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ABSTRACT. The plane steady flow of a grounded ice 
sheet is numerically analysed using the approximate model 
of Morland or Hutter. In this, the ice behaves as a non­
linear viscous fluid with a strongly temperature-dependent 
rate factor, and ice sheets are assumed to be long and 
shallow. The climate is assumed to be prescribed via the 
accumulation/ ablation distribution and the surface 
temperature, both of which are functions of position and 
unknown height. The rigid base exerts external forcings via 
the normal heat flow, the geothermal heat, and a given 
basal sliding condition connecting the tangential velocity, 
tangential traction, and normal traction. The functional re­
lations are those of Morland (1984) or motivated by his 
work. We use equations in his notation. 

The governing equations and boundary conditions in 
dimensionless form are briefly stated and dimensionless 
variables are related to their physical counterparts. The 
thermo-mechanical parabolic boundary-value problem, found 
to depend on physical scales, constitutive properties, and 
external forcing functions, has been numerically solved. For 
reasons of stability, the numerical integration must proceed 
from the ice divide towards the margin, .which requires a 
special analysis of the ice divide. We present this analysis 
and then describe the versatility and limitations of the con­
structed computer code. 

Results of extensive computations are shown. In 
particular, we prove that the Morland-Hutter model for ice 
sheets is only applicable when sliding is sufficiently large 
(satisfying inequality (30». In the range of the validity of 
this inequality, it is then demonstrated that of all physical 
scaling parameters only a single 1l-product influences the 
geometry and the flow within the ice sheet. We analyse the 
role played by advection, diffusion, and dissipation in the 
temperature distribution, and discuss the significance of the 
rheological non-linearities. Variations of the external 
forcings, such as accumulation/ ablation conditions, free 
surface temperature, and geothermal heat, demonstrate the 
sensitivity of the ice-sheet geometry to accumulation con­
ditions and the robustness of the flow to variations in the 
thermal state. We end with a summary of results and a 
critical review of the model. 

RESUME. Elude numerique de i'ecoulemelll bidimellsiollllel 
d'Ulze Ilappe de glace. L'ecoulement bidimensionnel 
stationnaire d'une nappe de glace reposant sur le sol est 
analyse numeriquement au moyen du modele simplifie de 
Morland et Hutter. La glace se comporte comme un f1uide 
visqueux non lineaire dependant fortement de la 
temperature; la nap pe de glace est supposee longue et 
mince. Le climat est suppose connu, defini par le bilan et 
la temperature en surface; les deux etant des fonctions de la 
position et de I'epaisseur (inconnue). Les conditions aux 
limites it la base sont le flux geothermique, et une loi de 
glissement liant la vitesse de derapage aux contraintes 
normales et tangantielles sur le lit. Les equations sont tlrees, 
avec ou sans modification, des travaux de Morland (1984) 
en utilisant les memes notations. 

On pose rapidement les equations fondamentales et les 
conditions aux limites sous forme non-dimensionnelle ainsi 
que les relations qui lient les variables sans dimensions aux 
grandeurs physiques. Le probleme aux conditions aux limites 
thermomecanique de type parabolique qui depend de 
grandeurs physiques caracteristiques, des relations constitut­
ives, et des forces exterieures est resolu numeriquement. 
Pour des raisons de stabilite numerique, I'integration doit se 
faire du point de partage des glaces en direction de la 
frontiere, ce qui exige une analyse particuliere du point de 
partage. eette analyse est decrite en detail ainsi que les 
possibilites et les limites du programme numerique. 

Les resultats de vastes calculs sont presentes. En 
particulier, on montre que le modele de Morland-Hutter 
n'est applicable que si le glissement sur la base est 
suffisamment rapide (au sens de I'inegalite (30». Dans le 
domaine de validite de cette inegalite, on montre que la 
geometrie de la couche de glace ainsi que son ecoulement 
ne dependent pas de tous les parametres de normalisation, 
mais d'un seul produit 1l. L'influence de I'advection, de la 
diffusion et de la dissipation sur le champ des temperatures 
est discutee, de meme que la signification des non­
linearites rheologiques. On montre, en faisant varier les 
conditions exterieures (accumulation-ablation, temperature en 
surface, flux geothermique) que la geometrie de la couche 
de glace est tres sensible au bilan et que I'ecoulement 
depend peu des conditions thermiques. Nous terminons par 
un resume des resultats, et une analyse critique du modele. 

ZUSAMMENFASSUNG. Eille Ilumerische Studie des ebellell 
Fiiessells eilles Eisschildes. Es wird das ebene stationare 
Fliessen eines Eisschildes auf fester Sohle numerisch 
behandelt unter Beniitzung des von Morland und Hutter 
entwickelten angenaherten Modelles. In diesem Modell wird 
das Eis als viskose nichtlineare Fliissigkeit mit starker 
temperaturabhangiger thermomechanischer Kopplung 
behandelt; die Eisschilder werden als lang und f1ach 
angenommen. Das Klima wird als bekannt angenommen und 
mittels der Akkumulations-, Ablationsverteilung sowie der 
Oberflachentemperatur beschrieben, wobei beide bekannte 
Funktionen der Position und der unbekannten Eisdicke sind. 
Aussere Krafte an der starren Basis werden einerseits als 
Warmestrom senkrecht zur Basis, als sog. geotherme Warme, 
andererseits als Gleitgesetz vorgeschrieben. Letzteres ver­
kniipft die tangentiale Geschwindigkeit mit der basalen 
Schub- und Normalspannung. Wir verwenden Morland's 
(1984) Notation und seine funktionellen Abhangigkeiten oder 
leichte Anderungen davon . 

Es werden die Grundgleichungen und Randbedingungen 
in dimensionsloser Form erkHirt und ihre Beziehungen zu 
den entsprechenden physikalischen Variablen dargelegt. Das 
thermo-mechanische, parabolische Randwertproblem, das von 
charakteristischen physikalischen Grossen, von Materialeigen­
schaften und von ausseren treibenden "Kraften" abhangt, ist 
numerisch gelost worden. Die Integration hat aus Stabilitats­
griinden von der Eisscheide aus in Richtung Zunge zu 
erfolgen, was eine gesoncierte Untersuchung fiir die 
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Eisscheide verlangt. Wir geben diese Analysis und 
beschreiben dann die Vielf!Utigkeit und die Grenzen des 
Computercodes. 

Es werden die Resultate ausgedehnter Berechnungen 
vorgelegt. Insbesondere wird bewiesen, dass das Morland­
Hutter-ModeU fUr Eisschilder nur dann anwendbar ist, wenn 
geniigend basales Gleiten (im Sin ne der Ungleichung (30» 
vorhanden ist. Innerhalb des Giiltigkeitsbereiches dieser Un­
gleichung wird gezeigt, dass die Geometrie des Eisschildes, 
sowie die StrOmung innerhalb desselben nicht von allen 
Skalierungsparametern abh1ingt, sondern lediglich von einem 

A. BACKGROUND AND GOVERNING EQUATIONS 

1. Introductory motivation 
There have been several attempts in the past few years 

to deduce an acceptable rationale for the description of the 
effects of long-time climatic variation of large ice masses. 
The need for a full thermo-mechanical treatment has 
already been emphasized by Budd and Radok (1971) but a 
full quantitative analysis for wholly cold, wholly temperate, 
or poly thermal ice masses, which are partly grounded and 
partly afloat, is still beyond reach. Restrictions to simplified 
physical situations are needed or mathematical approxima­
tions must be developed that make the complex problem 
tractable. 

Early developments were fraught with various ad hoc 
simplifications, often physically inferred, but equally often 
hiding the essential content that is being dismissed (see e.g. 
Paterson (1980, 1981), Thomas (1979), and introductions to 
chapters 4, 5, and 6 in Hutter ([cI983])). What is needed is 
a presentation of consistent treatment of ice-sheet flow 
through a proper scale analysis of the fluid equations and 
boundary conditions, which permits estimation of the 
importance of the arising parameters and thus leads to 
systematic simplifications. Table I lists works that are based 
on such "rational" deductions and describes the physical 
situations to which they apply. Only non-surging flow con­
ditions are presumed, and ice masses are either cold or iso­
thermal throughout. The constitutive model in all these 
papers is that of a non-linear viscous heat-conducting fluid 
that obeys a creep law which is akin to Glen's flow law. 
Further, the temperature-dependence of the stress tensor 
(when present) is included through a temperature-dependent 
rate factor in the deviatoric stress-strain-rate relationship. 
While it is probably difficult to judge priorities, it is fair 
to say that, of the authors listed in Table I, Fowler and 
Larson pioneered the scaling analysis for glaciers, whereas 
Morland was the first to present the coupled thermo­
mechanical scale analysis. 

Some of the reduced models of Table I apply to time­
dependent and spatially three-dimensional situations, but 
computations have been almost exclusively restricted to 
steady, plane, or axisymmetric flows and homothermal con­
ditions. The corresponding numerical analysis (Morland and 
associates) showed that the geometry of an ice sheet and 
the velocity distribution within it depend to comparable 
magnitudes on both the sliding motion and the internal 
viscous deformation. Moreover, the thermo-mechanical 
analysis (Morland, 1984) corroborated the conjecture that 
temperature variations are equally significant. However, the 
coupled thermo-mechanical steady-plane problem of simul­
taneous determination of ice-sheet geometry, velocity, and 
temperature distributions offers considerable numerical 
difficulties which must be overcome before a full three­
dimensional steady or time-varying analysis , or a physically 
more complex situation (for instance, poly thermal con­
ditions) can be attacked. 

In this paper we present the computational procedure 
that we used to determine the geometry, the velocity, and 
temperature distributions in plane grounded ice sheets under 
steady conditions. We briefly state the governing equations, 
explain the computer code "THEMPIF", but refrain from 
presenting numerical peculiarities and a convergence analysis 
(see Yakowitz and others, in press). Instead, we aim at a 
deeper physical understanding and thus explore the roles of 
the scaling parameters, the external forces (accumulation, 
surface temperature, geothermal heat) , and the creep law. 
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einzigen 7l-Produkt. Wir untersuchen ferner, wie Advektion, 
Diffusion und Dissipation die Temperaturverteilung 
beeinflussen und diskutieren die Bedeutung der rheologischen 
NichtlinearitlUen. Durch Ver1inderung der 1iusseren "Kr1ifte", 
z.B. der · Akkumulation/ Ablationsbedingungen, der Ober­
fl1ichentemperatur, sowie der geothermen W1irme wird die 
Empfindlichkeit der Eisschildgeometrie auf die 
Akkumulationsbedingungen und die Robustheit der 
StrOmungsverteilung auf die thermischen Bedingungen 
demonstriert. Wir schliessen mit einer Zusammenfassung der 
Resultate und einer kritischen Betrachtung des Modelles. 

We shall not dwell on applications of concrete physical 
situations because experience has shown that we and the 
model are not yet ready to predict reliably actual glacier 
situations. We would rather like to demonstrate here how 
interactive computer techniques with some sophisticated 
graphics hard- and software can be constructively used, first 
to demonstrate to the glaciologist how useful a proposed 
flow model is and, secondly, to explore it in the range of 
its suitability. In this particular case, we uncover a rather 
restrictive limitation of what might be called the Morland­
Hutter model, and find in this way hints as to its improve­
ment. Clearly, the earlier and less rigorous models are 
fraught with similar, or even greater, restrictions than the 
Morland-Hutter model. In fact, it was the consistency of 
the scaling and perturbation procedure (that led to the 
leading order model) which . laid the fundamentals for this 
discovery. We also demonstrate that in the range of its 
applicability the strong thermo-mechanical coupling suggested 
by the Morland-Hutter model is rather weak and probably 
atypical for many glaciological applications. Suggestions for 
improvements will be given in the last section. 

