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Abstract
Infinitesimal symmetries of a partial differential equation (PDE) can be defined algebraically as the solutions of the
linearisation (Frechet derivative) equation holding on the space of solutions to the PDE, and they are well-known
to comprise a linear space having the structure of a Lie algebra. Solutions of the adjoint linearisation equation
holding on the space of solutions to the PDE are called adjoint-symmetries. Their algebraic structure for general
PDE systems is studied herein. This is motivated by the correspondence between variational symmetries and con-
servation laws arising from Noether’s theorem, which has a modern generalisation to non-variational PDEs, where
infinitesimal symmetries are replaced by adjoint-symmetries, and variational symmetries are replaced by multipliers
(adjoint-symmetries satisfying a certain Euler-Lagrange condition). Several main results are obtained. Symmetries
are shown to have three different linear actions on the linear space of adjoint-symmetries. These linear actions are
used to construct bilinear adjoint-symmetry brackets, one of which is a pull-back of the symmetry commutator
bracket and has the properties of a Lie bracket. The brackets do not use or require the existence of any local varia-
tional structure (Hamiltonian or Lagrangian) and thus apply to general PDE systems. One of the symmetry actions
is shown to encode a pre-symplectic (Noether) operator, which leads to the construction of symplectic 2-form and
Poisson bracket for evolution systems. The generalised KdV equation in potential form is used to illustrate all of
the results.

1. Introduction

In the study of partial differential equations (PDEs), symmetries [13, 23, 24] are a fundamental intrinsic
(coordinate-free) structure of a PDE and have numerous important uses, such as finding exact solutions,
mapping known solutions into new solutions, detecting integrability and finding linearising transfor-
mations. In addition, when a PDE has a variational principle, then through Noether’s theorem [13, 23]
the infinitesimal symmetries of the PDE under which the variational principle is invariant – namely
variational symmetries – yield conservation laws.

Like symmetries, conservation laws [3, 13, 17, 23] are another important intrinsic (coordinate-free)
structure of a PDE. They provide conserved quantities and conserved norms, which are used in the
analysis of solutions; they detect integrability and can be used to find linearising transformations; they
also can be used to check the accuracy of numerical solution methods and give rise to discretisations
with good properties.

A modern form of the Noether correspondence between variational symmetries and conservation
laws has been developed in the past few decades [3, 4, 6, 17, 21, 23, 32] and generalised to non-variational
PDEs. From a purely algebraic viewpoint, infinitesimal symmetries of a PDE are the solutions of the
linearisation (Frechet derivative) equation holding on the space of solutions to the PDE. Solutions of
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the adjoint linearisation equation, holding on the space of solutions to the PDE, are called adjoint-
symmetries [4, 25, 26]. In the generalisation of the Noether correspondence, infinitesimal symmetries
are replaced by adjoint-symmetries, and variational symmetries are replaced by multipliers which are
adjoint-symmetries satisfying an Euler-Lagrange condition [3, 4, 6, 17]. (Multipliers are alternatively
known as cosymmetries in the literature on Hamiltonian and integrable systems [12, 28]. The property
of existence of an adjoint-symmetry for a PDE has been called ‘nonlinear self-adjointness’ in some
papers; see [2] and references therein.)

As an important consequence of the modern Noether correspondence, the problem of finding the
conservation laws for a PDE is reduced to a kind of adjoint of the problem of finding the symmetries
of the PDE. In particular, for any PDE system, conservation laws can be explicitly derived in a similar
algorithmic way to the standard way that symmetries are derived (see [3] for a review).

These developments motivate studying the basic mathematical properties of adjoint-symmetries and
their connections to infinitesimal symmetries. As is well-known, the set of infinitesimal symmetries of a
PDE has the structure of a Lie algebra, in which the subset of variational symmetries is a Lie subalgebra,
and the set of conservation laws of a PDE is mapped into itself under the symmetries of the PDE. This
leads to several interesting basic questions:

• How do symmetries act on adjoint-symmetries and multipliers?
• Does the set of adjoint-symmetries have any kind of algebraic structure, such as a generalised Lie

bracket or Poisson bracket, with the set of multipliers inheriting a corresponding structure?
• Do there exist generalised analogs of Hamiltonian and (Noether) symplectic operators for general

PDE systems?

In [1, 8], the explicit action of infinitesimal symmetries on multipliers is derived for general PDE
systems and used to study invariance of conservation laws under symmetries. Recently in [11], for
scalar PDEs, a linear mapping from infinitesimal symmetries into adjoint-symmetries is constructed
in terms of any fixed adjoint-symmetry that is not a multiplier. This mapping can be viewed as a
(Noether) pre-symplectic operator, in analogy with symplectic operators that map symmetries into
adjoint-symmetries for Hamiltonian systems [16, 23]. The inverse mapping thus can be viewed as a
pre-Hamiltonian operator.

The present paper expands substantially on this work and will give answers to the basic questions
just posed for general PDE systems.

Firstly, it will be shown that there are two basic different actions of infinitesimal symmetries on
adjoint-symmetries. One action represents a Lie derivative, and the other action comes from the adjoint
relationship between the determining equation for infinitesimal symmetries and adjoint-symmetries. For
adjoint-symmetries that are multipliers, these two actions coincide with the known action of symmetries
on multipliers (see [1, 8, 23]). Furthermore, the difference of the two actions produces a third action
that vanishes on multipliers. This third action yields a generalisation of the pre-symplectic operator for
scalar PDEs, and its inverse provides a general pre-Hamiltonian operator. For evolution PDEs and Euler-
Lagrange PDEs, this structure further yields a symplectic 2-form and an associated Poisson bracket,
which can be used to look for a corresponding Hamiltonian structure for non-dissipative PDE systems.

Secondly, these three actions of infinitesimal symmetries on adjoint-symmetries will be used to con-
struct associated bracket structures on the subset of adjoint-symmetries given by the range of each action.
Two different constructions will be given: the first bracket is antisymmetric and can be viewed as a
pull-back of the symmetry commutator (Lie bracket) to adjoint-symmetries; the second bracket is non-
symmetric and does not utilise the commutator structure of symmetries. Most significantly, one of the
antisymmetric brackets will be shown to satisfy the Jacobi identity, and thus, it gives a Lie algebra struc-
ture to a natural subset of adjoint-symmetries. In certain situations, this subset will coincide with the
whole set of adjoint-symmetries. More generally, a correspondence (homomorphism) will exist between
Lie subalgebras of symmetries and adjoint-symmetries, which will hold even for dissipative PDEs that
lack any local variational (Hamiltonian or Lagrangian) structure.
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Thirdly, the Lie bracket on adjoint-symmetries induces a corresponding bracket structure for con-
servation laws, which is a broad generalisation of a Poisson bracket applicable to non-Hamiltonian
systems.

All of these main results are new and provide important steps in understanding the basic alge-
braic structure of adjoint-symmetries and its application to pre-Hamiltonian operators, (Noether)
pre-symplectic operators, and symplectic 2-forms for general PDE systems.

Apart from the intrinsic mathematical interest in developing and exploring such structures, a more
applied utilisation of the results is that symmetry actions on adjoint-symmetries can be used to produce
a new adjoint-symmetry – and hence possibly a multiplier – from a known adjoint-symmetry and a
known symmetry, while brackets on adjoint-symmetries allow a pair of known adjoint-symmetries to
generate a new adjoint-symmetry – and hence possibly a multiplier – just as a pair of known symmetries
can generate a new symmetry from their Lie bracket. Additional adjoint-symmetries can be obtained
through the interplay of these structures.

The main results will be illustrated by using the generalised Korteweg-de Vries (gKdV) equation in
potential form as running example. Several physical examples of PDE systems will be considered in a
sequel paper.

The rest of the present paper is organised as follows. Section 2 gives a short review of infinitesi-
mal symmetries, adjoint-symmetries and multipliers, from an algebraic viewpoint. Section 3 presents
the actions of infinitesimal symmetries on adjoint-symmetries and multipliers. Section 4 explains the
construction of general pre-Hamiltonian and pre-symplectic (Noether) operators from these actions.
Section 5 derives the bracket structures for adjoint-symmetries, and discusses their properties. In partic-
ular, the conditions under which a Lie algebra structure arises for adjoint-symmetries from a commutator
bracket are explained. Section 6 specialises the results to evolution PDEs. Construction of a pre-
symplectic operator and an associated symplectic 2-form and Poisson bracket is also explained. Finally,
Section 7 provides some concluding remarks.

Throughout, the mathematical setting will be calculus in jet space [23], which is summarised in
an Appendix. Partial derivatives and total derivatives will be denoted using a standard (multi-) index
notation. The Frechet derivative will be denoted by ′. Adjoints of total derivatives and linear operators
will be denoted by ∗. Prolongations will be denoted as pr.

Hereafter, a ‘symmetry’ will refer to an infinitesimal symmetry in evolutionary form.
Work on classifying adjoint-symmetries of PDEs can be found in [2, 4, 5, 18, 20, 30, 31]. See also [15]

for other recent work on symplectic operators and variational structure related to adjoint-symmetries
from a cohomological perspective.

2. Symmetries and adjoint-symmetries

An algebraic perspective will be utilised to allow symmetries and adjoint-symmetries to be defined and
handled in a unified way (following [3]).

Consider a general PDE system of order N consisting of M equations

GA(x, u(N)) = 0, A = 1, . . . , M (2.1)

where xi, i = 1, . . . , n, are the independent variables, and uα, α = 1, . . . , m, are the dependent variables.
The space of formal solutions uα(x) of the PDE system will be denoted E . As is usual in symmetry
theory [13, 23, 24], the PDE system will be assumed to be well posed in the sense that the standard
tools of variational calculus in jet space can be applied. In particular, no integrability conditions are
assumed to arise from the equations and their differential consequences, namely the PDE system and its
differential consequences are involutive. (A more precise formulation can be found in [17, 23, 29] from
a geometric/algebraic point of view, and in [3] from a computational point of view. A general reference
on involutivity, which bridges these viewpoints, is [27].)

An underlying technical condition will be that a PDE system admits a solved-form for a set of leading
derivatives, and likewise all differential consequences of the PDE system admit a solved-form in terms
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of differential consequences of the leading derivatives. This condition allows Hadamard’s lemma to hold
in the setting of jet space [3].

Lemma 2.1. If a function f (x, u(k)) vanishes on E then f = Rf (G) holds identically, where Rf is some
linear differential operator in total derivatives whose coefficients are functions that are non-singular
on E .

When the preceding technical conditions hold, a PDE system will be called regular. Essentially all
PDE systems of interest in physical applications are regular systems. (See [3, 7] for examples and further
discussion.) Hereafter, only regular PDE systems are considered.

