)]e, for all t> Typ%> i € Q.
Now we assert that

Wi (t) < e*er (m m t) ) +1 %
1( ) ¢ ( JE%X{ te[to—a;lXTw «] |x]( ]( )|} ) (Px

forall t > Ty o+, i € Q. Otherwise, we can choose ieQand Tz > T,y x+ such that
(3.7) WA(T!) = M, and  Wj(t) < M,

for all t € [ty - 0j, TE), j € Q. With the help of (3.2), (3.5), and Lemma 2.2, one can
show the following inequalities:

YOS, =) €y (TDR(TE - ) (TD). yy (TR (TE = 1(T), e L,
(e —e)sgn(s—1) <—e " |s—4, |e—e | <e sy,
wheres, t € [S_ —¢,S" +¢],

1- 1nf(S__£)
- - 1 Vi
|S€ S_te t|§maX{ez’W}|s_t|’

mf(

where s, t € [y5) (S- —¢), +00), je I
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This, together with (3.6) and (3.7), gives us that

0< D (Wi(T)))

< by 7 (TH ™1™ — &5 M) ] sgn (s (1) - 22 (T1)) e
£ Y by (Thle T 5 (D]t

j=1,j#i
+ Zlﬁ?j(Tlﬂx?(Tj - T;j(T,i))e_y?i(T*)"T(T*‘T?,-(T*))

=

= (T = 7y (1)) IR D e A (1)

IA

[y (T e S (T ™+ Y by (T eIy (1]

j=1,j#i

m B;(TY)
+
j=1 Yij(Ti)

— sy (T (T2 = 25, (T2)) e VPN (B (T AT

iy~ ;-(Tf) Y(TE_ 7'(T’Z))
[y (Tes (T2 = 75, (T2) ) P (T

IN

- + - i n - - i

(b (TS S Az (THIM 4 Y by (TD)e™ SO gy(T7) T
j=1,j#i

_ inf( B

+§:ﬁ’(T7) maX{i 1))118)} |ZT(T>(. _ Tf»(T?))|6A(T1717j(Tz))e’\T;j(Ti)
o 1] * 62) ey%.;f(s__e) i ij %
< {_[bgj(Tz)e—(s"H) _ /\] + Z b;j(Tz)e_(S‘_e)
j=1,j%i

1 1- ymf(S_—s)
+Zﬁ,](T max{e —?f(S:S) }e“i}MWp*,
e’ii

from which, together with (2.10), we derive that

+ n e
<=[b;3(THe ™) AT+ 3 by (Th)e -9
j=1,j#i
1- i‘?f(S, -€)
1 ij Ao
+Z/5”(T)max{e e%?f(s__s) }e <0.

This is a clear contradiction and proves the above assertion. Hence,
|z;(t)] < Mq,,x*e_“ forall t> Ty +, i€Q,

which finishes the proof of Theorem 3.1. ]
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4 A Numerical Example
Example 4.1 Let us consider system (1.2) involving the following parameters:
n=m=2ay(t) = e @HeosV2D b () =10.1+10.1cos? t,
ap(t) = (0.2+0.2cos t)e” s b () = 0.01+0.01cos? £,
Pu(t) = o5 Pra(t) = 5555t yu(t) = ya(t) = 0.5
mu(t) = 2|sin\/5¢|, 712 (t) = 3| sin/5¢],

ax(t) = e~ @HlsinV3i) g (1) = 20.2 + 20.2sin? ¢,

(4.1)

an(t) = (0.2+0.2sint)e” 5D b (£) = 0.02 + 0.02sin’ ¢,
ya(t) = y22(£) = 0.5, B (1) = LeoSL, By (1) = Lot
721(t) = 2| cos \/7t|, 722 (t) = 3| cos /7]

Obviously, it is observed that

bll(t) Z]l]¢1 l](t) }
( aii(t) - Z]l]ilalj(t)) b

S*:max{limsupln( bii(t) = Xy jui ij(t)lﬁ o )
1<i<2 t—+o00 ”(t) Z] 1J¢z(a11(t) + Z:J Le }’”(t))

S_ = min { liminfln

1<i<2 t—+o0

~ 7.1,

_s* 2 _YInfS_
max| b0+ 3 b0 Dy mac{ )

j=1,j%i
~—-0.05<0, i=12,

which suggest that (4.1) satisfies all assumptions adopted in Theorem 3.1. Thus, by
Theorem 3.1, we know that system (1.2) with parameters (4.1) has a unique almost
periodic solution x*(t) = (x;(¢),x;(t)) that is globally exponentially stable (see
Figure 1), and x; () > S_ >4 forallt e Rand i =1,2.

Remark 4.2 It should be mentioned that the assumptions
yij(t) 21, forallteR,ie Q,jel,

and
itr>1g{1— 7;(1)} =u>0, forallteR,ieQ,jel,

have been adopted as fundamental to showing the stability of periodic and almost
periodic solutions for Nicholson’s blowflies models in [3,16,17,22,23,25] and [20], re-
spectively. In particular, the results on periodic scalar Nicholson’s blowflies model in
[24] give no opinions about the problem of almost periodic solutions of Nicholson’s
blowflies systems involving patch structure and nonlinear density-dependent mor-
tality terms. Clearly, the parameters y;;(t) = 3, i,j = 1,2, and 731 (¢) = 2[si
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z1(t)

66 - q
z2(t)
Y W 2%

zi(t),i=1,2

0 50 100 150

Figure I: Numerical solutions of (4.1) for initial value (¢:1(s), ¢2(s)) = (5,6), (6,7), (5.5,6.5),
se[-3,0].

T12(t) = 3|sin\/5¢|, 721 () = 2| cos /7t], T25(t) = 3| cos \/7t| do not satisfy the above
assumptions. Moreover, the fact that

x{(t)>2S_>4>% forall teR,i=12,

entails that x* () is out of [k, K] x [k, X ]. Hence, all the results in [1-4,16,17,20,22-25]
cannot be used to show the global exponential stability on the positive almost periodic
solution of system (1.1) involving parameters (4.1).

5 Conclusions

In this paper, we combine the Lyapunov function method with the differential in-
equality method to establish some new criteria ensuring the existence and exponen-
tial stability of positive almost periodic solutions for a class of delayed Nicholson’s
blowflies systems with patch structure and nonlinear density-dependent mortality
terms. These criteria are obtained without assuming that

[, %] x -+ x [, %] ~ [0.7215355,1.342276] x -- - x [0.7215355,1.342276]

n n

is the existence region of almost periodic solutions, and the homologous results in the
recently published literature are summarized and refined. The approach presented in
this article can be used as a possible way to study the patch structure population mod-
els with nonlinear density-dependent mortality terms, for example, the neoclassical
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growth model, the Mackey-Glass model, epidemical systems or age-structured pop-
ulation models, and so on.
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