2. The continuum model and its simpli/ications 
Governing equations of the rheologically non-linear in­

compressible viscous heat-conducting fluid, upon which our 
cold ice-sheet flow model is based are the 

balance laws of mass, momentum, and energy, 

and the 

constitutive relations for heat flux and stress deviator. 

These relations have been amply explained in Hutter 
([c19831, chapter I) and Morland (1984). 

Boundary conditions that must be invoked are: at the 
free surface 

a mass-balance condition (kinematic surface equation), 

prescription of shear and normal traction (stress-free 
conditions), 

prescription of surface temperature, 

and at the fixed base: 

prescription of the geothermal heat flow, 

application of a basal sliding law. 

We ignore effects of basal drainage, stress-induced recrystal­
lization, and changes in constitutive relations due to changes 
in contents of impurities, gravel , etc. (Hutter and Vulliet, 
1985). 

The union of the above-mentioned equations forms an 
ini tial boundary- value problem in a space-time domain of 
which the determination of the extent is part of the 
solu tion of the problem. 

Non-dimensionalizing the equations that describe a 
part icular physical problem is advantageous as it discloses the 
phys ically important parameters through the introduction of 
typical scales. Because the latter are to a certain extent 
arbitrary, the form of the resulting equations may differ 
slightly from one author to another. Often, differences are 
only semantic and res tricted to notation and procedure. For 
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Huller and others: Numerical study of plane ice-sheet flow 

TAULE la . ISOTIIERMAL CONDITIONS 

Fluw 
type 

Plane 

Plnne 

Plane 

Plane 

C irc ulnr 

Three-
dimensional 
fl ow 

Pbne 

Plane 

F low character ist ics 

IZ 

--i.., . STEEP GLACIER 

~. ~ 
y~, 
~ ' x 

Numerical 
sulutiol/s 

Yes/ No 

No 

Yes 

Yes 

Yes 

Yes 

FLAT ICE SHEET 

~ No 

i:: ' 
FLAT ICE SHEE T 

Yes 

Yes \ u ~3t:==J-- ' \ _.El 
'-<: 

-......'" 
~ 

Remarks 

First scaling analysis and rigorous 
analytic computations of isothermal 
glacier flow 

Locnl analysis investigating the role 
of undulations of the base and their 
transfer through the ice 

Global flow analysis emphasizing the 
perturbation proced ure met in the 
shallow- ice approximation 

Steady, asymptotic analysis for steep 
glaciers and flat ice sheets . The steep­
glacier model is identical to that of 
Huller (1981) 

Same analysis as Morland and Johnson 
(1980) but for axisymmetric conditions 

Asymptotic analysis of shallow-ice 
approximation for 3D sheets. 
First 3D analysis 

lJasal sliding law relation is deduced 
from Greenland ice-sheet data, using 
isothermal theory and a sliding law 

Tb = Pb 13(ub) 

Scnle analysis for ul/col/lil/ed plane ice ­
shelf motion . Some non-isothermal 
analyses are also performed 

TABLE lb . NON- ISOTlIERl\li\L , COLD CONDITIONS 

Plane 
Tt rlAT ICE !:. II(E I 

&~- - x 
Pin ne 

rlAT ICE SHEE T 

Three- -.t 

<Iimcnsionnl 4j~. 

IZ 

~
'; :.:; STEEP GLACIER 

Threc - """ 
dimensio na l y' ~"h 

~~ 
' x 

Yes 

No 

Yes 

Estimation of temperature effects by 
prescribil/g the temperature distribution, 
otherwise same anal ys is as Morland 
( 1984) 

General scale analysis illcludil/g 
temperature effects, asymptotic 
equations; however, restricted to plane 
flow 

Scale analysis including thermal 
effects but different from that of 
Morbnd (1984) though equivalent. All 
equations are fully three-dimensional 

Same as above but for steep glaciers. 
Applications to piedmont glaciers. 
First 3D computations under iso­
thermal conditions 
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instance, Hutter's ([cI983], chapters 3 and 5) and Morland's 
(1984) glacier and ice-sheet analyses are the same as a one­
to-one correspondence between the two sets of equations 
can be established (see Hutter, [cI983], chapter 5). Here we 
use Morland's (1984) set of equations. 

Scales are introduced for stresses (oo,pgdo)' velocities 
(qm)' a typical depth (do)' a characteristic length (dol E), a 
typical strain-rate (Do)' a temperature range I!.T, etc. (Table 
II). For instance, 00 is a typical (shear) stress range to 

TABLE 11. SCALES USED TO NON-DIMENSIONALIZE 
THE FIELD EQUATIONS AND BOUNDARY 
CONDITIONS. NUMERICAL VALUES ARE TYPICAL 
FOR ONE SITUATION. A RANGE OF VALUES IS 
DISCUSSED IN THE TEXT 

00 '" 105 [N m-2] 

qm '" I [m a- i ] 

do '" 2000 [m] 

Do .. I [m a- i ] 

I!.T .. 20 [K] 

Go .. 10-2 [K m- i ] 

E .. 1.66 x 10-3 

Typical stress range 

Typical vertical velocity or 
accumulation rate 

Representative thickness 

Typical stretching 

Temperature range 

Typical value for geothermal 
temperature gradient 

Aspect ratio (= ratio of typical 
depth and length) 

Scale for rate factor 

TABLE rn. PHYSICAL PARAMETERS 

p 918 [kg m- 3 ] 

g 9.81 [ms- 2 ] 

1 0-3' 

}. 2.2 [N kg- i 

TF = 273.15 [K] 

K- i ] 

Ice density 

Earth's acceleration 

Mean basal inclination 

Thermal conductivity 

Heat capacity 

Melting temperature at 
normal pressure 

which the ice under natural conditions may be subjected. In 
terms of these quantities and the physical parameters of the 
model (Table III), the variables in physical space (denoted 
by asterisks) and the corresponding dimensionless variables 
are related by 

(x*,z*) 

(u* ,w*) 

D* = DoD, 

T* - 11 = I!.T·T, 
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Cartesian coordinates 
x basically longitudinal, 
z transverse to the flow in a 

vertical plane, 

x- and z-components of the 
velocity field, 

accumulation rate, 

stress, pressure, (I) 

stress deviator, 

stretching tensor, 

temperature. 

If the scales are appropriately chosen, the dimensionless 
variables X,Y,V,W, and T on the right-hand side, when 
determined by the field equations, are of order unity. A 
sketch of an ice sheet on a gently sloping base is shown in 
Figure I. 

Base 

surface 

lower margin 

x 

Fig. J . Geometry of a plane ice sheet on a base. Cartesian 
coordinates (X.Z) are in the direction of a mean basal 
plane sloping at small angle 1. Basal sur face is defined 
as Z = F( X ) and steady-state free surface as Z = H( X ). 
Upper and lower margins (or left and right margins when 
1 = 0) are defined as the intersections H( X) = F( X ) and 
the ice divide is where dH/ dX = 1. 

In dimension less form, the field equations and 
boundary conditions can be explicitly expressed in terms of 
the aspect ratio E which is small (see below). On length 
scales which are larger than the ice-sheet thickness do' one 
may therefore restrict attention to the limit equations as E 
becomes vanishingly small. This limit is called the shallow­
ice approximation; its steady-state field equations are 
(Morland, 1984) 

p = (H - Z)cos 1, (2a) 

°xz = E(1/ E -dH/ dX)(H-Z), (2b) 

sgn(1 l E - dH I dX), (2c) 

T ~OXZ/ E, (2d) 

J = -2 2 
s 0xz' (2e) 

au 

az ~a(T)g(T,e), (2f) 

aw au 

az ax' (2g) 

aT aT a2T ex 2 u- + w-= 13--+ 2 -a(T)w(J)oxz' (2h) 
ax az az2 v 

in which p is the pressure, ° xz the shear stresses, J the 
second-stress deviator invariant, and Z = H(X) the equation 
of the surface profile (see Fig. I). Moreover, s. 6, ex, 13, v, 
and e are the dimension less quantities 

s ~, ex = gdQ , 
(3a, b) 

pgdo CI!.T 

~ }. 
6 ' a (3c, d) 

doDoao pCdoqm 

v = E2 = 6s, e = 61s. (3e, f) 

Four of these are independent. We call sand 6 mechanical 
parameters, ex the thermal dissipation number, and a the 
diffusion number. Finally, a(T) is a temperature-dependent 
rate factor, and w(J) and g(T,e) are creep-response 
functions of which the explicit form depends on the creep 
law that is used. Smith and Morland (1981) based their 
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expressions on Glen's (1955) and Mellor and Testa's (1969) 
uniaxial compression data and obtained 

a(T) = 0.7242 exp(11.9567T) + 0.3438 exp(2 .9494T), 

w(J) = 0.3336 + 0.3200J + 0.02963J2
, 

g(T,9) = 2Tw(9T2), 

(4a) 

(4b) 

(4c) 

with excellent data fitting in the stress range 0 ~ 5 x 105 

N m- 2 and the temperature range 213 ~ 273 K . If the con­
stitutive rela~ion in physical space has the form D* = 
A(T*)O( all *)0$, then 

(5a) 

w(J) = w[~) = O(atJ. (5b) 

Often A(T*) obeys an Arrhenius relationship and O(0lt) is a 
power law. 

Before we proceed, a few clarifying remarks are in 
order. For one, the rheological properties stated in Equations 
(4) are one of many possible forms. Our code allows 
whatever relationship the user prefers. Moreover, the 
second stress-deviator invariant in Equation (2e) is given by 
the shear stress squared, which is inaccurate close to the 
divide. Difficulties are therefore expected to arise, but a 
model that handles ice-divide behaviour more appropriately 
is far more complicated than this one. We regard it 
therefore as advantageous to collect experiences with this 
simplified model. 

In the shallow-ice approximation, the boundary conditions 
become, at the free surface: 

dH 1 u- - W = a (.) 
dX cc ' at Z H(X), 

T=Ts(-)' 

(6a) 

(6b) 

and at the base: 

aT 

az - 9zQ(')' (7a) 

U = Wr (-), (7b) 
at Z F(X), 

dF 
W U dX(')' (7c) 

9z = Godo/llT, (7d) 

in which Z = F(X) is the equation of the rigid basal 
surface and 9z(= I for values of Table Il) is the 
dimensionless geothermal temperature gradient. The functions 
on the right-hand side of Equations (6) and (7) are, in 
general, order-unity functions which describe the effect of 
the climate [acc( ' ) and Ts(' )], and the conditions of the 
substratum [Q(.), U r(')] on the ice sheet. 

These functions may depend on a number of additional 
variables and will be specified in detail below. For instance, 
the sliding velocity Ur depends on the shear traction, the 
local pressure, and perhaps the basal temperature; the geo­
thermal temperature gradient may vary with pOSItIOn. 
Alternatively, the accumulation rate is determined by the 
snow-equilibrium height He and the position on the surface , 
and the free-surface temperature may depend on a mean 
temperature at the grounding line, T M' and on position , in 
short 

Huller alld others: Numerical study of plane ice-sheet flow 

Q = Q(X,F(X)), 

acc = acc(X,H(X)), 

Ts = Ts(T wX,H(X)). 

(8a) 

(8b) 

(8c) 

(8d) 

Morland and others (\984) used a sliding law in which the 
tangential traction ts and the sliding velocity u are linearly 
related, with a coefficient which depends oJ the normal 
tract!on tn : t~ = tnj!(-tn)us' Explicit dependence on t is 
reqUired for finite-margin slopes, if j!( . ) is a non-vanis~ing 
and finite function of the pressure. In terms of the 
dimensionless variables and in the shallow-ice approximation 
the sliding law proposed by Morland and others (1984) 
becomes 

(9) 

where j!(.) = lLRerlt(Cos -Y(H - F)); lLRer is a scale for lL and 
It an order-unity function. Details on the specific choices of 
the functions listed in Equations (8) and (9) will be given 
later. 