An additional technical condition, which is not needed for the main results, will be useful for certain
developments. The proof is similar to that of the previous lemma [3].

Lemma 2.2. Suppose R(G) = 0 holds identically for a linear differential operator R in total derivatives
whose coefficients are functions that are non-singular on E . If the PDE system GA = 0 does not obey
any differential identities, then R vanishes on E .

For a running example, the focusing gKdV equation in potential form will be used:

ut + 1

p + 1
(ux)

p+1 + uxxx = 0 (2.2)

where p > 0 is an arbitrary nonlinearity power. This equation will be referred to as the (focusing)
p-gKdV equation. It is a regular PDE system. Note that its x-derivative yields the focusing gKdV equa-
tion in physical form vt + vpvx + vxxx = 0 with v = ux, where the coefficients of the convective dispersion
terms are scaled to 1. The special cases p = 1, 2 are the KdV equation and the mKdV equation, which
are integrable systems.

2.1. Determining equations and identities

An infinitesimal symmetry of a PDE system (2.1) is a set of functions Pα(x, u(k)) that are non-singular
on E and satisfy

G′(P)A|E = 0. (2.3)

This is the determining equation for Pα, called the characteristic functions of the symmetry.
Off of the solution space E , the symmetry determining equation is given by

G′(P)A = RP(G)A (2.4)

(due to Lemma 2.1) where RP = (RP)A I
B DI is some linear differential operator in total derivatives whose

coefficients (RP)A I
B are functions that are non-singular on E .

The determining equation for adjoint-symmetries is the adjoint of the symmetry determining equation
(2.3). It is obtained by using the Frechet derivative identity

QAG′(P)A = PαG′∗(Q)α + Di�
i(P, Q). (2.5)

There is an explicit expression for � i in terms of GA (see [3] and references therein).
An adjoint-symmetry of a PDE system (2.1) is a set of functions QA(x, u(k)) that are non-singular on

E and satisfy

G′∗(Q)α|E = 0. (2.6)

Off of the solution space E , this determining equation is given by

G′∗(Q)α = RQ(G)α (2.7)

(again due to Lemma 2.1) where RQ = (RQ)I
α BDI is some linear differential operator in total derivatives

whose coefficients (RQ)I
α B are functions that are non-singular on E .

The geometrical meaning of symmetries is well-known. From the algebraic viewpoint, it comes
from the relation G′(P)A = (prPα∂uα )GA whereby the symmetry determining equation (2.3) can be
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expressed as

((prPα∂uα )GA)|E = 0. (2.8)

This is usually the starting point for defining symmetries, since it indicates that XP = Pα∂uα is a vector
field that is tangent to surfaces GA = 0 (and their prolongations DkGA = 0, k = 0, 1, 2, . . .) in jet space. A
geometrical meaning for adjoint-symmetries has recently been developed in [10], based on evolutionary
1-forms QAdGA that functionally vanish on the solution space E .

The most common form encountered for symmetries is a Lie point symmetry [13, 23], given by
Pα = ηα(x, u) − ξ i(x, u)uα

i . Symmetries that have a general form Pα(x, u(k)) with k ≥ 1 are sometimes
called generalised symmetries or symmetries of order k.

The most common form for adjoint-symmetries is given by QA(x, u(k)) with k < N, where N is the
differential order of a given PDE system (2.1). Such adjoint-symmetries are called low-order [3, 8].

A symmetry or an adjoint-symmetry is called higher-order if has a differential order k > N. Existence
of an infinite hierarchy with k being unbounded is typically an indicator of integrability [22, 23].

Running example: For the p-gKdV equation (2.2), the symmetry and adjoint-symmetry determining
equations are respectively given by

(DtP + up
xDxP + D3

xP)|E = 0, (− DtQ − Dx(u
p
xQ) − D3

xQ)|E = 0. (2.9)

These equations are adjoints of each other. Since they do not coincide when P = Q with p �= 0, this shows
that p-gKdV adjoint-symmetries differ from p-gKdV symmetries. It is well-known that, for arbitrary
p > 0, the Lie point symmetries are spanned by

P1 = 1, P2 = −ux, P3 = −ut, P4 = (p − 2)u − 3ptut − xpux, (2.10)

which respectively generate shifts, space-translations, time-translations and scalings. They satisfy

RP1 = 0, RP2 = −Dx, RP3 = −Dt, RP4 = −pxDx − 3ptDt − 2(p + 1) (2.11)

off of E . The low-order adjoint-symmetries can be shown to be spanned by

Q1 = uxx, Q2 = utx, Q3 = 2ux + 3ptutx + pxuxx (2.12)

where

RQ1 = −D2
x , RQ2 = −DtDx, RQ3 = −pxD2

x − 3ptDtDx − (3p + 2)Dx. (2.13)

In the special cases, p = 1, 2, a hierarchy of higher-order symmetries and adjoint-symmetries exist, cor-
responding to the integrability structure of the KdV and mKdV equations. (No integrability structure is
known for any other values of p �= 0.)

Recall that a multiplier is a set of functions �A(x, u(k)) that are non-singular on E and satisfy �AGA =
Di�

i off of E , for some vector function � i in jet space. This total divergence condition is equivalent to

Euα (�AGA) = 0. (2.14)

It can be further reformulated through the product rule of the Euler operator, which yields the equivalent
condition �′∗(G)α + G′∗(�)α = 0. Consequently, on E ,

G′∗(�)α|E = 0 (2.15)

whereby �A is an adjoint-symmetry. Off of E , the adjoint-symmetry determining equation (2.7) yields

G′∗(�)α = R�(G)α (2.16)

where R� is a linear differential operator in total derivatives. Hence, one sees that �′∗(G)α = −G′∗(�)α =
−R�(G)α. Now suppose that GA = 0 does not obey any differential identities. Then one can conclude
(from Lemma 2.2) that �′∗ = −R� + SI,J(DIG)DJ where SI,J = −SJ,I holds off of E and SI,J is non-
singular on E . Furthermore, suppose that �A contains no leading derivatives of GA = 0 and no differential
consequences of any leading derivatives. Then, one can assume without loss of generality that SI,J = 0.
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Therefore, in this situation, �′∗ = −R� holds identically. The adjoint of this equation yields the relation

�′ = −R∗
�

. (2.17)

Every multiplier �A(x, u(k)) of a PDE system determines a conservation law (Di�
i)|E = 0 holding

on the solution space E . The components � i can obtained from �A by homotopy integral formulas
[3, 13, 23] or by an algebraic formula when the given PDE system possesses a scaling symmetry [3, 1].
When a PDE system is regular, all conservation laws will arise from multipliers [3].

Running example: The low-order multipliers of the p-gKdV equation (2.2) consist of the span of a
subset of the low-order adjoint-symmetries:

�1 = Q1 = uxx, �2 = Q2 = utx. (2.18)

In particular, the adjoint-symmetry Q3 = 2ux + 3ptut,x + pxuxx is not a multiplier. The conservation laws
arising from the two multipliers are respectively given by

(
� t, �x

)=
(

−1

2
ux

2,
1

2
uxx

2 + utux + 1

(p + 1)(p + 2)
ux

p+1

)
(2.19)

and (
� t, �x

)=
(

−1

2
uxx

2 + 1

(p + 1)(p + 2)
ux

p+2, utxuxx + 1

2
ux

2

)
. (2.20)

These describe continuity equations for momentum and energy, which can be seen from the form of the
conserved densities � t = 1

2
v2, 1

2
vx

2 − 1
(p+1)(p+2)

vp+2 (up to an overall sign) expressed in terms of the gKdV
variable v = ux (see e.g. [9]).

3. Action of symmetries on adjoint-symmetries

Symmetries of any given PDE system are well-known to form a Lie algebra via their commutators. From
the algebraic viewpoint, if Pα

1 , Pα
2 are symmetries, then so is the commutator defined by

[P1, P2]α = P′
2(P1)

α − P′
1(P2)α. (3.1)

The geometrical formulation is the same:

[prXP1 , prXP2 ] = prX[P1,P2]. (3.2)

Stated precisely, the set of symmetries comprises a linear space on which the commutator defines a
bilinear antisymmetric bracket that obeys the Jacobi identity. This bracket is called the Lie bracket of
the symmetry vector fields. Any symmetry has a natural action on the linear space of all symmetries via
the algebraic commutator (3.1). This action is commonly denoted by ad(P1)P2 = [P1, P2].

Symmetries also have a natural action on the set of adjoint-symmetries, since this set is a linear space
that is determined by the given PDE system whose solution set E is mapped into itself by a symmetry.
Actually, there are two distinct actions of symmetries on the linear space of adjoint-symmetries, as
shown next.

The first symmetry action arises directly from the prolonged action of a symmetry Pα applied to the
adjoint-symmetry determining equation (2.7). To begin, from the lefthand side of this equation, one gets

prXP(G′∗(Q)α) = G′∗(prXP(Q))α + prXP(G′∗)(Q)α. (3.3)

The last term can be simplified by the following steps. First, one has prXP(G′∗) = (prXP(G))′∗ − P′∗G′∗

(by identity (A.13)), whence prXP(G′∗)(Q)α = (prXP(G))′∗(Q)α − P′∗(G′∗(Q))α. Second, through the
symmetry equation (2.4), one can simplify (prXP(G))′∗|E = (RP(G))′∗|E = (RPG′)∗|E = G′∗R∗

P|E , where
R∗

P is the adjoint of the linear differential operator RP (in total derivatives). Thus, expression (3.3) on E
becomes

prXP(G′∗(Q)α)|E = G′∗(Q′(P) + R∗
P(Q))α|E . (3.4)
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Next, from the righthand side of equation (2.7), one has

prXP(RQ(G)α) = (prXPRQ)(G)α + RQ(prXP(G))α. (3.5)

On E , this yields

prXP(RQ(G)α)|E = 0. (3.6)

Finally, from equating expressions (3.6) and (3.4), one gets

G′∗(Q′(P) + R∗
P(Q))α|E = 0 (3.7)

which shows that Q′(P)A + R∗
P(Q)A is an adjoint-symmetry. Therefore, this yields a linear mapping

QA
XP−→ Q′(P)A + R∗

P(Q)A (3.8)

acting on the linear space of adjoint-symmetries.
This action (3.8) can be interpreted geometrically as a Lie derivative [10] and is a generalisation of

a better known action of symmetries on conservation law multipliers, which is found in [1, 8]. Further
discussion is given in Section 3.1.

The second symmetry action arises from the adjoint relation between the respective determining
equations (2.3) and (2.6) for symmetries and adjoint-symmetries.