As a matter of completeness and for later use, we 
mention that the continuity equation and the boundary con­
ditions, Equations (6a) and (7b) imply the integrated mass­
balance statement 

(10) 

(

X) 
g2(X) = (H - Z)a(T(X,Z))g(T(X,Z),9)dZ, 

F(X) 

which will be used in the ice-divide analysis. 
Evidently, the general ice-sheet flow problem is 

described by three classes of dependences: 

(i) the scales s, 6, ex, 13 (see Equations (3)), 

(ii) the constitutive properties of our ice model through 
the rate factor and the creep-response functions (see 
Equations (4)), 

(iii) the external forcing through the accumulation-rate 
function acc( . ), surface temperature T ( . ), the 
sliding law U F(·), and the geothermal he~t 9 Q(.) 
(see Equations (8)). z 

It is our intention to investigate the role of these in 
greater detail. Ensuing developments will therefore mostly be 
restricted to situations for which X is horizontal and Z 
vertical (y = 0). 

B. A BRIEF DESCRIPTION OF THE CODE, ITS 
VERSA TILITY AND LIMIT A TION 

I. Description o[ the solution procedure 
The idea is the recognition that Equations (2) can be 

solved by marching forward in the X -direction, solving for 
each X a set of (ordinary) differential equations in Z . 
Marching must be in the direction of U, for otherwise the 
problem is ill-posed. In other words, integration must start 
at the ice divide and always proceed "down-glacier". This is 
a limitation as the location of the divide X = X 0 and its 
depth Ho must be known or estimated and iteratively im­
proved. So far we have not handled geometries with 
multiple domes; but symmetric situations are easy as the 
location of the divide is usually at the symmetry line. 

Assume for the moment that sufficient conditions at 
the ice divide can be prescribed which permit integration 
away from the ice divide. We may then assume that the 
functions listed in Equations (2), (4), and (8), and the fields 
V, W, and T, etc. are known at a particular column, say 
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Fig. 2. Right portion of a symmetric plane ice sheet with 
1 = O. The X -coordinate is horizontal, the Z-coordinate 
vertical and the flow is from left to right . The ice divide 
with h~ights H is at X ~ X D = 0 and the right margin 

D . I h . is at XR. So ice-sheet seml- engt IS 

L • X - X ~ X . Two columns at X (denoted by L) 
and X + to! (den~ed by R) indicate the finite-difference 
approximation used in the X-and Z-directions . 

X = L (Fig. 2). Let these be Vo' Wo' To' etc. At the 
neighbouring column X + t.X = R, these same fields can be 
evaluated from FD-representations in X of the last three 
Equations (2f-h), viz. 

aw 

az 
v-v 
-~ + O(t.X), 

toX 

(I la) 

(lIb) 

~ fVo(T - To) + Wo aT - 2 ~a(To)W(Jo)~z}+ O(t.X) . 
B t t.X az v 

(Ilc) 

These are linear differential equations for V, W, and T in 
the variable Z at column R, which are subject to the 
boundary conditions, Equations (6b) and (7b, c). They can 
be solved by the standard two-point-boundary value 
problem (TPBVP) routines (Szidarovszky and Yakowitz, 
1978). This procedure requires that H at column R is 
known. 

Once these equations are solved for V, W, T, etc., the 
boundary condition, Equation (6a) may be used to evaluate 
dH/ dX; the new height at the column to the right of 
column R may thus be computed. This column will now 
become the new column R, whereas the old column R will 
become the new column L. In this fashion, one can proceed 
until H = 0 is obtained, which marks the outer margin X = 

X R ' Finally, the total accumulation can be computed, 

(12) 

which, because of steady mass balance, must vanish. 
However, a cint * 0, in general; so ice-divide depths HD 
must be var1ed until accint(H) = 0, to a sufficient degree of 
accuracy. 

2. Construction of the solution at the ice divide 
The ice divide is defined as the location X = X D at 

which H' = dH/dX = 1. Assume that the height at the 
divide is prescribed. Then, from Equations (12), (4), and 
(9), it follows that V = T = 0xz = g = O. Thus, from 
Equations (2f) and (9), we may deduce by integration with 
respect to Z and subsequent differentiation with respect to 
X that 
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av , 
ax(XD,Z) = VF<XD) -

(\3a) 
Z 

- 2H"(X D)w(O) J a(T(X o,z)(H - z» dz, 

F(XJ 

V~(X D) = -e 2 H"(X D)/(ILa.r ji«H - F)cos 1», (\3b) 

in which H"(X D) = d2H/ dX2(X) is unknown and w(0) = 
w(J = 0) (cf. Equations (4». Similarly, by using a Taylor 
series expansion in X of the mass-balance statement in 
Equations (10), we obtain 

H 
~{(H-F)VF - 2w(0)H"f (H-z)2a(T(X,z»dz } = 

F 
(14) 

= a cc(X,H(X», at X = X D' H = Ho. 

With the aid of Equation (l3b), this yields an expression 
for H"(X D)' namely 

H"( X D) 

e2(H -F) 

sliding gliding or shearing (15) 

Evidently, the curvature of the free surface at the ice 
divide , H'(X D)' is determined by the ratio of the value of 
the accumulation-rate function and a "normalized flux" 
which consists of a gliding and a sliding contribution. In 
principle, Equation (15) applies to the no-slip situation 
(ji ~ "') but a careful ice-divide analysis shows that 
longitudinal stretching is significant under such 
circumstances; this is a case not treated here. 

The same inferences can also be drawn from the 
numerical computations which follow. Thus, we assume 
viscous sliding. With the aid of Equation (13), Equations 
(2g, h) may be written as 

aw 
- = -V' (X) + az F D 

+ 2H"(X D)w(O) r a(T(X D,z)(H - z »dz , 

F(XD ) 

aT 
W­az 

(I6a) 

(I6b) 

Thus, introducing the auxiliary variables V = aw/ az, 
S = aT/az, the following TPBVP for Wand T, valid at 
X = X D' may be deduced 

aw 
-= V, (l7a) az 

av 

az 2H"w(0)a(T(X D,Z»(H - Z), (I7b) 

F(XD) < Z < H(XD), 
as I 

az -WS 
B ' (17c) 

aT 

az S, (J7d) 
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subject to the boundary conditions 

S = -8zQ, W = 0, V = -VF ' at Z 

T = T s, at Z = H(Xo), 

( ISa) 

(ISb) 

wh ich can be inferred from Equat ions (6) , (7), and (2g). 
The TPBVP in Equations (17) and (IS) ca n be solved by 
using the shoot ing method or quasi- li nea rization . Return 
now to Equations (11 ), in which quantities bear ing the 
index zero (at the left column = ice divide in this case) are 
presumed to be known. Once the ice-divide anal ys is is 
performed, this is indeed so; thus Equat ions ( I J) can be 
solved for U, W, and T, etc. in the next column R , a~d 
H' H can be computed in the column to the right of It , 
and so on, as explained in the text following Equat ions 

(11 ). 

3. A brief description of the code 
THEMPIF is a FORTRAN code which permits 

numerical computation of THErmo-Mechanical balances of 
Plane Ice- sheet Flows. It consists of a secant root-finder 
SECA which searches for Ho such that the equation 
a int(H) = 0 is satisfied. The main body of the program 
cg~sists °of two sets of sub-routines (see Fig. 3) . The first 

,-------. 
r-------~; s~c~ ; ~ ----------~ 

! 
\ Computational routines 

Routines descrlDlng the onYSlcc l 

condlhons 

FF 

SHEAR RATE \SOTTOM 1 

I COMPARE I DI V 
1 - I OMEG SLIDE 

1 1 
\ CCEcF i CREEP TOP 

I 

Fig. 3. Chart of the structure of the computational routine 
THEMPIF. 

set provides the computational procedures for the integra­
tion of the differential equations and the evaluation of the 
integrated accumulation rate a~cint(H 0); the other set serves 
to define the physical conditIOns and is kept flexible to 
adjust the physics to the situation at hand . 

Sub-routine INPUT is designed for the user to pre­
scribe the scales and physical parameters lis ted in Tables II 
and Ill. While the physical parameters are well defined , the 
glaciologist must choose the scales best suited to his 
example. Sub- routines RATE, OMEG, and CREEP define 
and compute the rate factor and the creep-response 
functions of Equations (4). Here is the place to vary 
stress-deviator~train-rate relationships. Sub-routine TOP cal­
culates the dimensionless accumulation rate and the surface 
temperature; their functional relationships must be prescribed 
by the user . The geometry of the base, the geothermal heat 
flow, and the drainage are defined in sub-routine 
BOTTOM; however, the sliding conditions Equations (7b , c) 
with the specifications, Equation (9), are accordingly 
accounted for by sub-routine SLIDE. In its execution it 
makes use of calls to BOTTOM and SHEAR for the evalu­
ation of basal geometry and basal stresses. 

The computational routines constitute a sub-routine FF, 
which simply computes the value of accint(Ho); however, 
this requires integration of Equations (2), subject to the 
boundary conditions, Equations (6) and (7), and is achieved 
by calls to the sub-routines DIY, SHEAR, COEF, and 
possibly COMPARE. Sub-routine DIY constructs the solution 
for V, W, T, and H' at the ice divide (given its location 
and height) and thus provides the initial conditions for 
marching away from it. SHEAR permits evaluation of the 
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shear stress, the second stress-deviator invariant, etc. listed in 
Equations (2a-d), and COEF computes the coefficients of 
the differential equations arising on the right- hand side of 
Equations (11 ). The main routine FF integrates these 
equations column b y column, as described earlier, stores the 
velocity and temperature profiles, and the values of Hand 
the integrated accumulation between the d ivide and the 
ac tual position of the column until H vanishes. In the case 
tha t the non- linear variant of Equations (11) is used and 
quasi- linearization is employed , sub- routine COMPARE de­
cides whether quasi - linearization iterates have converged or 
not .· 

A detailed desc ription of analysis of the computational 
a lgorithm and its stability and convergence conditions has 
been given by Yakowitz and others (in press). A user's 
manual has also been produced (Hutter and others, 
unpublished). The program is designed to use interactive 
computing to advantage. The user can experimentally pre­
scribe values of ice-sheet parameters of interest and solve 
the associated problem without re- compil ing the program. 
We have found that our graphics terminal enhances these 
experimental studies by actually plotting the profiles and the 
velocity and temperature fields, as opposed to presenting 
tables of numbers. Through readily understood pictorial dis­
plays of solutions, we are developing our intuition regarding 
influence and sensitivity of ice-sheet response to variations 
of model parameters and boundary conditions. 

C. RESULTS - A PARAMETER STUDY 

As mentioned previously, a parameter study must 
incorporate vanatlOn of the scales (s, 6, a , 13), the 
constitutive properties of the ice and the external forcings 
through the climate and the geothermal conditions. 