As is well-known [2, 4, 14, 19], when Pα is a symmetry and QA is an adjoint-symmetry, the adjoint
relation (2.5) yields a conservation law since

Di�
i(P, Q)|E = QAG′(P)A|E − PαG′∗(Q)α|E = 0 (3.9)

from the determining equations (2.3) and (2.6). Off of E , this formula is given by Di�
i(P, Q) =

QARP(G)A − PαRQ(G)α where RP and RQ are the linear differential operators (in total derivatives)
determined by equations (2.4) and (2.7). Integration by parts yields

Di�
i(P, Q) = (R∗

P(Q)A − R∗
Q(P)A)GA + DiF

i(P, Q;G) (3.10)

and hence (R∗
P(Q)A − R∗

Q(P)A)GA is a total divergence in jet space. This implies that the set of functions
R∗

P(Q)A − R∗
Q(P)A constitute a conservation law multiplier. Since every multiplier is an adjoint-symmetry,

there is a linear mapping

QA
XP−→ R∗

P(Q)A − R∗
Q(P)A := �A (3.11)

which acts on the linear space of adjoint-symmetries.
The preceding results are a full and complete generalisation of the symmetry actions derived for scalar

PDEs in [11]. They will now be summarised, and then, some of their consequences will be developed.

Theorem 3.1. For any (regular) PDE system (2.1), there are two actions (3.8) and (3.11) of symmetries
on the linear space of adjoint-symmetries. The second symmetry action (3.11) maps adjoint-symmetries
into conservation law multipliers. The difference of the first and second actions yields the linear
mapping

QA
XP−→ Q′(P)A + R∗

Q(P)A. (3.12)

The action (3.12) will be trivial when the adjoint-symmetry is a conservation law multiplier, as fol-
lows from the relation (2.17) which holds under certain mild conditions on the form of the PDE system
GA = 0 (Lemma 2.2) and the functions QA.

Proposition 3.2. For a (regular) PDE system GA = 0 with no differential identities, the symmetry
action (3.12) on adjoint-symmetries QA that contain no leading derivatives (and their differential
consequences) in the PDE system is trivial iff QA is a conservation law multiplier.

The conditions in Proposition 3.2 are satisfied by evolution PDEs, as shown in section 6.
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Table 1. p-gKdV equation: symmetry actions on adjoint-symmetries

P1 P2 P3 P4

(A) action by (3.8)

Q1 0 0 0 (p − 4)Q1

Q2 0 0 0 −(p + 4)Q2

Q3 0 pQ1 3pQ2 2(p − 2)Q3

(B) action by (3.11)

Q1 0 0 0 (p − 4)Q1

Q2 0 0 0 −(p + 4)Q2

Q3 0 (4 − p)Q1 (p + 4)Q2 0

(C) action by (3.12)

Q1 0 0 0 0
Q2 0 0 0 0
Q3 0 2(p − 2)Q1 2(p − 2)Q2 2(p − 2)Q3

Running example: For the p-gKdV equation (2.2), the symmetry actions on adjoint-symmetries are
shown in Table 1. The non-zero commutators of the symmetries are given by

[P1, P4] = (p − 2)P1, [P2, P4] = pP2, [P3, P4] = 3pP3. (3.13)

3.1. Symmetry action on multipliers

The action of a symmetry vector field XP = Pα∂uα on the multiplier equation �AGA = Di�
i yields, for

the righthand side,

prXPDi�
i = Di(prXP�

i), (3.14)

while for the lefthand side, prXP(�AGA) = �′(P)AGA + �AG′(P)A. The last term can be simplified by
using the symmetry equation (2.4) off of E :

�AG′(P)A = �ARP(G)A = R∗
P(�)AGA + DiF

i. (3.15)

Thus,

prXP(�AGA) = (�′(P)A + R∗
P(�)A)GA modulo total derivatives. (3.16)

Now, from equating expressions (3.16) and (3.14), one concludes that (�′(P)A + R∗
P(�)A)GA is a total

derivative. Therefore, �′(P)A + R∗
P(�)A is a multiplier.

This yields the following well-known action [1, 8]:

�A
XP−→ �′(P)A + R∗

P(�)A. (3.17)

Theorem 3.1 shows that this action extends from conservation law multipliers to adjoint-symmetries
through the symmetry action (3.8) on adjoint-symmetries.

3.2. Action of Lie point symmetries

An explicit expression for the first symmetry action (3.8) in Theorem 3.1 can be derived in the case of
Lie point symmetries.
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A Lie point symmetry vector field has the form [13, 23]

Xp = Pα

p∂uα , Pα

p = ηα(x, u) − ξ i(x, u)uα

i , (3.18)

which generates a point transformation group acting on the space (x,u), as given by exponentiation of
the corresponding canonical vector field

Yp = ξ i∂xi + ηα∂uα . (3.19)

The prolongations of these vector fields are related by [13, 23]

prYp = ξ iDi + prX. (3.20)

A function F(x, u(k)) is symmetry invariant iff prYpF vanishes identically. More generally, a function
F(x, u(k)) is symmetry homogeneous iff prYpF = σFF holds identically for some function σF(x, u).

The symmetry determining equation (2.4) for Lie point symmetries can be expressed as

prYp(G) = Rp(G) (3.21)

where Rp = (Rp)A I
B DI is some linear differential operator in total derivatives whose coefficients (Rp)A I

B

are functions that are non-singular on E . When every PDE in the system GA = 0 has the same differen-
tial order, and the system has no differential identities, then Rp will be purely algebraic, namely (Rp)A I

B

vanishes for I �= ∅.

Proposition 3.3. The first symmetry action (3.8) for a Lie point symmetry (3.18) on an adjoint-symmetry
is given by

QA

Xp−→ Yp(Q)A + R∗
p(Q)A + (Diξ

i)QA (3.22)

where R∗
p is the adjoint of Rp.

The proof is a straightforward computation of the terms Q′(Pp)A + R∗
Pp

(Q)A in the action (3.8). One has
Q′(Pp)A = prYp(Q)A − ξ iDiQA and RPp (G)A = Rp(G)A − ξ iDiGA from identity (3.20). Hence, R∗

Pp
(Q)A =

R∗
p(Q)A + Di(ξ iQA), and thus after cancellation of terms, one obtains the action (3.22).

Similar explicit expressions can be obtained for the other two symmetry actions (3.11), (3.12) in
Theorem 3.1 in the case of adjoint-symmetries with a first-order linear form

QA = κA(x, u) + ρ i
Aα

(x, u)uα

i . (3.23)

This form is a counterpart of Lie point symmetries (more generally, first-order linear symmetries). The
adjoint-symmetry determining equation (2.7) implies that

G′∗(Q)α = ρ i
Aα

DiG
A + KAαGA (3.24)

for some functions KAα that are non-singular on E , when every PDE in the system GA = 0 has the same
differential order, and the system has no differential identities.

This leads to the following result.

Proposition 3.4. For a Lie point symmetry (3.18), the second and third symmetry actions (3.11) and
(3.12) on a first-order linear adjoint-symmetry (3.23)–(3.24) are given by

QA

Xp−→ R∗
p(Q)A + uα

j Di(2ξ [iρ
j]
Aα) + Di(ξ

iκA + ρ i
Aα

ηα) − KAα(ηα − ξ iuα

i ), (3.25)

QA

Xp−→ Yp(Q)A + (Diξ
i)QA − uα

j Di(2ξ [iρ
j]
Aα) − Di(ξ

iκA + ρ i
Aα

ηα) + KAα(ηα − ξ iuα

i ), (3.26)

where R∗
p is the adjoint of Rp.

The proof is similar to that for the action (3.8). One has R∗
Pp

(Q)A = R∗
p(Q)A + Di(ξ iQA), where

Di(ξ iQA) = Di(ξ iκA) + Di(ξ iρ
j
Aα)uα

j + ξ iρ
j
Aαuα

ij . Next, from relation (3.24), one obtains R∗
Q(Pp)A =

KAαPα
p − Di(ρ i

Aα
Pα

p ) where Di(ρ i
Aα

Pα
p ) = Di(ρ i

Aα
ηα) − Di(ρ i

Aα
ξ j)uα

j − ρ i
Aα

ξ juα
ij and KAαPα

p = KAα(ηα − ξ iuα
i ).
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Then, combining the terms R∗
Pp

(Q)A − R∗
Q(Pp)A, one gets expression (3.25). Likewise, combining the

terms Q′(Pp)A + R∗
Q(Pp)A yields expression (3.26).

Two basic types of Lie point symmetries which appear in numerous applications are translations
Ytrans. = ai∂xi and scalings Yscal. = w(i)xi∂xi + w(α)uα∂uα . Here, the vector ai represents the direction of
the translation; the scalars w(α), w(i) represent the scaling weights of uα and xi. The corresponding
evolutionary form of these symmetries is given by

Pα

trans. = −aiuα

i (3.27)

and

Pscal. = w(α)uα − w(i)xiuα

i . (3.28)

Their action on adjoint-symmetries has a very simple form, which is an immediate consequence of
Propositions 3.3 and 3.4.

Corollary 3.5. (i) Suppose QA and GA are translation invariant: Ytrans.(Q)A = 0 and Ytrans.(G)A = 0. Then,
the three symmetry actions respectively consist of

QA

Xp−→ 0, (3.29)

QA

Xp−→ 2uα

j a[iDiρ
j]
Aα + aiDiκA + aiuα

i KAα, (3.30)

QA

Xp−→ −2uα

j a[iDiρ
j]
Aα − aiDiκA − aiuα

i KAα. (3.31)

(ii) Suppose QA and GA are scaling homogeneous: Yscal.(Q)A = w(A)QA and Yscal.(G)A = ω(A)GA. Then, the
three symmetry actions respectively consist of

QA

Xp−→ (ω(A) + w(A) +∑
i w(i))QA, (3.32)

QA

Xp−→ ω(A)QA + uα

j w(i)Di(2x[iρ
j]
Aα) + w(i)Di(x

iκA) + w(α)Di(ρ
i
Aα

uα)

− KAα(w(α)uα − w(i)xiuα

i ),
(3.33)

QA

Xp−→ (w(A) +∑
i w(i))QA − uα

j w(i)Di(2x[iρ
j]
Aα) − w(i)Di(xiκA) + w(α)Di(ρ i

Aα
uα)

+ KAα(w(α)uα − w(i)xiiuα

i ).
(3.34)

For both translations and scalings, the second and third symmetry actions here are considered only for
first-order linear adjoint-symmetries (3.23)–(3.24).

The first symmetry actions (3.29) and (3.32) are a generalisation of the same actions derived on
multipliers in [1, 2]. The other results are new.

4. Generalised pre-symplectic and pre-Hamiltonian structures (Noether operators) from
symmetry actions

It will be useful to begin with a general discussion. Let

SymmG := {Pα(x, u(k)), k ≥ 0, s.t. G′(P)A|E = 0} (4.1)

AdjSymmG := {QA(x, u(k)), k ≥ 0, s.t. G′∗(Q)α|E = 0} (4.2)

denote the linear spaces of symmetries and adjoint-symmetries for a given PDE system GA(x, u(N)) = 0.
Also, let

MultrG := {�A(x, u(k)), k ≥ 0, s.t. G′∗(�)α + �′∗(G)α = 0} (4.3)
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denote the linear space of multipliers, which is a subspace of the linear space of adjoint-symmetries
(4.2).

Suppose that the PDE system possesses the extra structure

DG′ = G′∗J (4.4)

where D and J are linear differential operators in total derivatives whose coefficients are non-singular
on E . Then, for any symmetry Pα, G′∗(J (P))|E =DG′(P)|E = 0 shows that

QA := J (P)A (4.5)

is an adjoint-symmetry. IfJ (P)A is a multiplier, thenJ represents a pre-symplectic operator for the PDE
system, in the sense that it is a mapping from SymmG into MultrG, analogous to a symplectic operator
in the case of Hamiltonian systems. When J (P)A is an adjoint-symmetry but not a multiplier, it will be
called a Noether operator [16].

Similarly, suppose that a PDE system (2.1) possesses the extra structure

DG′∗ = G′H (4.6)

where D and H are linear differential operators in total derivatives whose coefficients are non-singular
on E . For any adjoint-symmetry QA, G′(H(Q))|E =DG′∗(Q)|E = 0 whereby

Pα := H(Q)α (4.7)

is a symmetry. Since H is a mapping from AdjSymmG ⊇ MultrG into SymmG, it represents a pre-
Hamiltonian operator (or inverse Noether operator) for the PDE system, analogous to a Hamiltonian
operator in the case of Hamiltonian systems [16].

When the inverses of J and H are well defined, then J −1 := H defines a pre-Hamiltonian (inverse
Noether) operator, and H−1 := J defines a Noether operator.

These definitions can be generalised to allow J , H and D to be linear operators in partial deriva-
tives with respect to jet space variables in addition to total derivatives. In this case, J and H will be
respectively called a generalised pre-symplectic (Noether) structure and a generalised pre-Hamiltonian
(inverse Noether) structure.

Remark 4.1. For H to be a Hamiltonian structure, there must exist a non-degenerate integral pairing
〈Q, P〉 (modulo total derivatives) between symmetries and adjoint-symmetries such that {Q1, Q2}H :=
〈Q1, H(Q2)〉 is a Poisson bracket, namely it must be skew-symmetric and satisfy the Jacobi identity.
Similarly, for J to be a symplectic structure, the analogous bilinear-form ωJ (P1, P2) := 〈J (P1), P2〉
must be skew-symmetric and closed.

Now, it will be shown how an action of symmetries on adjoint-symmetries can be used itself to
define a generalised pre-symplectic (Noether) structure and, when its inverse exists, a generalised pre-
Hamiltonian (inverse Noether) structure.

Consider, in general, any symmetry action

QA
XP−→ SP(Q)A (4.8)

on AdjSymmG, where SP is a linear operator which is also linear in Pα. Note that SP may be constructed
from both total derivatives DI and partial derivatives ∂uα

I
. The action SP(Q)A also defines a dual linear

operator

SQ(P)A := SP(Q)A (4.9)

from SymmG into AdjSymmG, which constitutes a generalised pre-symplectic (Noether) structure. For
a fixed adjoint-symmetry QA, SQ will have an inverse S−1

Q which is defined modulo its kernel, ker(SQ) ⊂
SymmG, and which acts on the linear subspace given by its range, SQ(SymmG) ⊆ AdjSymmG. This
inverse S−1

Q constitutes a generalised pre-Hamiltonian (inverse Noether) structure when SQ(SymmG) =
AdjSymmG, and otherwise it is a restricted type of that structure.

From the three symmetry actions in Theorem 3.1, the following structures are obtained.
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Theorem 4.2. For a general PDE system (2.1), let QA be any fixed adjoint-symmetry. Then, a
generalised Noether structure is given by the first symmetry action (3.8),

J1(P)A := S1 Q(P)A = Q′(P)A + R∗
P(Q)A; (4.10)

a generalised pre-symplectic structure is given by and the second symmetry action (3.11),

J2(P)A := S2 Q(P)A = R∗
P(Q)A − R∗

Q(P)A; (4.11)

a Noether operator is given by the third symmetry action (3.12),

JQ := S3 Q = Q′ + R∗
Q. (4.12)

The formal inverse of each structure (4.10) and (4.11) gives a generalised pre-Hamiltonian (inverse
Noether) structure, while the formal inverse of the operator (4.12) gives a pre-Hamiltonian (inverse
Noether) operator.

The statement about the inverse of JQ is proven as follows, relying on a direct derivation of the
symmetry action S3 P(Q)A = Q′(P)A + R∗

Q(P)A. Similar proofs hold for the inverse of J1 and J2, using the
derivations that were given in establishing Theorem 3.1.

For any set of differential functions Pα, one has prXP(G′∗(Q)α − RQ(G)α) = 0 from the determining
equation (2.7), where QA is any fixed adjoint-symmetry. One also has Euα (PβG′∗(Q)β − QAG′(P)A) = 0
from the adjoint relation (2.5). These two expressions can be simplified, on E , by the following steps
with HA := G′(P)A − RP(G)A:

Euα (PβG′∗(Q)β − QAG′(P)A)|E = Euα (PβRQ(G)β − QARP(G)A)|E − Euα (QAHA)|E
= Euα (GA(R∗

Q(P) − R∗
P(Q))A)|E − Euα (QAHA)|E

= G′∗(R∗
Q(P) − R∗

P(Q))α|E − Q′∗(H)α|E − H′∗(Q)α|E ,

(4.13)

which has used the product rule for the Euler operator and integration by parts; and

(prXP(G′∗(Q) − RQ(G))α)|E = G′∗(Q′(P))α|E + (G′(P))′∗(Q)α|E − RQ(G′(P))α)|E
(prXFf ′∗) = (prXFf )′∗ − F′∗f ′∗.

= G′∗(Q′(P))α|E + (RP(G))′∗(Q)α|E + H′∗(Q)α|E − RQ(H)α)|E
= G′∗(Q′(P) + R∗

P(Q))α|E + H′∗(Q)α|E − RQ(H)α)|E ,

(4.14)

which has used the identity (A.14), combined with the adjoint-symmetry determining equation (2.6), in
addition to (RP(G))′∗|E = (RPG′)∗|E = G′∗R∗

P|E . Then, combining the two expressions (4.13) and (4.14),
both of which vanish, one obtains

0 = Euα (PβG′∗(Q)β − QAG′(P)A)|E + (prXP(G′∗(Q) − RQ(G))α)|E
= G′∗(Q′(P) + R∗

Q(P))α|E − (Q′∗(H) + RQ(H))α)E .
(4.15)

This equation shows that G′∗(S3 Q(P))|E = 0 iff (Q′∗ + RQ)HE = 0. Assuming that Q′∗ + RQ is formally
invertible, one can conclude that HA|E = 0 whenever S3 Q(P)A is an adjoint-symmetry, thereby showing
that Pα is a symmetry. Hence, S−1

3 Q =J −1
Q maps adjoint-symmetries into symmetries. This completes the

proof.
It is worth noting that this proof gives the relation G′∗(JQ(P)) =J ∗

Q (G′(P)) on E , which is stronger
than the structure (4.4).

Finally, the Noether operator (4.12) can be combined with the Frechet derivative identity (2.5) to
construct a bilinear form as follows.

Proposition 4.3. Let QA be any fixed adjoint-symmetry such that the Noether operator (4.12) is non-
trivial, and let � i(P, Q) be the components of the vector in the Frechet derivative identity (2.5). A bilinear
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Table 2. Dual of p-gKdV symmetry actions with Q = c1Q1 + c2Q2 + c3Q3

S1 Q S2 Q S3 Q

P1 0 0 0
P2 pc3Q1 (4 − p)c3Q1 2(p − 2)c3Q1

P3 3pc3Q2 (p + 4)c3Q2 2(p − 2)c3Q2

P4 (p − 4)c1Q1 − (p + 4)c2Q2 + 2(p − 2)c3Q3 (p − 4)c1Q1 − (p + 4)c2Q2 2(p − 2)c3Q3

form on the linear space of symmetries Pα∂uα is defined by

ωQ(P1, P2) =
∫




� i(P1, JQ(P2))n̂i dn−1V (4.16)

where 
 is a domain of codimension 1 in R
n, with n̂i denoting a unit normal 1-form of 
, and with dn−1V

denoting the volume element on 
.

Further developments related to the structures in Theorem 4.2 and Proposition 4.3 will given for
evolution PDEs in section 6.

Running example: The p-gKdV equation (2.2) has Symmp-gKdV = span(P1, P2, P3, P4) for Lie point
symmetries and AdjSymmp-gKdV = span(Q1, Q2, Q3) for low-order adjoint-symmetries. The dual linear
maps given by the three symmetry actions (3.8), (3.11), (3.12) using Q = c1Q1 + c2Q2 + c3Q3 are shown
in Table 2, where c1, c2, c3 are arbitrary constants. The corresponding structures (4.10), (4.11), (4.12) are
defined by Ji(a1P1 + a2P2 + a3P3 + a4P4) = a1Si Q(P1) + a2Si Q(P2) + a3Si Q(P3) + a4SQ(P4), i = 1, 2, 3,
where a1, a2, a3, a4 are arbitrary constants. In particular, the explicit form of the Noether operator is

JQ = Q′
3 + R∗

Q3
= 2(2 − p)Dx, (4.17)

since Q′
3 = (2ux + 3ptut,x + pxuxx)′ = 2Dx + 3ptDtDx + pxD2

x and R∗
Q3

= ( − pxD2
x − 3ptDtDx − (3p + 2)

Dx)∗ = 2(1 − p)Dx − pxD2
x − 3ptDtDx from equations (2.12) and (2.13).