I . S election of forcing functions 
Standard calculations are based on the following explicit 

expressions for the forc ing functions: the accumulation 
pattern is based on an extension and an alteration of 
Morland and Smith (19S4). 

a cc = aRepcc ' (19) 

12.5(H 
~ 

-H)JIl.. H , He e :..:...e.... 

acc [12 .5(H- He) 76 .(H - He)2 + 

1 
He < H , 

~ 
+ 136.(H - He)3] H! ' He + 0.25 

~ 

l!..e.. (20a, b)t 0.5 H? 
e 

and 

'il (H -He)' H , He + 
b ~ 
a J/!.' e 

acc (20c) 

!!.e.- H > He + J!.-.!:!.e. 
b JP. ' 'il Hr e 

in which a and b are any combination of the sets a 
(12 .5, 6.25, 3.125) and b = (0.5, 0.75, I). Moreover, 

(21 ) 

in which aRef, ~, pp and P2 are constant parameters. 
Evidently, acc vafles with height through acc( ' ) and with 

.This non-linear variant has a(T) rather than a(To) in the 
third member on the right-hand side of Equation (llc). 
tThe equations with the underlined term being replaced by 
1 are referred to as Equation (20b). 
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horizontal position through the function of snow-equilibrium 
height He' The constant aReC allows for absolute changes in 
accumulation while keeping the scale fixed . Typical values 
are, perhaps 

aReC = I, 

0.375 < HO 
e < 0.75, 

(22) 
O. < Pl « 0.15, 

O. < P2 « 0.1. 

With Pl = P2 = 0 and the choice of Equation (20a) the 
accumulation-rate function has a continuous derivative 
throughout, is constant and positive for H > He' decreases 
according to a cubic law when He + 0.25 > H > He' and 
increases linearly with height when H < He' When P l 
and/or P2 are non-zero, acc is stil1 continuous with a 
continuous derivative everywhere except at H = He + 0.25. 
Values of a computed according to Equation (20a) are 
between -{j.2~c and 0.5, so acc = O(aReC)' Equation (20c) is 
a simpler, continuous variant of Equation (20a) which allows 
us to estimate the sensitivity of the ice sheet to variations 
in accumulation distributions. Also, the variation (21) has 
been introduced, because computations indicated that a 
constant accumulation rate close to the ice divide resulted in 
very long (perhaps infinitely long) ice sheets. In fact, 
margin positions were never found when He = ~. 
Furthermore, Equation (20) for H < He implies relatively 
rapid changes of acc with H(X), which implies .caution in 
the numerical evaluation of the integral acclnt(HD) in 
Equation (12). A simple Riemann sum may require a 
smaller-mesh I!.X whenever H < He' 

Computations were also performed with the underlined 
terms in Equation (20a) being omitted; acc was then dis­
continuous at H = He + 0.25, with a sudden increase as 
one moves down-slope, permitting (at least in a gross 
fashion) a description of sudden, spatial climatic changes . 
Equations referring to this case wil1 be numbered as 
Equation (20b). 

The question why horizontal equilibrium heights caused 
difficulties will be addressed later. 

For the surface temperature, we take the linear repre­
sentation 

(23) 

with -2.0 ~ T M ~ 0, corresponding to -40 ° C < TM. < 
O°C, and 0 < T M(l) < 0.1, as well as 0 < T M(2) < 0.1. 
When T M(2) = 0, then T M is the value of the surface 
temperature at H = 0, agreeing with the margin temperature 
when F(X) = O. 

Standard computations are also performed with a flat 
base and for a constant geothermal heat flow corresponding 
to 

F(X) = 0, Q(X) = I, (24) 

with Bz = I for the values of Table II and a range of 
realistic dimensionless geothermal temperature gradients 
o < Bz < 10. Moreover, the sliding law deduced by 
Morland and others (1984) for their isothermal computations 
of the Greenland ice sheet is adopted, with 

IlReCji., (25) 

9.0 - 6.657x, O· ~ x ~ 0.7, 

0.7 < x ~ 1.3 (26) 

19.79 + 54.43(x -1.3), 1.3 < x, 

in which x = cos 'I · (H - F), IlReC = 2.5 x IO-s and 
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Ilo = - 53.596, 113 = 26 .753, 

III 253.643, Il. 176.028, (27) 

112 -324.134, Ils -72.761. 

In the domain 0 ~ x ~ 1.6, the range of 'j1 is 
approximately 4 < 'j1 < 20. Computations show that the 
value of IlReC is critical. 

It is clear that there is no universal sliding law, and 
the choice of a basal sliding condition wil1 not only depend 
on the particular condition but also on the discretization 
and the amount of basal sub-grid shearing. We use 
Equations (25)-{27) as reasonable examples found in the 
literature that have proved useful for the Greenland data 
but keep the program flexible enough to account for any 
other relationship. 

2. Preliminary computations. The limitation of the model 
Initial computations with the above forcing functions 

proved that a finite-length ice sheet could numerically only 
be obtained with Pl > 0 and/or P2 > 0 in Equation (21). A 
separate analysis of the ful1 equations close to the ice 
divide has further shown that an accumulation function 
without an explicit X -dependence, acc f. acc(X, H(X», 
implies H"(XD ) = 0, corresponding to a completely flat 
divide region. Moreover, it transpired that satisfaction of 
the surface mass-balance condition, Equation (6a), 
immediately off the divide was possible only with a 
sufficient amount of sliding. We regard it as a significant 
"computer-aided finding" that under the present Morland­
Hutter reduced ice-sheet model, the magnitudes of the 
accumulation fUllctions alld sliding fUllctiolls must be related. 
Having seen it computational1y, we are able to justify this 
assertion analytically. The model is scaled in sand 6 so 
that the ice-sheet height is approximately I and its semi­
length is approximately I or more. As H"(X) monotonical1y 
decreases for most accumulation functions, one would 
presume its magnitude at the divide is far less than I. A 
value of about 0. 1 or less would be more appealing to 
experience and intuition. This being the case, one is forced 
to conclude, in view of Equation (I5), that sliding has to 
be far larger thall glidillg . For if acc(X D,HD) is about 0.5 
and H '(X D) is about 0.1, then the denominator must be 
about 10. But the gliding or shearing term obeys the in­
equality 

H 
2w(0) J (H - z)2a(T)dz 

F 

2w(0) 

3 
, 0.4 (28) 

as a(T) is less than 1.0 for temperatures below freezing. (In 
fact, we would anticipate a(T) to be far smal1er than 1.0 
down most of the divide.) In view of these numbers, from 
Equation (15) it follows that 

or 

E2 
-{l.4 + 10 x acc ~ -­

IlReC 

~ - 0.2. 
E 2 10 x acc - 0.4 

Thus, in order that surface mass 
satisfied at the divide, we necessarily need 

(29) 

(30) 

balance can be 

(31 ) 

In a situation for which Equation (31) is not satisfied, our 
reduced equations are inappropriate, at least close to the 
divide. In such an event, longitudinal stretching must play a 
non-negligible role close to the divide. A divide analysis of 
the ful1 theory is necessary and results obtained with it 
must be matched with those of the reduced model and valid 
in a region distant from the divide. More on this will be 
said in the conclusions section. -s 

Morland and Smith (1984) used IlReC = 2.5 x 10 , 
E 2 = 2.75 x 10-6 , explaining why computations of results 
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T ABLE IV. V ALUES OF THE FORCING FUNCTION PARAMETERS FOR TWO SETS OF 
CASE STUDIE~, IN WHICH SURFACE CONDITIONS ARE VARIED 

Case J Case II 

{ 
s z 0.55 x 10-2 , 5 = 0.5 x 10-3 

Scales 

Accumulation 

a = 0.49 a = 0.019 

Surface conditions 

0.15 

P2 - 0 

aRef - 1 

Pl - 0.05, 0.1 

P2- 0 

0 .375 , J1 = 0.75 ~ - 0.5 

Temperature [ 
T M = -0.1 

(= -2°C) 

T (1) 0.8 M 

T (2) 10-2 
M 

Basal conditions { 

obtained with their parameters led to violations of surface 
mass balance. On the other hand, ILRer = 2.5 x 10-7 , e 2 = 
2.75 x 10-6 led to acceptable results. 

Physically, Equation (31) sets a minimum amount to 
the "lubrication" of the bed, which according to Equations 
(3) is basically controlled by the scales for accumulation, 
glacier thickness, and stretching. The larger the typical 
accumulation, and the smaller the ice-sheet thickness and 
the typical scale for the stretching are, the larger will be 
the value of e 2, and consequently the less can be the 
lubrication of the bed. The no-slip condition can however 
never be accepted; this is obviously a disadvantage. 

Initial computations were based on the physical para­
meters of Tables 11 and III and the forcing functions of the 
last paragraph with the accumulation function, Equations 
(2a, b) and the specifications as shown in Table IV. 

Figure 4 shows results for the Case I study, in which 

15----------------------
, I ICE - DIVIDE HEiGHT 

14 - I 
I \ I - - extrapolated . 

13 ~ \. \~. computed 

12 -
i 

I 11 -

Jo lO t, I 
I 09 J 

'"", 075 

07i' 05 ~ 
051 ~ ~~~ I 
05Ia~ ___ 

0.05 01 015 
parameter PI 

9---------------------

0.05 

ICE - SHEET 
SEMI - LENG,H 

- - extrapolated 
---- interDolated 

01 
parameter Pl 

015 

Fig. 4. lee-divide height HD (left) and ice-sheet 
semi-length X R (right) plotted against PI for various 
values of the snow-equilibrium height H~ (see Equation 
(2 1)) for the Case I study (cf. Table TV). Dots are 
computed values; solid lines connect them smoothly. 
Dashed lilies are extrapolations into ranges of the 
parameter Pl where iterative computations failed or were 
not pursued, or required some interpolation. lee-divide 
heights and extents depend critically on both H~ and Plo 

F = 0 

-1 , TM ' -0.0125 

(-20°C , r~m , -0.25°C) 

T (1) 
M 

Q = 1 

0.8 

ILRef = 4.15 x 10-8 

accumulation conditions are varied. In Figure 4a we display 
the ice-divide height HD as a function of Pl which is the 
slope of the snow-equilibrium height, parameterized for a 
range of values of equilibrium height ~. Figure 4b shows 
the corresponding graph for the half-width length X R of 
the ice sheet. Evidently, HD and X R depend conspicuously 
on the height of the snow-equilibrium line and to a lesser 
extent also on Plo Nevertheless, the dependence on P l is 
surprisingly strong, if physical Quantities are looked at (see 
Table V). A change of the snow-equilibrium height within 
a distance of 1200 km by only 20 m (= 2%) changes the 
ice-divide height by 260 m (corresponding to 10.7%). 
Consequently, ice-divide height and ice-sheet extent depend 
critically on the accumulation function and small changes of 
it . 

Keeping the accumulation conditions fixed by varying 
the surface-temperature distribution (margin temperatures are 
varied from -20°C to -<l.25°C in Case 11) led to the result 
that ice-divide heights and ice-sheet semi-lengths were un­
altered to two significant figures (the only reliable ones 
anyhow). This remained so when the geothermal heat flow 
was varied by several orders of magnitude (0 < 9z < 5). 
The reason for this is obviously the fact that with ILRer = 
4.15 x 10-8 sliding over-rides gliding by two orders of 
magnitude, so that temperature can only marginally affect 
the geometry and flow pattern. 

An anonymous referee was kind enough to point out 
that a horizontal equilibrium line He (no X-dependence) 
corresponds to an unstable ice sheet. He states that " [for 
Pl = 0] ... any perturbation from a steady-state solution 
should have led to a solution of an ice sheet that either 
blew up because it became so large or shrank to nothing. 
What factors are in the computer code that take this into 
account ... ." At least, in parts, this statement is misleading. 
To answer the question, we remark that with an 
accumulation function that is completely flat close to the 
divide, it can rigorously be proven that a marching 
procedure with O(t.X)-accuracy can never be initiated at the 
divide. In other words, our numerical scheme fails for 
P l - O. Extrapolated curves in Figure 4 must therefore be 
taken with care. The case PI = 0 should still be computable 
but a totally different numerical integration technique is 
required . 