5. Bracket structures for adjoint-symmetries

The commutator (3.1) of symmetries defines a Lie bracket on the linear space of symmetries (4.1).
An interesting fundamental question is whether there exists any bilinear bracket on the linear space
of adjoint-symmetries (4.2). Such a structure would allow the possibility for a pair of known adjoint-
symmetries to generate a new adjoint-symmetry, just as a pair of known symmetries can generate a new
symmetry. Additionally, if a bilinear bracket has a projection into the linear space of multipliers, then
this would provide a generalisation of a Poisson bracket.

Every action of symmetries on adjoint-symmetries will now be shown to give rise to two different
bilinear bracket structures on adjoint-symmetries. The first bracket is a Lie bracket constructed from
the pull-back of the symmetry commutator (3.1) under an inverse of the symmetry action on adjoint-
symmetries. This yields a homomorphism from the Lie algebra of symmetries into a Lie algebra of
adjoint-symmetries. The second bracket does not involve the symmetry commutator (3.1) and instead
uses the symmetry action composed with an inverse action to construct a recursion operator on adjoint-
symmetries.

These constructions will be carried out in terms of the dual linear operator (4.9) associated with a
general symmetry action (4.8). Afterward, the properties of the resulting brackets will be discussed for
each of the three actions (3.8), (3.12).
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5.1. Adjoint-symmetry commutator brackets from symmetry actions

The construction of the first bracket goes as follows.

Proposition 5.1. Fix an adjoint-symmetry QA in AdjSymmG, and let SQ be the dual linear operator
(4.9) associated with a symmetry action SP on AdjSymmG. If the kernel of SQ is an ideal in SymmG,
then

Q[Q1, Q2]A := SQ([S−1
Q Q1, S−1

Q Q2])A (5.1)

defines a bilinear bracket on the linear space SQ(SymmG) ⊆ AdjSymmG. This bracket can be
expressed as

Q[Q1, Q2]A = Q′
2(S−1

Q Q1) − Q′
1(S−1

Q Q2) − S′
Q(S−1

Q Q2)(S−1
Q Q1) + S′

Q(S−1
Q Q1)(S−1

Q Q2) (5.2)

where S′
Q denotes the Frechet derivative of SQ.

Any one of the symmetry actions (3.8), (3.11), (3.12) can be used to write down formally a corre-
sponding bracket (5.1). However, S−1

Q is well-defined only modulo ker(SQ), and so in the absence of any
extra structure to fix this arbitrariness, the condition that ker(SQ) is an ideal is necessary and sufficient
for the bracket to be well defined (namely, invariant under S−1

Q → S−1
Q + ker(SQ)). This condition will

select a set of adjoint-symmetries QA that can be used in constructing the bracket. When ker(SQ) is an
ideal, so is ker(SλQ) = λ ker(SQ), for any constant λ. Hence, the set of adjoint-symmetries QA for which
ker(SQ) is an ideal comprises a projective subspace in AdjSymmG. In the case when the dimension of
this subspace is larger than 1, it is natural to select QA such that ran(SQ) is maximal in AdjSymmG.

For the linear space ker(SQ) ⊆ SymmG to be an ideal, it must be a subalgebra that is preserved by the
action of SymmG given by the Lie bracket (3.1). The subalgebra condition

[ ker(SQ), ker(SQ)] ⊆ ker(SQ) (5.3)

states that SQ([P1, P2]) = 0 is required to hold for all pairs of symmetries XP1 = Pα
1∂uα and XP2 = Pα

2∂uα

such that SQ(P1)A = SP1 (Q)A = 0 and SQ(P2)A = SP2 (Q)A = 0. The question of whether this condition (5.3)
is satisfied by each of the three symmetry actions will now be addressed.

For the first symmetry action (3.8), consider

0 = S1 Q(P1)A = Q′(P1)A + R∗
P1

(Q)A, 0 = S1 Q(P2)A = Q′(P2)A + R∗
P2

(Q)A. (5.4)

Applying the symmetries XP2 and XP1 respectively to these two equations and subtracting them yields

0 = prXP2 (Q′(P1)A + R∗
P1

(Q)A) − prXP1 (Q′(P2)A + R∗
P2

(Q)A)

= Q′(prXP2 (P1) − prXP1 (P2))A + prXP2 (R∗
P1

)(Q)A − prXP1 (R∗
P2

)(Q)A

+ R∗
P1

(prXP2 (Q))A − R∗
P2

(prXP1 (Q))A

(5.5)

using prXP2 Q′(P1) − prXP1 Q′(P2) = Q′ ′(P2, P1) − Q′ ′(P1, P2) = 0. The first term in equation (5.5)
reduces to a commutator expression

Q′(prXP2 (P1) − prXP1 (P2))A = Q′([P2, P1])A. (5.6)

The middle two terms can be expressed as

prXP2 (R∗
P1

)(Q)A − prXP1 (R∗
P2

)(Q)A = R∗
[P2,P1](Q)A − [R∗

P2
, R∗

P1
](Q)A (5.7)

by use of the identity

R∗
[P2,P1] = [R∗

P2
, R∗

P1
] + prXP2 (R∗

P1
) − prXP1 (R∗

P2
) (5.8)

which can derived straightforwardly from the symmetry determining equation (2.4) off of E . Next, the
last term in equation (5.7) can be combined with the last two terms in equation (5.5), yielding

R∗
P1

(Q′(P2) + R∗
P2

(Q))A − R∗
P2

(Q′(P1) + R∗
P1

(Q))A = 0 (5.9)

https://doi.org/10.1017/S0956792522000304 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000304


European Journal of Applied Mathematics 961

due to equations (5.4). Hence, after these simplifications, equation (5.5) becomes 0 = Q′([P2, P1])A +
R∗

[P2,P1](Q)A = S1 Q([P2, P1])A. This establishes the following result.

Lemma 5.2. For the first symmetry action (3.8), ker(SQ) is a subalgebra in SymmG.

To continue, consider the third symmetry action (3.12). Similar steps will now be carried out, starting
from

0 = S3 Q(P1)A = Q′(P1)A + R∗
Q(P1)A, 0 = S3 Q(P2)A = Q′(P2)A + R∗

Q(P2)A. (5.10)

Respectively applying the symmetries XP2 and XP1 to these two equations and subtracting, one obtains

0 = Q′([P2, P1])A + R∗
Q([P2, P1])A + prXP2 (R∗

Q)(P1)A − prXP1 (R∗
Q)(P2)A. (5.11)

Hence, one sees that S3 Q([P2, P1]) = Q′([P2, P1])A + R∗
Q([P2, P1])A = prXP1 (R∗

Q)(P2)A − prXP2 (R∗
Q)(P1)A

does not vanish in general. This represents an obstruction to the bracket being well-defined. A useful
remark is that if Q = � is a conservation law multiplier for a PDE system with no differential identities
(Lemma 2.2), then the relation (2.17) shows that

prXP1 (R∗
Q)(P2)A − prXP2 (R∗

Q)(P1)A = prXP2 (Q′)(P1)A − prXP1 (Q′)(P2)A

= Q′ ′(P1, P2) − Q′ ′(P2, P1) = 0
(5.12)

whereby the obstruction vanishes.
A similar obstruction arises for the bracket given by the second symmetry action (3.11). Specifically,

by the same steps used for the first and third symmetry actions, one obtains S2 Q([P2, P1]) =
R∗

[P2,P1](Q)A − R∗
Q([P2, P1])A = prXP2 (R∗

Q)(P1)A − prXP1 (R∗
Q)(P2)A + R∗

P2
(S1 Q(P1))A − R∗

P1
(S1 Q(P2))A. This

expression contains the same obstruction terms as for the third symmetry action, as well as terms that
involve the first symmetry action itself. If Q = � is a conservation law multiplier for a PDE system with
no differential identities (Lemma 2.2), then this obstruction vanishes.

Consequently, the following two results have been established.

Lemma 5.3. For the third symmetry action (3.12), ker(S3 Q) is a subalgebra in SymmG iff the condition

prXP2 (R∗
Q)(P1)A − prXP1 (R∗

Q)(P2)A = 0 (5.13)

holds for all symmetries XP1 = Pα
1∂uα and XP2 = Pα

2∂uα in ker(S3 Q).

Lemma 5.4. For the second symmetry action (3.11), ker(S2 Q) is a subalgebra in SymmG iff the
condition

prXP2 (R∗
Q)(P1)A − prXP1 (R∗

Q)(P2)A + R∗
P2

(S1 Q(P1))A − R∗
P1

(S1 Q(P2))A = 0 (5.14)

holds for all symmetries XP1 = Pα
1∂uα and XP2 = Pα

2∂uα in ker(S2 Q).

The preceding developments can be summarised as follows.

Proposition 5.5. The adjoint-symmetry commutator bracket (5.1) associated with each of the symme-
try actions (3.8), (3.11), (3.12) is well-defined on SQ(SymmG) ⊆ AdjSymmG if ad(SymmG) ker(SQ) ⊆
ker(SQ) and, for the actions (3.11) and (3.12), if the respective conditions (5.14) and (5.13) hold when
dim ker(SQ) > 1. These latter conditions are identically satisfied when Q is a conservation law multiplier
for a PDE system with no differential identities.

An alternative way to have the bracket be well defined is if the quotient SymmG/ ker(SQ) can be
naturally identified with a subspace in SymmG. This is equivalent to requiring that the symmetry Lie
algebra admits an extra structure of a direct sum decomposition as a linear space

SymmG = ker(SQ) ⊕ coker(SQ) (5.15)

such that the decomposition is independent of a choice of basis. Then S−1
Q can be defined as belonging

to the subspace coker(SQ), and hence the bracket will be well defined.
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It will now be shown that the extra structure (5.15) will typically exist for a symmetry Lie algebra
that contains a scaling symmetry (3.28).

Every symmetry in SymmG can be decomposed into a sum of symmetries that are scaling homoge-
neous. Consequently, there will exist a basis for SymmG consisting of Pscal. and {Pk}k=1,...,dim(SymmG)−1, such
that [Pscal., Pk] = r(k)Pk where the constant r(k) is the scaling weight of the symmetry Pk. Then there exists
a direct sum decomposition

SymmG = span(Pscal.) ⊕
∑

k

⊕span(Pk). (5.16)

which is basis independent. This will provide the extra structure (5.15) if the subspaces ker(SQ) and
coker(SQ) can be uniquely characterised in terms of their scaling weights.

Proposition 5.6. Suppose SymmG contains a scaling symmetry (3.28). For each of the symmetry actions
(3.8), (3.11), (3.12), if ker(SQ) is a scaling homogeneous subspace in SymmG, then the adjoint-symmetry
commutator bracket (5.1) is well-defined on the linear space SQ(SymmG) ⊆ AdjSymmG by taking S−1

Q to
belong to a sum of scaling homogeneous subspaces with scaling weights that are different than that of
ker(SQ).