With regard to stability, we can only state that this 
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TABLE V. ICE-SHEET SEMI-LENGTHS AND DIVIDE HEIGHTS, AND THEIR ABSOLUTE 
AND RELATIVE CHANGES WITH THE. ACCUMULATION PARAMETER Pi' 
CORRESPONDING TO VALUES ~ = 0.5 (~ = 1000) AND SCALES AND PHYSICAL 
PARAMETERS AS LISTED IN TABLES 11 AND III 

Semi-length Divide height 

H~(X = I) 

XL t:.X! 
H*(X* = 1200 km) 

m km km 

o 1000 6750 

725 

0.02 980 6025 

905 

0.05 950 5120 

1205 

0.1 900 391S 

analysis cannot answer it. A small perturbation analysis 
about a steady state that is already a known solution could 
yield a statement in favour of or against stability. 
Inferences from other, simpler, models such as those of 
Weertman or Oerlemans are dangerous and most likely 
wrong, because the models are different in more than 
trivial details. 

Figure S summarizes the results of a typical run, for 
conditions as described in Table IV and the figure legend. 
In this figure the top two graphs (a, b) display the temper­
ature distribution in the form of isotherms and vertical 
profiles, respectively. They show the pattern one would ex­
pect, given the available data from observations and earlier 
approximate models (see, for instance, Jones (1978)). The 
aspect ratio of the plotted ice sheet differs from that 
obtained from computations because we have chosen to scale 
the horizontal and vertical coordinates such that the screen 
of our graphics terminal would show the results optimally. 
Thus, the aspect ratio l!l* of the graphs is constant 
(= 0.54) but the true aspect ratio can easily be inferred 
from the coordinate scales shown on the graphs (compare 
legend to the figure). 

Figure Se, d, e, and f summarize the results obtained 
for the dimensionless velocity distribution. Graph (c) shows 
vertical profiles for the total longitudinal velocity U, graph 

t:.·XL 
HO llHb ~ x lOO -- x lOO 

t:.~L H* D 

% m m % 

10.7 2040 12.7 

260 

IS.0 1780 12.3 

220 

23.S IS60 12.3 

220 

1340 

(d) the difference between U and the sliding velocity UF, 

characterizing the flow component due to viscous 
deformation. This difference velocity will be called gliding 
velocity. In view of the scales shown as inserts on these 
graphs, we see that the gliding velocity is approximately 
0.5% or less of the sliding velocity, which corroborates the 
statement made about the role of sliding. Note the 
continuous growth of the gliding velocity as one moves up­
wards away from the bed. This behaviour is, of course, 
expected but is nevertheless surprising, because it means 
that at least as far as horizontal velocities are concerned, 
our program guarantees more than two places of accuracy, 
for otherwise inconsistent results for the gliding velocity 
would be expected. Ensuing computations will have to 
explore situations in which gliding plays a more important 
role. 

Figure Se displays vertical profiles of the dimensionless 
vertical velocity. The linearity of the profiles has often 
been conjectured in glaciology, and was first used by Robin 
(19S5) to explain the contribution of vertical convection to 
the temperate distribution. Here, it is a proven result of the 
computation. Its accuracy is nevertheless somewhat 
surprising. Notice also that W is downward everywhere in­
cluding the ablation zone, contrary to what one migh~ 

expect. The reason is that in the ablation area I dH / dX I 

TABLE VI. VALUES OF E2 (LEFT MATRIX) AND e (RIGHT MATRIX) FOR RANGES OF 
V ALUES FOR sAND 6. THE E 2 MATRIX IS SYMMETRIC WITH RESPECT TO THE MAIN 
DIAGONAL; THE e MA TRIX HAS SYMMETRY WITH RESPECT TO THE SECOND 
DIAGONAL. ALSO SHOWN ARE THE FORMULAE FOR E2 AND e IN TERMS OF THE 
BASIC SCALE 

S 10. 4 10.3 10.2 10- 1 
S 10- 4 10- 3 10- 2 10- 1 

6 6 
10-4 10-8 10-7 10-6 10-5 10-4 10-1 10-2 10-3 

10-3 10-7 10-6 10-5 10-4 10-3 10 10-1 10-2 

10-2 10-6 10-5 10-4 10-3 10-2 102 10 10-1 

10-1 10-5 10-4 IO-s 10-2 10-1 103 102 10 

(v = E 2 = s6) matrix (9 = 6s- 1) matrix 

E2 = ~ qw 
9 ~ 

Pydo doDoao °oDoao 
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Fig. 5. Distributions of temperature and (scaled) velocities 
for the Case I computations (c/. Table IV) using 
HO = 0.5, P1 = 0.1, TM = -0.1 , T M(1) = 0.8, 
T

e 
(2) = 10-'. The temperature distribution, indicated in 

o~, is shown for the top two graphs. (a) displaying a few 
selected isotherms, and (b) showing vertical profiles, with 
the temperature scale drawn as an inset. 

The plots (c), (d) , (e) , and (f) depict the non­
dimensional and scaled velocities . The first figure (c) 
shows vertical profiles of the ( total) horizontal velocity; 
figure (d) shows the same profiles for the difference 
(U - UF) ' called gliding velocity, while figure (e) gives 
vertical profiles of the vertical velocity W. Dimensionless 
scales for all three are given as insets. Finally , figure ( f ) 
gives the vector plot for the velocities, indicating the flow 
pattern within the ice sheet . Scales are not indicated for 
the reasons explained below. 

In these graphs (and all similar ones which follow) the 
aspect ratio ('& = 0 .54) of the plotted ice sheet is 
always the same and usually differs from the computed 
aspect ratio ill. The value of ill can , however, be 
inferred from the graph as horizontal and vertical scales 
for X and Z are indicated by the scales along the 
coordinate axes. 

Also, the lengths of the vectors in the plot of figure 
(f) are not rroportional10 (U2 + W2)t but proportional to 
(U2 + }.2W') , where ill = ). ID In this particular 
case, ID • 0.67/3.10 = 0 .216 , so }. = 0 .54/ 0.216 = 2.5. 
Thus figure ( f) gives the correct stream-line pattern on the 
basis of the aspect ratio ID . This procedure was adopted 
because it provided the optimal use of the screen of our 
graphics terminal and led to the standardized form of 
figures like this one. Notice , finally , that positive values of 
temperature and velocity profiles are drawn to the right , 
while negative values are drawn to the left. 

and U are comparatively large, so that in the surface 
boundary condition, Equation (6a), the product UdH/ dX < 0 
will outweigh (-acc ) > O. 

The flow pattern along the free surface is still as 
expected, namely into the ice within the accumulation area 
and out of the ice in the ablation zone. This is 
demonstrated in Figure 5f, which is a vector plot of the 
velocity distribution (see legend for interpretation) that gives 
a fairly reliable view of the stream-line pattern. 

In this description we have restricted attention to the 
scaled dimensionless variables, the only exception being tem­
perature. Physical variables can easily be deduced with the 
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aid of Equations (I) and the characteristic parameters shown 
in Equations (3) and Table It In this particular case 
multipliers are as follows: 

Variable Multiplier Dimension of results 

Heights 
Lengths 
Longitudinal 

velocities 
Vertical 

velocities 

2 x 103 

1.206 x 106 

0.603 x 106 

[m) 
[m) 

This yields an ice-sheet extent of the order of 4000 km and 
gigantic horizontal velocities of 200-300 km a- 1. The next 
section will indicate why this somewhat unrealistic case is 
still meaningful. 

3. Variation of scaling parameters 
Consider Equations (3) and substitute appropriate values 

for the scales; then it is found that realistic ranges for s, 
5. a, and /3 are, approximately 

5 x 10-2 , S , 10-", 

10-2 , a I, 

10-4 , 5 , 10-1 , 

10-2 , e , 5 x 10-1, 
(32) 

so that \1(= E') and e assume values as shown in Table VI. 
Evidently, the E2 matrix is symmetric with respect to the 
main diagonal, whereas the e matrix enjoys this symmetry 
with respect to the second diagonal. Large E 2 values lie at 
the right lower corner of the E 2 matrix, large a values at 
the left lower corner of the a matrix. 

To explore the significance of the parameters in the 
ranges mentioned in relations (32), two sets of computations 
were performed: 

Case Ill. The mechanical parameters of the field equations 
s, 6, and the coefficient responsible for sliding, 
ILRef' are varied, but the thermal parameters a, /3 
are held fixed . 

Case IV. The thermal parameters of the field equations 
are varied, while keeping the mechanical 
parameters in the ranges implied by Case Ill . 

For Case Ill, 76 runs were performed in the intervals 

!(T8 , 
ILRef ~ 10-4 

1 
10-4 , S , I , Case III (33) 

10-5 , 6 I, 

and using the accumulation function, Equations (20a) and 
(21), with P1 = 0.1, P2 = 0, ~ = 0.5, with the remaining 
boundary parameters as listed ID the Case I study (Table 
IV). In so doing, it was strictly observed that ILR f and E 2 

satisfied inequality (31). e 
It was found that dimensionless ice-divide heights HD 

and dimensionless ice-sheet semi-lengths X R did not depend 
in any recognizable way on all three parameters s, 5, and 
IJ.Ref but only on one single quantity, namely the n-product 

(34) 

Only when the second parameter, a = 6s-1, was large 
(9 > 100 or a > 1000, in general) could a slight trend of 
dependence of HD and X R on a be observed but it was in­
conclusive, and often computations resulted in overflow due 
to strong rheological non-linearities and/ or high temperatures 
(above melting). Table VII documents this behaviour for a 
few runs; Figure 6 illustrates the dependence graphically. 
"Error bars" mark the range of values for X Rand H D, 

respectively, which were obtained with different values of 
the parameters s, 5, and ILRef' The width of the error bars 
is more the reflection of the accuracy of our numerical 
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TABLE VII. SOME VALUES OF THE CHARACTERISTIC PARAMETERS 5, 6, IlRef' 8, AND 
CORRESPONDING COMPUTED NON-DIMENSIONAL ICE-DIVIDE HEIGHTS HD AND ICE­
SHEET SEMI-LENGTHS FOR THE CASE III STUDY. COMPUTED VALUES ARE RELIABLE 
ONL Y TO TWO SIGNIFICANT FIGURES 

5 

10-3 

10-2 

6 

10-3 

10- 5 

10-2 

10-3 

1 
10- 4 

2 x 10- 3 

2 x 10- 4 

10- 4 2x10- 2 

5 x 10- 2 10-5 

10-3 

5 x 10-2 

5 x 10-5 

10- 1 

2 x 10-2 

10-4 

2 
2 x 10-3 

1 
10-3 

I 
10-2 

2 x 10-2 

2 x 10-5 

2 x 10-2 

2 x 10-4 

I 
2 x 10-3 

2 x 10- 1 

10-2 

IlRef 

0.1 

10-6 

10- 8 

0.05 

10-6 

10-5 

10-8 

10-7 

0 .01 

10-8 

10-7 

0.005 

10-6 

10-5 

scheme than an indication of a dependence on other 
variables (e.g. 8). We also observed that with IlReCI E 2. > 0.1 
or with HD > 2 x I-1 the secant root-finder for aC(tt(HD) 
sometimes failed to converge unless initial guesses for HD 
were close to the solution value. 

Figure 6 and Table VII further suggest that we may 
set 

in which the asterisk refers to physical variables and the 
dot in the argument indicates functional dependences that 
were omitted in this run. Thus, the aspect ratio ~* = H; / 
X~ is a function of the form 

(36) 

150 

9 

100 
10- 3 

100 
10-4 

10 
10- 1 

1000 
10- 4 

20 
2 x 10- 3 

200 
2 x 10- 4 

20 
2 x 10-3 

20000 
2 x 10-2 

lOO 
10-2 

1000 
10-1 

10000 
10-2 

1000 
10-1 

200 
2 x 10-4 

20 
2 x 10-3 

20000 
2 x 10-2 

20 
2 x 10-1 

0.98 
0.97 

0.96 
0.95 

0.95 
0.95 

1.05 
1.00 

0.82 
0.83 

0.81 
0.82 

0.83 
0.81 

0.82 
0.83 

0.62 
0.61 

0.63 
0.62 

0.62 
0.64 

0.63 
0.63 

0.56 
0.56 

0.56 
0.56 

0.55 
0.56 

0.56 
0.56 

2.65 
2.43 

2.66 
2.55 

2.55 
2.55 

2.70 
2.65 

2.75 
2.75 

2.70 
2.75 

2.75 
2.70 

2.75 
2.75 

3.50 
3.55 

3.55 
3.50 

3.60 
3.60 

3.55 
3.55 

4.60 
4.60 

4.60 
4.60 

4.65 
4.60 

4.60 
4.60 

The function i ( "'Reel E 2) is also plotted in Figure 6. 
Accordingly, ijl basically increases for increasing values of 
"'ReCI E 2. Since for E as fixed, decreasing IlReC means 
enhanced sliding in comparison to gliding, and Figure 6 
implies the following: leaving all other variables fixed, the 
more slippery a bed is, the shallower the corresponding ice 
sheet will be. Of course, this is in agreement with intuition. 
Note, finally, that the aspect ratio in physical space, 11*, is 
a function of two parameters, E and IlReC/ E2 . The shallow­
ness of an ice sheet now depends on E and IlReC/ E 2 but it 
is still true that increasing basal friction reduces the aspect 
ratio m*. 

In the computations for Case IV, the thermal 
parameters ex and 13 were varied such that 10-2 < (ex,l3) < I, 
while IlRef/ e 2 was kept constant (= 0.05) and s < I, 6 < I 
were arbitrarily varied such that 65-1 < 103. The thermal­
boundary conditions were those of Case I (see Table IV) 
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Fig. 6. Graphs of the ice-divide height HD. the ice-sheet 
semi-length XR , and the aspect ratio i!l plotted against 
jJ. /E2 in semi-logarithmic representation for Case III 
c~putations. The scale for..,HD is shown on the left-hand 
side; those for XR and ill are given on the right-hand 
side. "Error bars" indicate the range of values of the 
respective variable that were obtained by using different 
values of s, 6, and jJ.Rer as explained in the text .. Solid 
lines are eye-fitted interpolations. The aspect ratIO has 
been computed by using the interpolated curves . 

and the accumulation function was that of Equations 
(20a, b). The result: HD and XR were essentially unaltered 
by the variations of a and a (20 runs) . This feature was 
also corroborated in a few additional runs using different 
jJ.Rer/ E 2 ratios and higher surface temperatures. 

It thus appears that in the range of the validity of this 
model, jJ.Rer/ E 2 is the only dimensionless parameter of the 
field equations which affects the dimensionless ice-divide 
height H D , the ice-sheet semi-length X R' and the aspect 
ratio ?Ai . Because comparison of surface profiles computed 
for various parameter sets but with the same aspect ratio 
has not led to noticeable differences of profile geometries, 
these results imply that temperature does not affect the 
geometry. The latter could have been computed by ignoring 
temperature variations . This result is surprising and a con­
sequence of Equation (3 I). 

That the geometry remains essentially unaltered, when a 
and /3 are varied, does not imply that the flow and 
temperature distributions would not depend on these 
parameters. In fact, intuitively, we might anticipate that the 
dissipation number will hardly affect the flow and the tem­
perature distribution unless the temperature in the entire ice 
sheet is close to melting. The temperature distribution is 
then primarily governed by convection and/ or diffusion . 
Furthermore, for small diffusion numbers /3, the temperature 
distribution must be dominated by convection except in a 
basal boundary layer. Larger diffusion numbers will (most 
likely) not give rise to such boundary layers. For Case IV 
runs with all combinations of a = (J 0- 2, 10-1, I), /3 = 
(10 -2, 10-1, I) , except a = I, a = I, it was found that the 
dimensionless velocity fields hardly differed from each 
other. Plots for these are therefore only shown for 
a = 10-1, /3 = 10-2 (compare the lower part of Figure 7). 
The temperature distribution is, however, mainly governed 
by the relative weights of diffusion versus vertical convec­
tion (compare graphs (a) and (b) in Figure 7 with graphs 
(a) and (b) and (c) and (d), respectively, in Figure 8). 
Evidently, when 13 is small, vertical convection dominates; 
vertical temperature profiles change slowly in the upper part 
of the ice sheet but relatively quickly close to the base. 
The boundary layer can clearly be seen in the isotherm plot 
(Fig. 7a). Isotherms have the typical shape known from 
other studies. One detail in these temperature distributions 
should be emphasized: over most of the ice sheet the tem­
perature profile for fixed X shows an inversion; in other 
words, along a vertical line, the temperature is coldest not 
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Fig. 7. Distributions of temperature and (scaled) velocities 
for Case IV computations , using the accumulation function . 
Equation ( 20b). H~ = 0.5. P1 = 0.1 . T M = 0.5. 
T M(l l = O.B. and T M(2l = O. and for a = 0.1. a = 0.01 . 
For a detailed explanation of the figure see the legend to 
Figure 5. 

We mention that the graphs for velocity as shown in 
figures (c) . ( d ). ( e). and ( f) are identical to those when 
( a .a) = (1O- 2 .W-2) . (10 -2 .10-1 ) . (10- 2 .1 ). (10- 1.10-1

) . 

(10- 1.1) . (1 .10-2). (1 .10-1 ) . and (1.1) . reflecting the 
importance of sliding. 

at the surface but at a certain depth. The prediction of this 
feature has a relatively long history and in steady state has 
been demonstrated to be due to longitudinal advection 
(Robin, 1955; see also Hutter, [cl9831, p. 171-73). The 
location of the inversion point relative to the surface varies 
with position (it is close to the surface towards the snout). 
Its existence is to a large extent the result of the fact that 
thermal diffusivities are small. Figure 8 corroborates this 
statement. When a = 0.1 (top of Figure 8), vertical 
temperature profiles are still curved but more tapered than 
before. There are no inversion points, as can be seen from 
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Fig. B. Temperature distributions for Case IV computations 
using the same conditions as described in the legend to 
Figure 6 but now for values a = 0.1. a = 0.1 (a . b) and 
ex = 0.1. /3 = 1.0 (c . d ) . respectively. 
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the isotherm plot. The basal boundary layer has disappeared, 
advection no longer dominates over diffusion, but both 
compete with comparable amounts. Finally, when 8 = I 
(bottom of Figure 8) diffusion over-rides advection. This is 
why isotherms are essentially horizontal and temperature 
profiles linear in this case. 

Are situations like those displayed in Figure 8 realistic? 
In view of Equation (3d), probably yes! One simply needs 
to lower the accumulation scale qm by a factor of 10 and 
the representative thickness by a factor of 2 (qm = 10 cm/a, 
do = 1000 m, both realistic values) to shift 13 into a range 
typical of Figure 8. This simply indicates that no single ice 
sheet is typical of all and scales must be carefully selected. 

We also constructed solutions for a = I, 13 = I and 
substantially smaller surface temperatures (T M(ll = 0.4). 
These solutions show a 10-30% contribution of gliding to 
the total velocity. The reason, in this case, is the occurrence 
of positive temperatures in the lower half of the ice sheet 
with an accompanying substantial enhancement of the rate 
factor a(T). The case is at most interesting but, clearly, not 
realistic. This does not mean that flow situations with 
considerable gliding would not occur. In fact, we will 
demonstrate later that, when ILRer/ e 2 is large (but still '0.2), 
the influence of gliding is visible. 

Finally, a note is in order regarding the magnitudes of 
heights, extents, and velocities in physical variables. We 
have not indicated the respective scales in Figure 7. The 
transformations obey Equations (I) and involve, among other 
things, the parameter e. Because dimensionless quantities do 
not (seem to) depend on this parameter, the values of 
physical variables can be adjusted largely by choice of t. It 
is not difficult to envisage situations for which longitudinal 
velocity components are considerably smaller than in the 
example of Figure 5. 

4. Variation of the external forcing 
Alterations in the external forces express themselves as 

variations of the accumulation-rate function, the surface 
temperature, and the geothermal heat. 

(a) Accumulation . Patterns according to Equations (20a, b, c) 
were analysed under various thermal conditions (keeping 
everywhere the temperature below or at melting) and 
varying ILR.rie2 within the interval (5 x 10-2, 2 x 10-1). 
The snow-equilibrium height was chosen according to 
Equation (21) with 11 = 0.5, P1 = 0.1, and P2 = O. 

Consider Equation (20c) first, because it is the simplest. 
Varying the parameters a and b (Case V) permits us to 
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analyse changes in ice-sheet flow due to global climatic in­
fluences. The value of b is a measure of the solid precipit­
ation at high altitudes. Alternatively, a measures how fast 
melting decreases with altitude variation of the 
surface-energy budget. 

Figure 9 displays HD (left) and X R (right) as a 
function of ILRer/ e2 for the case that 11 = 0.5 is held fixed 
while b is varied. Symbols represent points that were 
calculated; curves are eye-fitted. Evidently, HD grows with 
increasing it; but this same statement is not necessarily true 
for XR' Qualitatively, the larger if is, the more melting will 
occur per unit distance in the ablation zone. Thus, for a 
fixed extent of the ablation zone, the total ablation will 
increase with growing if, resulting in an imbalance of mass 
and thus needing an increase in ice-divide height until mass 
balance is re-established. Because each change of Ho also 
induces a change of X R and, consequently of the extent of 
the ablation zone, such a plausibility argument does not 
apply to XR' 

Important to observe in Figure 9 is the consistency of 
the computed data, as they permit a clear identification of 
a trend. (The interpolated curves are well defined by the 
data and the curves are clearly separated.) This is an 
indirect a posteriori proof that the computer code is well 
behaved and is reliable. Notice, however, that at fixed 
ILRer/ e 2 the difference of two values of X R for two values 
of a is larger than for HD , indicating a relatively poor 
sensitivity of the secant root-finder to the different HD 
values. 

Variations of it are also manifest in changes of surface 
geometry. Besides the aspect ratio, the "bluntness" of the ice 
sheet also suffers some changes. Figure 10 gives some 
information on these parameters. For fixed ILRer/ e 2, the 
aspect ratio increases with increasing it (Fig. lOa) and so 
does the bluntness of the ice sheet (Fig. lOb). By this, we 
mean that, for two ice sheets with the same ice-divide 
height and ice-sheet semi-length, one ice sheet may appear 
more or less tapered while the other may be more or less 
blunt. Intuitively, decreasing if should make ice sheets more 
and more tapered. Figure lOb corroborates this but the 
effect of changing it by a factor of 4 is hardly visible. The 
case with 11 = 6.25 was also run but the profile was 
hardly distinguishable from the solid line in Figure lOb. 