This result can be generalised if ker(SQ) is a direct sum of scaling homogeneous subspaces that have
no scaling weights in common with any scaling homogeneous subspace in coker(SQ).

Now, the basic properties of the general adjoint-symmetry commutator bracket (5.1) will be studied.
Recall that the underlying symmetry commutator bracket is antisymmetric and obeys the Jacobi identity.
This implies that the same properties are inherited by the bracket (5.1).

Theorem 5.7. The adjoint-symmetry commutator bracket (5.1) is a Lie bracket, namely it is antisym-
metric

Q[Q1, Q2]A + Q[Q2, Q1]A = 0 (5.17)

and obeys the Jacobi identity
Q[Q1, Q[Q2, Q3]]A + Q[Q2,

Q[Q3, Q1]]A + Q[Q3,
Q[Q1, Q2]]A = 0. (5.18)

Hence, the linear subspace SQ(SymmG) ⊆ AdjSymmG of adjoint-symmetries acquires a Lie algebra
structure which is homomorphic to the symmetry Lie algebra. If there exists an adjoint-symmetry QA

such that SQ(SymmG) = AdjSymmG where ker(SQ) satisfies the conditions in either of Propositions 5.5
and 5.6, then the whole space AdjSymmG will be a Lie algebra.

Since SQ is a linear mapping, the condition SQ(SymmG) = AdjSymmG can be expressed
equivalently as

dim AdjSymmG + dim ker(SQ) = dim SymmG. (5.19)

Hence, dim SymmG ≥ dim AdjSymmG is a necessary condition. This version is most useful when the
dimensions are finite.

Running example: For the p-gKdV equation (2.2), the three dual linear maps SQ with Q =
c1Q1 + c2Q2 + c3Q3 have a 4-dimensional domain span(P1, P2, P3, P4), while their range is at most 3-
dimensional, since it belongs to span(Q1, Q2, Q3). Hence, the kernel of each SQ is at least 1-dimensional.
The specific ranges and kernels, which depend on the choice of the constants c1, c2, c3, can be found
from Table 2 as follows.

Firstly, for S3 Q, there is no loss of generality in taking c3 = 1, c1 = c2 = 0. The range of S3 Q is
span(Q1, Q2, Q3), while the kernel is span(P1). This subspace in Symmp-gKdV is an ideal, as shown by the
symmetry commutators (3.13). The resulting adjoint-symmetry bracket Q3 [ · , · ] is thereby well-defined.
It is computed by: S−1

3 Q3
(Q1) = 1

2(p−2)
P2, S−1

3 Q3
(Q2) = 1

2(p−2)
P3, S−1

3 Q3
(Q3) = 1

2(p−2)
P4, modulo span(P1), and
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thus

Q3 [Q1, Q2] = S3 Q3

([
1

2(p − 2)
P2,

1

2(p − 2)
P3

])
= 1

4(p − 2)2
S3 Q3 (0) = 0, (5.20a)

Q3 [Q1, Q3] = S3 Q3

([
1

2(p − 2)
P2,

1

2(p − 2)
P4

])
= 1

4(p − 2)2
S3 Q3 (pP2) = p

2(p − 2)
Q1, (5.20b)

Q3 [Q2, Q3] = S3 Q3

([
1

2(2 − p)
P3,

1

2(p − 2)
P4

])
= 1

4(p − 2)2
S3 Q3 (3pP3) = 3p

2(p − 2)
Q2, (5.20c)

using the symmetry commutators (3.13). This bracket is a Lie bracket such that span(Q1, Q2, Q3)
is homomorphic to the symmetry algebra span(P1, P2, P3, P4) and isomorphic to the subalgebra
span(P2, P3, P4). In particular, the bracket can be expressed in terms of the scaled Noether operator
Dx (cf (4.17)):

Q3 [ · , · ] = Dx([D
−1
x · , D−1

x · ]). (5.21)

Secondly, for S1 Q, the range is maximal if c3 �= 0 with any values of c2, c3. The simplest choice is
c1 = c2 = 0, c3 = 1, namely Q = Q3. Then, the range and the kernel are the same as for S3 Q, and so the
resulting adjoint-symmetry bracket is well-defined. It is computed by: S−1

1 Q3
(Q1) = 1

p
P2, S−1

1 Q3
(Q2) = 1

3p
P3,

S−1
1 Q3

(Q3) = 1
2(p−2)

P4, modulo span(P1), and thus

Q3 [Q1, Q2] = S1 Q3

([
1

p
P2,

1

3p
P3

])
= 1

3p2
S1 Q3 (0) = 0, (5.22a)

Q3 [Q1, Q3] = S1 Q3

([
1

p
P2,

1

2(p − 2)
P4

])
= 1

2p(p − 2)
S1 Q3 (pP2) = p

2(p − 2)
Q1, (5.22b)

Q3 [Q2, Q3] = S1 Q3

([
1

3p
P3,

1

2(p − 2)
P4

])
= 1

6p(p − 2)
S1 Q3 (3pP3) = 3

2(p − 2)
Q2. (5.22c)

This yields the same bracket as for S3 Q.
Thirdly, for S2 Q, the maximal range is span(Q1, Q2), which arises if c3 �= 0 with any values for c1, c2.

The kernel is spanned by P1, P4 + c1
c3

P2 + c2
c3

P3. However, this space is not an ideal in Symmp-gKdV, as
shown by the symmetry commutators (3.13). Hence, a corresponding adjoint-symmetry bracket cannot
be defined without the use of extra structure. The scaling symmetry P4 is available to provide a direct
sum decomposition span(P1, P2, P3, P4) = ker(S2 Q) ⊕ coker(S2 Q) where, for the choice c1 = c2 = 0 and
c3 = 1, ker(S2 Q) = span(P4) ⊕ span(P1) and coker(S2 Q) = span(P2) ⊕ span(P3) are characterised by their
distinct scaling weights with respect to ad(P4): (0, 2 − p) and ( − p, −3p). Then, an adjoint-symmetry
bracket can be defined via S−1

2 Q3
(Q1) = 1

4−p
P2, S−1

2 Q3
(Q2) = 1

p+4
P3, in coker(S2 Q), and thus

Q3 [Q1, Q2] = S2 Q3

([
1

4 − p
P2,

1

p + 4
P3

])
= 1

16 − p2
S2 Q3 (0) = 0. (5.23)

This yields an abelian Lie bracket on the subspace span(Q1, Q2) ⊂ AdjSymmp-gKdV. It coincides with the
previous Lie bracket restricted to this subspace.

These three Lie brackets are summarised in Table 3.

5.2. Adjoint-symmetry commutators associated with symmetry subalgebras

The Lie algebra structure identified in Theorem 5.7 motivates a related construction of
adjoint-symmetry commutator brackets given by a pull-back of Lie subalgebras in SymmG under S−1

Q .
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Table 3. p-gKdV equation: adjoint-symmetry Lie brackets

Q1 Q2 Q3

(A) bracket using S1 Q3 = S3 Q3

Q1 0 0 p
2(p−2)

Q1

Q2 0 3
2(p−2)

Q2

Q3 0

(B) bracket using S2 Q3

Q1 0 0
Q2 0

As the starting point, the linear subspace SQ(SymmG) will be replaced by SQ(A) where A is any
Lie subalgebra in SymmG and where QA is chosen such that ker(SQ) ∩A is empty. The set of such
adjoint-symmetries will, as before, be a projective subspace in AdjSymmG.

Then, the construction of the commutator bracket given in Proposition 5.1 is modified as follows.

Proposition 5.8. Given a Lie subalgebra A in SymmG and a symmetry action SP on AdjSymmG, fix an
adjoint-symmetry QA in AdjSymmG such that the kernel of SQ restricted to A is empty, where SQ is the
dual linear operator (4.9) of the symmetry action. Then, the commutator bracket (5.1) is well-defined on
the linear space SQ(SymmG) ⊆ AdjSymmG, and this structure is isomorphic to the Lie subalgebra A.

In particular, S−1
Q provides an isomorphism under which the commutator bracket (5.1) on SQ(SymmG)

is the pull-back of the Lie bracket on A. The condition

ker(SQ) ∩A= ∅ (5.24)

will select the adjoint-symmetries QA that can be used in constructing this bracket. If this condition fails
to be satisfied by all adjoint-symmetries, then it implies that there is no subspace in AdjSymmG on which
the bracket produces a Lie algebra isomorphic to A.

The question of which Lie subalgebras A in SymmG have counterparts in AdjSymmG for a PDE
system GA = 0 thereby becomes an interesting algebraic classification problem.

5.3. Adjoint-symmetry non-commutator brackets from symmetry actions

The construction of the second bracket disregards the symmetry commutator but lacks the attendant
properties.

Proposition 5.9. Fix an adjoint-symmetry QA in AdjSymmG, and let SQ be the dual linear operator
(4.9) associated with a symmetry action SP on AdjSymmG. If the kernel of SQ satisfies

SP = 0 for all P ∈ ker(SQ), (5.25)

then a bilinear bracket from AdjSymmG × SQ(SymmG) into SQ(SymmG) ⊆ AdjSymmG is defined by

Q(Q1, Q2)A := SQ1 (S−1
Q Q2)A. (5.26)

Any one of the symmetry actions (3.11), (3.8), (3.12) can be used to write down formally a corre-
sponding bracket (5.26). Note that, unlike the situation for the commutator bracket (5.1), the condition
(5.25) only involves the properties of the symmetry action SQ and does not depend on the Lie algebra
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structure of SymmG. This condition can be by-passed when a scaling symmetry (3.28) is contained in
the symmetry Lie algebra.

Proposition 5.10. Suppose SymmG contains a scaling symmetry (3.28). For any symmetry action, if
ker(SQ) is a scaling homogeneous subspace in SymmG, then the adjoint-symmetry bracket (5.26) is
well-defined on SQ(SymmG) ⊆ AdjSymmG by taking S−1

Q to belong to a sum of scaling homogeneous
subspaces.

In contrast to the commutator bracket (5.1), the bracket (5.26) is non-symmetric. Its only general
property is that

Q(Q, Q2) = Q2 (5.27)

for all Q2 in the linear subspace SQ(SymmG) ⊆ AdjSymmG.
There are two worthwhile remarks that can be made.