We have also varied the accumulation parameter b in 
Equation (20c), leaving the ablation parameter a = 6.25 
fixed. Results are summarized in Figure 11. Evidently, 
changes of b by a factor of 2 (= 100%) result in very 
small absolute changes of HD but rather large changes of 
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Fig . 9. Graphs of the ice-divide height HD (left . (a )) and the ice-sheet semi-length XR ( right . 
(b)) plolted against ILRer/ e2 as obtained from Case V computations using the accumulation 
function . Equation (20c) . as shown in the inset of figure ( b). Symbols represent computed values. 
curves ( solid. dashed. and dOlled) are interpolated by eye. Question marks ind icate ranges of 
ILRer/ e2 values for which no numerical solution was found (loss of convergence). 
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Fig. 11. Graphs of the ice-divIde height . Ho (left. ( a)) and the ice-divide semi-length X R (right. 
( b)) plolled agalllst ILRerlE as obtamed from Case V computations using the accumulation 
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X R (cf. Table VIII) . All these findings have obvious 
practical bearings and reflect the unfortunate sensitivity of 
the model. An analogous behaviour in a different context 
has already been observed by Nye (1963) in his kinematic 
wave theory. There, it was deduced that relatively short 
temporal records of glacier-snout movement permitted 
reliable evaluation of the local climate function (the ablation 
at the snout) but that long temporal records of accumula­
tion were needed to predict reliably short glacier-snout 
movement. 

TABLE VIII. ICE-DIVIDE HEIGHTS Ho, THEIR DIFFER­
ENCES t.Hn, ICE-SHEET SEMI-LENGTHS XR, AND 
THEIR DIFFERENCES t.X R FOR THE THREE RUNS OF 
FIGURE 9 WITH ILReC/e 2 = 0.08 

The considerable variation of ice-sheet semi-length with 
accumulation conditions also has its influence in the 
temperature distribution and the flow . In Figure 12, we 
display the isotherm plots for six different cases of the 
accumulation function, Equation (20c), given by the 
variations of a and b , as indicated in the figure . The 

it = 

b 

0.5 

0.75 

6.25) 

Hn 

0.73 

0.71 

0.69 

t.Hn X R t.XR 

2.05 
0.02 0.35 

1.70 
0.02 0.30 

1.40 
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Fig. 12. An explanation of the considerable temperature 
change with accumulation. Shown are isotherm plots 
determined by using the accumulation function . Equation 
(20c ). Thermal and basal conditions are the same as for 
Case I ( see Table IV). Figures (a). ( b) . and (c) (le!t) 
show the isotherm distribution when the accumulatIOn 
parameter b is varied; figures ( d ). ( e). and ( f ) show 
those when a is varied. 

graphs indicate that monotonic changes of b or a do not 
necessarily yield monotonic changes in the temperature dis­
tribution. This is so because ice-sheet semi- lengths may 
equally suffer non-monotonic changes under the same con­
ditions (see Figs 9b and 11 b). 

As a last test of the model to variations in the 
accumulation condition, results obtained with the accumula­
tion functions, Equations (20a-c), were compared, when a 

1.0 I ) 
o Acc [Equ. (20 aU :/ 
x Acc [Equ. (20b)] 
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0.4 
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= 12.5 and b = 0.5. The three accumulation functions are 
nearly equal in this case. Their function values agree at the 
ice divide, provided that HD > 0.75 and in the ablation 
area below the snow-equilibrium line but differ otherwise. 
For a prescribed H(X), acc(Equation (20c» is largest in 
these instances, followed by acc(Equation (20b» and acc 
(Equation (20a». So, one would expect H(acc(Equation 
(20c») > H(acc(Equation (20b))) > H(acc(Equation (20a))). 
However, as we can infer from Figure 13, this string of 
inequalities is not borne out by the model, the obvious 
reason being that each ice sheet selects its own profile 
H(X). From a practical point of view, these results are 
rather disturbing, because they imply that a reliable pre­
diction of the ice-sheet geometry requires a prescription of 
the climate more accurate than can be provided by the best 
climatological studies. That the ice-sheet extent is more 
sensitive to small changes in the accumulation pattern is yet 
more disturbing. 

(b) Surface temperature and geothermal heat. Thermal 
conditions of the climate are manifest in the temperature 
function Ts; the magnitude of the activity of the Earth's 
core and the thickness of the mantle are expressible as 
function values of the geothermal heat. Here, we are not so 
much interested in spatial variations but in the influence of 
these quantities by changing their order of magnitude. We 
thus vary in Equations (13) and (7a) the magnitudes of 
T M(l) and 9z. For Case II computations (see Table IV, in 
which T M(l) now varies), results are shown in Figure l4a-c. 
For very cold surface temperature and "normal" basal 
conditions, the temperature distribution has the usual 
inversion pattern. Warming up the surface temperature 
weakens this inversion property but does not destroy it. For 
this , 13 values had to be increased. This is a behaviour one 
might have expected. 

A qualitatively comparable effect is also exhibited by 
changes in the geothermal heat. While ice-sheet geometries 
and velocities are hardly affected, the temperature 
distribution is strongly influenced. For calculations with 
a = 0.5, 13 = 0.02, T M(l) = 0.6, jJ.ReC/ E2 = 0.2, and the 
accumulation function , Equation (20c), a = 6.25, b = 
0.5 , isotherms for two different values of the geothermal 
heat are shown in Figure 15. For 8z = I (geothermal 
temperature gradient of lOCI lOO m; Fig. 15a and b), 
temperatures are everywhere negative and profiles show a 
pronounced inversion pattern. When the geothermal heat is 
2.5 times higher and all other conditions are kept fixed , 
then the entire ice sheet is substantially warmer, tempera­
ture inversion is less pronounced, and close to the snout 
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4.5 

\ 
x Acc [Equ. (20bi] 
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Fig. 13. The same as Figures 9 and 11 but now comparing ice-divide heights alld ice- sheet 
semi-lengths for the three different accumulation functions as indicated ill the inset. Symbols 
represent computed values ; curves (solid . dashed . and dOlled) are interpolated by eye. Question 
marks indicate ranges of jJ.ReC/ E2 values for which no or uncertain numerical values were 
obtail1ed. 
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Fig. l5. Isotherms and vertical temperature profiles for 
computations using Equation (20c) as accumulation fUllction 
and IX = 0.5 . t3 = 0.02 . T M(I) = 0.6. a = 6.25 . 
and b = 0.5 for two different values of the geothermal 
heat. The top two figures are ~alid for 9z = 1 
(geothermal temperature gradient 1 Cl 100 m); bOllom 
figures hold for a geothermal heat flow 2.5 times larger. 
Notice in the profiles (figures (b) and (d)) that the 
temperatures are everywhere negative for the small value of 
geothermal heat but locally positive (above melting) in the 
second case. 

basal temperatures are even pOSItive (Fig. I Sc and d) . This 
case is not realistic and would have to be described by a 
poly thermal model. 

Hull er and others: Numerical study of plane ice-sheet flow 

5. Rheological non-linearities: creep-response function and 
rate factor 

Rheological non-linearities enter the 
through Equations (4a-c) and are manifest in 
stretching relationship, Equation (2e), and in 
dissipation term of Equation (2h). 

formulation 
the stress­

the viscous 

(a) Creep response. Parameters which govern the creep 
response are the shear stress T and the scaling 9; the 
temperature T determines the values of the rate function 
a(T) and will be analysed below. Figure 16a shows a pers­
pective representation of g(T,9), the coordinate scale for T 
being linear, those for 9 and g being logarithmic. Function 
values grow rapidly for growing T and 9 spanning several 
log cycles in the displayed T and 9 range. Figure 16b de­
limits the domains of the (T,e) plane in which the non­
linear terms of g(T,9), Equation (4c), are significant. Large 
9 values make the influence of non-linearities more likely. 
This is the reason why we chose sand 6 values often in 
ranges where 9 = I, 10, 100, and seldom e = 1000, and 
cannot be surprised that for 100 < 9 < 1000, approximately, 
we were often facing overflow problems. The graph in 
Figure 16c displays the function values of w(9T2). Here, too, 
large 9 values enhance the non-linearities. 

Computations were thus performed for I < 9 < 200. 
To reduce the role of basal friction as much as possible, 
ILRe/e 2 = 0.2 was chosen which is right at the upper bound 
of the applicability of the model. Four runs were 
performed, in which all essential parameters were kept 
constant with the exception of 9 (cf. Table IX). 
Dimensionless ice-divide heights (and ice-sheet semi-lengths) 
were essentially unaffected by these variations. However, the 
velocity and also to a lesser extent the temperature dis­
tributions were affected by changes in 9 values. With 

M fU - U } max S U
B 

B )( lOO (37) 

we define the maximum of the ratio of the gliding velocity 
to the basal velocity. It represents a measure of the 
importance of the viscous deformation in comparison to the 
sliding mechanism. For the computations of Table IX, the 
results revealed 

9 = I 10 lOO 200 

M::: 0.5 0.7 9.5 20 (%) 

corroborating the intuition that large 9 values will enhance 
viscous deformations. Parallel with an increase of 9 goes a 
growth of the total velocity. Figures 17 and 18 summarize 
the results for 9 = I and 9 = 200 (all other parameters 
being as in Table IX). The temperature distribution (graphs 
(a) and (b) in Figures 17 and 18) is only slightly affected 
by changing 9 from 1 to 200, but the total velocity (graphs 
(c)) and the gliding velocity (graphs (d)) show considerable 
changes. For e = 1, gliding is much less conspicuous than 
for 9 = 200 . In addition, the distribution of the gliding 
part of the velocity is quite different in the two cases. For 

TABLE IX. CHARACTERISTIC PARAMETERS s, 6, 9, 
ILR (/ e2, IX, t3 FOR THE SCALINGS AND 9z' T M(l), it, b 
FOR THE EXTERNAL FORCINGS. NOTE THAT 
SYSTEMA TIC CHANGES IN e V ALUES LEAVE ICE­
DIVIDE HEIGHTS NEARLY UNCHANGED 

s 6 9 HD ILReC/ e 2 = 0.2 

0.83 IX 0.5 
t3 0.02 

10-2 10 0.86 9z 1.0 

100 0.88 T M(I) = 0.6 
a 6.25 

2)( 10-1 200 0.88 b 0.5 
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Fig . 17. Distributions of temperature and (scaled ) velocities 
for computations , using the accumulation function , Equation 
(20c), H~ = 0.5, Pi = 0.1, T M(2) = 0, and scaling 
parameters as indicated in Table I X for B = 1. For a 
detailed explanation of the figure , see the legend to 
Figure 5. 

Fig . 18. The same as Figure 17 but now for a large value 
of 9(= 200) . Note, in particular, that glidillg is here 
enhanced in comparison with sliding. 
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large a values, it is concentrated to the outer region of the 
ice sheet. The profiles of the transverse velocities show no 
surprising features (graphs (e» but flow lines (graphs (f) 
and velocity scales indicate that the magnitudes of the 
velocity vectors are enhanced when a is increased. 

Having found the conditions for which gliding becomes 
appreciable, additional computations were conducted, in 
which a was kept fixed and large (a = 100), but the 
thermal parameters a and B were varied. It was found that 
the effects of a and B may compete. For instance, large a 
(corresponding to large strain heating) and small B (corres ­
ponding to low thermal convection) may cause similar 
temperature and velocity profiles. For this to occur, a 
values must be large. Proof that enhancing a at large a 
values raises the temperature everywhere in the ice sheet 
and thus also makes gliding more important is given in 
Figure 19, where results are shown for computations of 
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Fig. 19. Distributions of isotherms (( a) and (b)) . total 
longitudinal vel()cities ((c) and ( d )). and gliding velocities 
((e) and ( f) ) for a set of computations. using the 
accumulati()n function . Equation (20c) . H~ = 0.5 . PI = 0.1. 
T M(2) = O. and scaling parameters as indicated in Table I X 
for a = 100. but a = 0.1 (le ft-hand figures ) and a = 0.05 
( right-hand fi gures) . 

Table IX (with 6 = 10-1) but a = 0.1 and a = 0.05, 
respectively. This figure shows isotherms (top), vertical 
profiles of longitudinal velocities (middle), and difference 
(gliding) velocities (bottom), on the left for a dissipation 
number a = 0.1, which is twice as large as on the right, 
a = 0.05 . On the left, temperatures and velocities are larger 
than on the right. A similar effect can also be observed 
when a is kept fixed but B is varied. In this case, 
temperatures seem to change more conspicuously than 
velocities . 