Remark 5.11. (i) The bracket (5.26) can be viewed as arising from the property that SQ1 S−1
Q2

is a recursion
operator on adjoint-symmetries in SQ(SymmG). (ii) A symmetric version and a skew-symmetric version
of the bracket (5.26) can be defined by respectively symmetrising and antisymmetrising on the pair Q1

and Q2:

Q(Q1, Q2)−
A := 1

2

(
SQ1 (S−1

Q Q2)A − SQ2 (S−1
Q Q1)A

)
(5.28)

and
Q(Q1, Q2)

+
A := 1

2

(
SQ1 (S−1

Q Q2)A + SQ2 (S−1
Q Q1)A

)
. (5.29)

The recursion operator SQ1 S−1
Q2

was derived originally for scalar PDE systems in [11].
Running example: For the p-gKdV equation (2.2), the condition (5.25) holds when Q = Q3 where

ker(SQ) = span(P1) for the symmetry actions S1 and S3, as seen from Tables 1 and 2. The resulting
brackets (5.28) and (5.29) on the linear space span(Q1, Q2, Q3) have the form

Q3 (Q1, Q1)± = Q3 (Q2, Q2)± = 0, Q3 (Q3, Q3)+ = Q3,
Q3 (Q3, Q3)

− = 0, (5.30a)

Q3 (Q1, Q2)± = 0, Q3 (Q1, Q3)± = 1

2
λ±

1 Q1,
Q3 (Q2, Q3)

± = 1

2
λ±

2 Q2, (5.30b)

where, for S1: λ+
1 = 3p−8

2p−4
, λ−

1 = p
4−2p

, λ+
2 = p−8

2p−4
, λ−

2 = 3p
4−2p

; and for S3: λ±
1 = ±1, λ±

2 = ±1.

5.4. Properties and computational aspects

As emphasised already, the definition of the two brackets (5.1) and (5.26) involves the dual linear map
SQ defined by a symmetry action (4.8), which can be chosen to be any one of the three symmetry actions
given in Theorem 3.1. The different properties of these actions imply corresponding properties for the
brackets.

In the case of the second symmetry action (3.11), since it maps any fixed adjoint-symmetry QA into
a multiplier, the resulting brackets will be defined on the linear (sub) space of multipliers given by the
range of the symmetry action, namely ran(S2 Q) ⊆ MultrG ⊆ AdjSymmG. Thus, each of the two brackets
will implicitly define a bracket structure on conservation laws of the given PDE system GA = 0 and
thereby will constitute a generalised Poisson bracket on the conserved integrals associated with the
conservation laws. Further development of this structure will be left to subsequent work.

If QA is chosen to be a multiplier itself, then since the first symmetry action (3.8) coincides with the
second symmetry action, the two brackets defined using the dual linear map S1 Q will be the same as the
preceding two brackets. Moreover, use of the third symmetry action (3.12) when QA is a multiplier will
produce trivial brackets, since S3 Q vanishes in this case.
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Both of the brackets (5.1) and (5.26) are constructed explicitly in terms of SQ and its inverse S−1
Q .

For the two symmetry actions (3.8) and (3.11), SQ viewed as an operator involves total derivatives DI

and partial derivatives ∂uα
I
. This means that S−1

Q will involve an integral (operator) with respect to the
variables uα

I in jet space, whereby the brackets are essentially nonlocal in jet space. Nevertheless, as an
alternative, SQ can be represented in terms of structure constants that are defined with respect to any
fixed basis of the linear spaces SymmG and AdjSymmG. With such a representation, the pre-image of
any given adjoint-symmetry can be found directly in terms of these structure constants. The resulting
brackets thus should be viewed as an a posteriori structure on the linear space AdjSymmG.

In contrast, for the third symmetry action (3.12), S3 Q = Q′ + R∗
Q is a linear operator in total derivatives,

where QA is any adjoint-symmetry that is not multiplier. Consequently, S−1
3 Q only involves the inverse total

derivatives D−1
I , and thus, the two brackets (5.1) and (5.26) are local in jet space and thereby constitute

an a priori structure, just like the symmetry commutator.
The same considerations pertain to the corresponding pre-symplectic and pre-Hamiltonian (Noether)

structures shown in Theorem 4.2.

6. Results for evolution PDEs

The preceding general results will next be specialised to evolution PDEs.
Consider a general system of evolution PDEs for uα(t, x),

uα

t = gα(x, u, ∂xu, . . . , ∂N
x u) (6.1)

where x now denotes the spatial independent variables xi, i = 1, . . . , n, while t is the time variable. In
this setting, the number of PDEs and the number of dependent variables in the system are equal, M = m,
and so the corresponding indices can be identified, A = α. In particular,

Gα(t, x, u(N)) = uα

t − gα(x, u, ∂xu, . . . , ∂N
x u). (6.2)

It will be useful to note that, on the solution space E of the evolution system (6.1), all t-derivatives of
uα can be eliminated in any expression through substituting the equation (6.1) and its spatial derivatives.
This demonstrates, in particular, that any evolution system satisfies Lemma 2.1 and cannot obey any
differential identities [3, 23]. In particular, all of the technical conditions assumed in section 2 for general
PDE systems hold automatically for evolution systems (6.1).

The determining equation (2.3) for symmetries takes the form (DtPα − g′(P)α)|E = 0 for a set of
functions Pα(t, x, u, ∂xu, . . . , ∂ k

x u) containing no t-derivatives of uα. The first term can be expressed as
DtPα = ∂tPα + P′(ut)α = ∂tPα + P′(g)α + P′(G)α, whence

∂tP
α + P′(g)α − g′(P)α = ∂tP

α + [g, P]α = 0 (6.3)

is the symmetry determining equation in simplified form. This equation implies that G′(P)α = P′(G)α

holds off of E . Consequently, one has

RP = P′. (6.4)

Likewise, the determining equation (2.6) for adjoint-symmetries is given by (−DtQα − g′∗(Q)α)|E = 0
for a set of functions Qα(t, x, u, ∂xu, . . . , ∂ k

x u) containing no t-derivatives of uα. This equation simplifies
to the form

−(∂tQα + Q′(g)α + g′∗(Q)α) = 0. (6.5)

Hence, off of E , one has G′∗(Q)α = −Q′(G)α, which yields

RQ = −Q′. (6.6)

A useful remark is that the adjoint-symmetry determining equation (6.5) can be expressed in the form

∂tQα + {Q, g}∗
α
= 0 (6.7)
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in terms of the anti-commutator {A, B} = A′(B) + B′(A), where {A, B}∗ = A′∗(B) + B′∗(A). This formula-
tion emphasises the adjoint relationship between the determining equations for adjoint-symmetries and
symmetries.

The necessary and sufficient condition for an adjoint-symmetry to be a conservation law multiplier
is that its Frechet derivative is self-adjoint [3, 4, 6, 13, 16, 23, 32]

Q′ = Q′∗. (6.8)

This well-known condition can be expressed more explicitly as the system of Helmholtz equations [6]

∂uβ
I
Qα = (−1)|I|EI

uα (Qβ), |I| = 0, 1, . . . (6.9)

in terms of the higher Euler operators EI
uα (cf equation (A.7)). The determining system for multipliers

thereby consists of equations (6.9) and (6.5).
Self-adjointness (6.8) is also necessary and sufficient for Qα to be a variational derivative (gradient)

�α = Euα (�) (6.10)

for some function �(x, u(k)), k ≥ 0. Consequently, as is well-known, multipliers are variational (gradient)
adjoint-symmetries.

Note that the Frechet derivative identity (2.5) is given by

Qα(DtP
α − g′(P)α) + Pα(DtQα + g′∗(Q)α) = Dt�

t(P, Q) + Dxi� i(P, Q) (6.11)

where

� t(P, Q) = QαPα. (6.12)

Running example: The low-order adjoint-symmetries (2.12) of the p-gKdV equation (2.2) have the
equivalent form

Q1 = uxx, Q2 = −(ux
puxx + uxxxx), Q3 = 2ux + pxuxx − 3pt(ux

puxx + uxxxx) (6.13)

after t-derivative of u have been eliminated. The first two have the property

Q′
1 = D2

x = Q′
1
∗, Q′

2 = −(pux
p−1uxxDx + ux

pD2
x + D4

x) = −(Dxux
pDx + D4

x) = Q′
3
∗, (6.14)

showing that they are self-adjoint and hence are Euler-Lagrange expressions

Q1 = −1

2
Eu(ux

2), Q2 = Eu

(
1

(p + 1)(p + 2)
ux

p+2 − 1

2
u2

xx

)
. (6.15)

Correspondingly, they are multipliers. The third one satisfies

Q′
3 = 2Dx + pxD2

x − 3pt(Dxux
pDx + D4

x) = Q′
3
∗ + 2(p − 2)Dx, (6.16)

showing that it is not self-adjoint and hence is not a multiplier.

6.1. Symmetry actions on adjoint-symmetries

The symmetry actions in Theorem 3.1 can be simplified by use of the relations (6.4) and (6.6). Combined
with the condition (6.8) characterising multipliers, this yields the following result.

Theorem 6.1. The actions (3.8) and (3.11) of symmetries on the linear space of adjoint-symmetries are
respectively given by

Qα

XP−→ Q′(P)α + P′∗(Q)α, (6.17)

Qα

XP−→ Q′∗(P)α + P′∗(Q)α, = Euα (PβQβ), (6.18)
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which coincide if Qα is a conservation law multiplier. The action (3.12) given by the difference of these
two actions consists of

Qα

XP−→ Q′(P)α − Q′∗(P)α (6.19)

which vanishes if Qα is a conservation law multiplier.

For the sequel, indices will be omitted for simplicity of notation wherever it is convenient.

6.2. Adjoint-symmetry brackets

For evolution PDEs (6.1), the dual linear map SQ in the form of the adjoint-symmetry commutator
bracket (5.1) and the non-commutator bracket (5.26) is given by any of the three symmetry actions in
Theorem 6.1.

Recall that the commutator bracket is well defined when ker(SQ) satisfies the conditions in either of
Propositions 5.5 and 5.6. The conditions in the first Proposition can be expressed entirely in terms of Q
and a pair of symmetries P1, P2, by means of the relations (6.6) and (6.4). In particular, condition (5.13)
takes the form

prXP1 (Q′∗)(P2) − prXP2 (Q′∗)(P1) = 0 (6.20)

while condition (5.14) takes the form

prXP1 (Q′∗)(P2) − prXP2 (Q′∗)(P1) + P′
2
∗(Q′(P1) − Q′∗(P1)) − P′

1
∗(Q′(P2) − Q′∗(P2)) = 0 (6.21)

for all symmetries XP1 = Pα
1∂uα and XP2 = Pα

2∂uα in ker(SQ) when dim ker(SQ) > 1. When Q is a conser-
vation law multiplier, each condition is identically satisfied, which can be seen from the properties (6.8)
and Q′ ′(P1, P2) = Q′ ′(P2, P1).

It is worth emphasising that the existence of these adjoint-symmetry brackets does not rely on a PDE
system having any variational structure. Indeed, examples of non-trivial brackets for dissipative PDE
systems will be given in a subsequent paper.

6.3. A Noether operator and a symplectic 2-form

The third symmetry action (6.19) yields

J = Q′ − Q′∗ (6.22)

which is the form of the Noether operator in Theorem 4.2 specialised to evolution PDEs through the
relation (6.6). Note that it will be non-trivial if, and only if, Q is a non-variational (non-gradient) adjoint-
symmetry. This operator is skew, J ∗ = −J .

From Proposition 4.3, there is an associated integral bilinear form (4.16) on the linear space of sym-
metries Pα∂uα . Its explicit form for evolution equations is obtained by taking the integration domain 


to be the spatial domain R
n, substituting expression (6.12), and integrating by parts to get

ωQ(P1, P2) =
∫
Rn

� t(P1, J (P2)) dnx =
∫
Rn

(Pα

1 Q′(P2)α − Pα

2 Q′(P1)α) dnx (6.23)

which is manifestly skew. Hence, this defines a 2-form on the linear space of symmetries. As dis-
cussed in Remark 4.1, a 2-form is symplectic if it is closed. The closure condition, dωQ = 0, can be
formulated as

prXf3ωQ(f1, f2) + cyclic = 0 (6.24)

which must hold for all functions f α
1 (t, x), f α

2 (t, x), f α
3 (t, x).
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Theorem 6.2. For any evolution system (6.1), the 2-form (6.23) is symplectic. Hence, whenever an
evolution system admits a non-variational (non-gradient) adjoint-symmetry, the system possesses a non-
trivial associated symplectic structure.

Proof. Consider

prXf3ωQ(f1, f2) =
∫

(f α

1 prXf3 Q′(f2)α − f α

2 prXf3 Q′(f1)α) dnx

=
∫

(f α

1 Q′ ′(f3, f2)α − f α

2 Q′ ′(f3, f1)α) dnx.

(6.25)

Then, in the cyclic sum prXf3ωQ(f1, f2) + prXf2ωQ(f3, f1) + prXf1ωQ(f2, f3), all terms cancel pairwise, due
to the symmetry of Q′′ in its two arguments. Hence, the condition (6.24) is satisfied.

The proof can be straightforwardly generalised (using the methods in [23]) to show that

prXP3ωQ(P1, P2) + cyclic = 0 (6.26)

holds for all symmetries Pα
1∂uα , Pα

2∂uα , Pα
3∂uα .

The formal inverse of the Noether operator (6.22) defines a pre-Hamiltonian (inverse Noether) oper-
ator J −1 which maps adjoint-symmetries into symmetries. It also formally yields a Poisson bracket
defined by

{F1, F2}J−1 :=
∫
Rn

(δF1/δu)J −1(δF2/δu) dnx (6.27)

for functionals F = ∫
Rn f (x, u(k)) dnx, where δ/δu denotes the variational derivative, namely, δF/δuα =

Euα (f ).

Proposition 6.3. For any non-variational (non-gradient) adjoint-symmetry Qα, the bracket (6.27) given
by the Noether operator (6.22) is skew and obeys the Jacobi identity as a consequence of ωQ being
symplectic.

An interesting general question for future work is to determine under what conditions on J −1 or Qα

will a given evolution equation possessing a Hamiltonian formulation.
Running example: The non-gradient adjoint-symmetry Q3 = 2ux + pxuxx − 3pt(ux

puxx + uxxxx) of the
p-gKdV equation (2.2) yields the Noether operator (cf (4.17)) J = Q′

3 − Q′
3
∗ = 2(p − 2)Dx from the

relation (6.16). Note that the inverse operator acting on Q3 yields a multiple of the scaling symme-
try P4 = (p − 2)u − 3ptut − xpux. The associated symplectic 2-form on span(P1, P2, P3, P4) is explicitly
given by

ωQ3

(
4∑

i=1

aiPi,
4∑

j=1

bjPj

)
= 2

4∑
i,j=1

aibj

∫
PiDxPj dx. (6.28)

Its components are shown in Table 4. Note that, by skew-symmetry, the omitted entries in the lower left
will be the negative of the entries in the upper right. Also observe that the non-zero entries are precisely
the conserved integrals for momentum (2.19) and energy (2.20). The scaled Noether operator Dx is in
fact the inverse of the well-known Hamiltonian operator D−1

x for which the p-gKdV equation (2.2) has
the Hamiltonian structure

ut = − 1

p + 1
ux

p+1 − uxxx = −D−1
x (δH/δu), H =

∫ (
1

2
uxx

2 − 1

(p + 1)(p + 2)
ux

p+2

)
dx, (6.29)

where H is the energy integral.
Further examples of the symplectic structure in Theorem 6.2 will be given in a subsequent paper.
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Table 4. p-gKdV symplectic 2-form

P1 P2 P3 P4

P1 0 0 0 0
P2 0 0 (4 − p)

∫
ux

2 dx
P3 0 (p + 4)

∫ (
uxx

2 − 1
(p+1)(p+2)

ux
p+2
)

dx
P4 0

7. Concluding remarks

The work in Sections 2–6 has initiated a mathematical study of the algebraic structure of adjoint-
symmetries for general PDE systems, GA(x, u(N)) = 0. Several main results have been obtained.

Three linear actions of symmetries on adjoint-symmetries have been derived. The first action
S1 P : AdjSymmG

P−→ AdjSymmG comes from applying a symmetry to the determining equation for
adjoint-symmetries. It yields a generalisation of a better known action of symmetries on conservation
law multipliers, MultrG

P−→ MultrG. The second action arises from a well-known formula that yields a
conservation law multiplier, �A ∈ MultrG, from a pair consisting of a symmetry, Pα ∈ SymmG, and an
adjoint-symmetry, QA ∈ AdjSymmG. Since multipliers are adjoint-symmetries that satisfy certain extra
(Helmholtz-type) conditions, the formula gives an action S1 P : AdjSymmG

P−→ MultrG ⊆ AdjSymmG.
A third action S3 P := S1 P − S2 P has the feature that it is non-trivial only on adjoint-symmetries that are
not multipliers.

For each of these linear actions, two different bilinear brackets on adjoint-symmetries have been
constructed by use of the dual linear action SQ(P) := SP(Q) for a fixed adjoint-symmetry. The first
bracket is a pull-back of the symmetry commutator bracket and has the properties of a Lie bracket,
whereas the second bracket does not involve the commutator structure of symmetries and is non-
symmetric. Under certain algebraic conditions on SQ, the brackets are well-defined on the entire space
of adjoint-symmetries, AdjSymmG.

The third symmetry action is able to produce a Noether (pre-symplectic) operator whenever a PDE
system possesses an adjoint-symmetry that is not a multiplier. Furthermore, for evolution PDEs, this
Noether operator gives rise to an associated symplectic 2-form which defines a Poisson bracket structure.
In the case of Hamiltonian systems, the Poisson bracket yields an explicit Hamiltonian operator.

In general, the adjoint-symmetry brackets give a correspondence between symmetries and adjoint-
symmetries, which can exist in the absence of any local variational structure (Hamiltonian or
Lagrangian) for a PDE system. For the adjoint-symmetry commutator bracket, the correspondence con-
stitutes a homomorphism of a Lie (sub) algebra of symmetries into a Lie algebra of adjoint-symmetries.

As shown by the example of the KdV equation in potential form, all of these structures are non-trivial,
which indicates a very rich interplay among conservation laws, adjoint-symmetries and symmetries,
going beyond the connection provided by Noether’s theorem and its modern generalisation. Exploring
this interplay more deeply will be an interesting broad aim for future work.
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Appendix A. Calculus in jet space

General references are provided by [3, 23].
The following notation is used:
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xi, i = 1, . . . , n, are independent variables;
uα, α = 1, . . . , m, are dependent variables;
uα

i = ∂uα

∂xi are partial derivatives;
∂ ku is the set of all partial derivatives of u of order k ≥ 0;
u(k) is set of all partial derivatives of u with all orders up to k ≥ 0;

Multi-indices

⎧⎨
⎩

I = ∅, uα
I = uα, |I| = 0

I = {i1, . . . , iN}, uα
I = uα

i1 ...iN
, |I| = N ≥ 1

.

Summation convention: sum over any repeated (multi-) index in an expression.
Jet space is the coordinate space J = (xi, uα, uα

i , . . . ), and J(k) = (x, u(k)) is the finite subspace of order
k ≥ 0.

Total derivatives in jet space are defined by

Di = ∂xi + uα

i ∂uα + · · · , i = 1, . . . , n (A.1)

The Frechet derivative of a function f on jet space is defined by

(f ′)α = fuα
I
DI (A.2)

which acts on functions Fα. The Frechet second derivative is given by the expression

f ′ ′(F1, F2) = fuα
I uβ

J
(DIF

α

1 )(DJF
β

2 ) (A.3)

which is symmetric in the pair of functions (Fα
1 , Fα

2 ). The adjoint of the Frechet derivative of f is
defined by

(f ′∗)α = D∗
I fuα

I
= (−1)|I|DIfuα

I
(A.4)

which acts on functions F, where the righthand side is a composition of operators.
The Euler operator (variational derivative) is defined by

Euα = (−1)|I|DI∂uα
I

(A.5)

It has the property that Euα (f ) = 0 holds identically iff f = DiFi for some vector function Fi(x, u(k)). The
product rule for the Euler operator is given by

Euα (f1f2) = f ′
1
∗(f2)α + f ′

2
∗(f1)α (A.6)

The higher Euler operators are defined similarly

EI
uα = (

I
J

)
(−1)|I/J|DI/J∂uα

I
(A.7)

See [3, 23] for their properties.
Some useful relations:

f ′(F) = FαEuα (f ) + Di�
i(F; f ), �i(F; f ) = (DIF

α)Euα
iI
(f ); (A.8)

Hf ′(F) − Ff ′∗(H) = Di�
i(H, F), � i(H, F) = (DIH)(DJF

α)(−1)|I|EI
uα

J
(f ); (A.9)

f ′(F) = prXFf , XF = Fα∂uα , prXF = (DIF
α)∂uα

I
; (A.10)

[F1, F2] = prXF1 F2 − prXF2 F1 = F′
2(F1) − F′

1(F2); (A.11)
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[prXF1 , prXF2 ] = prX[F1,F2]; (A.12)

and

(prXFf ′) = (prXFf )′ − f ′F′; (A.13)

(prXFf ′∗) = (prXFf )′∗ − F′∗f ′∗. (A.14)
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