(b) Rate factor. Having so far found almost no influence of 
the temperature variation on the ice-sheet geometry and to 
some extent also on the flow field, it seems compelling to 
analyse the role played by the rate factor at some greater 
depth. In particular, more should be known about the 
notions "weak" and "strong" thermal coupling. To this end, 
Smith and Morland' s (1981) rate factor, which is based on 
Glen's (1955) and Melior and Testa's (1969) uniaxial com­
pression data, is replaced by the exponential relationship 

Huller and others: Numerical study of plane ice-sheet flow 

aCT) = 1.068 exp(B·T) (38) 

with various different values of B· . Notice that T in 
Equation (38) is the dimensionless temperature (a negative 
number for cold ice) which vanishes at 273 .15 K. Moreover, 
at T = 0 the value of the rate factor evaluated by Equation 
(38) agrees with that of Smith and Morland's equation (4a). 

In Figure 20 we have plotted values of aCT) for 
various values of B· between 0 QC and -40 Qc. Also shown 

t 
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TEMPERATURE [OC) 

Fig. 20 . Plots of the rate factor a( T ) against temperature in 
semi -logarithmic representation. Solid lines show the 
graphs for arT) according to Equation (37). the 
dashed-hatched curve gives the graph for the Smith and 
Morland relationship. The values of (3* used in Equation 
( 37) are also indicated . The large arrows indicate the 
direction into which graphs of rate factors would move if 
thermal coupling were to be made stronger and weaker. 
respectively. 

is the graph of aCT) using the Smith and Morland function. 
Since T is negative, large values of (3. will lead to small 
va lues of aCT). Thus, in this temperature range (3* S 3.51 
corresponds roughly to a thermo-mechanical coupling which 
is stronger than that of ice, while (3. > 3.51 makes the 
coupling even weaker. Directions into strong and weak 
co upling are also indicated in Figure 20. Note, however, 
that in a smaller temperature range, larger (3* values 
separate domains with weaker and stronger coupling than 
ice. 

In an attempt to push conditions as far as possible to 
the limit where thermo-mechanical coupling effects would 
be maximal, several runs were conducted under the con­
ditions stated in Table IX (but with a = lOO only) and 
using Equation (38) as the expression for the rate factor 
and varying (3* in the range stipulated by Figure 20. 
Results for (3* = 3.5177, which is roughly representative for 
ice, and (3* = 1.215, which corresponds to very strong 
thermo-mechanical coupling, are summarized in Figures 21 
and 22. The graphs of the isotherms 'and vertical tempera­
ture profiles (plots (a) and (b) in Figures 21 and 22) 
indicate that enhancing the coupling raises the temperature 
slightly throughout the ice sheet. Longitudinal velocities are 
also enhanced when (3* values are lowered (compare graphs 
(c) in the figures) but, most conspicuously, strong thermo­
mechanical coupling enhances the part of gliding in 
comparison to the total velocity (compare graphs (d)). In 
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Fig. 21. Distributions of temperature (isotherms (a). vertical 
temperature profiles (b)) and scaled velocities (graphs 
( c)-( f)) for computations using the accumulation-rate 
function , Equation (20c) , and rate factor , Equations (38) 
with /3- = 3.5177, as well as H~: 0.5, PI = 0.1, 
TM(2) = 0, and scaling parameters as indicated in Table IX 
for e = 10. For a detailed explanation of the figure , see 
the legend to Figure 5. 
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but for e = 100 , 

fact, while M, defined in Equation (37) is less than 10% 
for Figure 21, it amounts to more than 30% for Figure 22 . 
Differences in thermo-mechanical coupling are hardly seen 
in the profiles of the vertical velocities except close to the 
margin (graphs (e». Finally, the flow lines also suggest an 
enhancement of the outward flux in the near-margin zone 
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when 13- is small, However, ice-divide heights and semi­
lengths remain unchanged. 

D. DISCUSSION AND CONCLUSIONS 

In the preceding sections we have outlined the reduced 
continuum model proposed by Morland and Hutter; we have 
described a computer program with the aid of which 
symmetric plane, steady ice-sheet flow was analysed by 
using interactive methods and rather sophisticated graphics 
hard- and software in order to find deductions implied by 
the model. Two types of parameter were varied, first, 
characteristic numbers describing the mechanical and thermal 
behaviour of isotropic ice and, secondly, the external 
forcings responsible for the climatic input (surface 
temperature, accumulation rate, and the geothermal heat). 
Attention was focused on gross behaviour but not on the 
finer details. We could, for instance, also have investigated 
spatial variations; however, in view of the results, it is felt 
that these are of lesser significance. 

I. Summary of results 
To judge properly the usefulness and validity of the 

model, let us briefly summarize the results. Inferences apply 
to dimensionless variables. 

(i) The most important result of this paper is probably 
the recognition that the Morland-Hutter model with our 
integration procedure is only applicable if sufficient 
sliding is present. This is expressed in inequality (30) 
(or (31», which states that the basal drag must be 
small: /LRefl e 2 < 0.2. Because decreasing /LRef is 
tantamount to increasing the slipperiness of the basal 
bed, the model requires a minimum amount of sliding. 
There is some competing factor against this 
slipperiness, namely in the aspect ratio, so that for 
thinner ice sheets more frictional resistance can be 
permitted . The permitted range of /LRef/ e2 is, however, 
somewhat restrictive as no-slip (a realistic limit) for 
cold ice sheets can never be attained. Nevertheless, the 
soft ice in a small basal layer, which is often of 
sub-grid size, will lead to /LRef values that do not 
violate inequality (30) for a particular ice sheet. So 
the range of applicability of this model is larger than 
if sliding would solely have to represent true slippage 
along the base. Morland and others (1984), in their 
isothermal Greenland ice-sheet model, used 
/LRef/ e2 = 9.9 in violation of inequality (30). All 
subsequent inferences are drawn, subject to the 
satisfaction of inequality (30). 

(ii) Of all characteristic parameters that describe the 
thermo-mechanical behaviour of the ice sheet (namely 
e 2, e, a, 13, /LRd) , the ice-divide height and the 
ice-sheet semi-length only depend on /LRerie2 but not 
on the other possible independent combinations, 
provided the external forces remain unchanged . 
Neither does the shape nor the velocity distribution 
depend on characteristic parameters other than /LRerl e 2. 
This statement requires qualification insofar as an 
increasing contribution from sliding to the total 
velocity can be observed when e is large. The 
influence is, however, seldom larger than a few per 
cent. 

Apart from surface temperature and geothermal 
heat, the temperature distribution depends on both a 
and 13, but dependence on 13 is much stronger than 
that on a . For small 13, diffusion is small and vertical 
advection of heat dominates except in a basal boundary 
layer. Increasing S makes diffusion more and more 
important. Also, for small /3, temperature profiles may 
show inversions, which are typical and (probably) 
caused by longitudinal advection. The role of the 
parameter a is marginal unless large a values are paired 
with large e values and relatively uniform temperature 
profiles. In those circumstances, we have observed a 
certain influence of a and e on the flow and tempera­
ture distribution, mostly insofar as the enhanced strain 
heating gave rise to higher temperatures close to the 
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margin (where the TS are large) which, alternatively, 
caused enhanced gliding there. 

(iii) Besides ILRef/ E 2, the accumulation-rate function is 
the dominant factor in determining the ice-divide 
height, the ice-sheet semi-length, and the taperedness 
of the sheet. Spatial vanatlOns of the 
accumulation-rate function may change the geometry 
drastically. It was, however, also often observed that 
small changes in ice-divide heights were accompanied 
by fairly large changes in ice-sheet semi-lengths. This 
implies that high numerical accuracy is required if 
relatively subtle changes of ice-sheet extents are to be 
predicted. This is unfortunate as double precision has 
already been used in this program and better accuracy 
necessarily requires higher-order finite differencing. 

(iv) Rheological non-linearities are hardly ever seen to 
be important. This is so, because a a-dependence 
coupled with a thermo-mechanical coupling was seen 
in the velocity field only to have an effect of a few 
per cent. At stronger thermo-mechanical coupling (much 
beyond that of ice), the influence of the temperature 
on the flow was substantial. 

2. Implications of the restriction ILRef/E
2 < 0.2 

We anticipate that in a model without the limitation of 
inequality (30) the thermo-mechanical coupling will be more 
evi?ent a~d a sole. dependence on IlRef/ E2 may no longer be 
valid. While we wIll say a few words on such extensions in 
the next section, our goal here is primarily to make a few 
cautious remarks on earlier works (listed in Table I). We 
ignore steep glaciers and confine our attention to plane 
isothermal or non-isothermal ice sheets (cL Morland and 
Johnson, 1982; Hutter, [cI983], chapter 7; Morland and 
Smith, 1984; Morland and others, 1984; Hutter and Alts, 
1985). We have failed to find any statements as to the 
limitation of the models implied by inequality (30) . In a 
personal communication to one of us, Morland has, 
however, expressed his opinion that close to the ice divide 
longitudinal stretching ought to be important. This is most 
likely the deeper cause of the imposition of inequality (30). 
It then remains a question of how reliable the constructed 
numerical solutions of Morland and associates can be. 

A partial answer to this question is obtained if one 
notices that in the computational work of Morland and 
associates temperature was never an issue. It was therefore 
irrelevant whether integrations were performed with or 
against the flow, and these authors chose to start integrating 
at the margin, where U, H', and acc were all finite non­
zero numbers . Thus, local surface mass balance could be 
satisfied to a sufficient accuracy independent of whether 
sliding was substantial or not. (They only needed sliding 
linear in overburden pressure to have a finite margin slope.) 
Integration into the ice sheet must have proceeded for some 
distance without difficulty, but it is anticipated that satis­
faction of the local surface mass balance became difficult in 
the vicinity of the ice divide, where H' and U are small. 
The integrated mass balance must have been used to define 
the location of the ice divide. This was obviously at 
positions where H' was numerically very small. So Morland 
and associates were able to obtain reliable solutions away 
from divides and proper overall geometries with their 
integration procedures, but solutions ought to be in some 
doubt close to the divide. 

With temperature, integration must start at the divide, 
and then large errors are introduced right at the start, 
unless sufficient sliding is available. 

3. Into new avellues 
When solving the thermo-mechanical coupled problem, 

as we did with the Morland-Hutter model, there is no way 
around inequality (30). Thus, we may ask the questions: (i) 
How is the present work best extended? (ii) Are there 
glaciological situations for which the Morland-Hutter model 
is applicable without a restriction like inequality (30)? (iii) 
What model will have to be used to eliminate the 
inequality? 

Hull er alld others: Numerical study of plane ice-sheet flow 

Answer (i). A direct and easy extension is the application 
of the Morland-Hutter model to axisymmetric situations. 
Cold cirque glaciers may be modelled this way. Equations 
must simply be expressed in cylindrical coordinates and 
azimuthal dependences be dropped. Restrictions in the form 
of inequalities are likely to persist and computations must 
be very similar. The physical range of inferences is, 
however, limited to the satisfaction of the inequality and 
may be limited. 

A similar remark applies to time-dependent plane ice­
sheet problems. Time rates of change of H(X,t) will emerge 
from the surface mass balance which must be accurately 
determined . 

Answer ( ii ). Inequality (30) evolves from the satisfaction of 
the mass balance at the divide where U and H' are small. 
For steep glaciers, it can be shown (see Hutter, [c 1983], 
chapter 5) that U H' at the head is non-zero and finite 
independent of whether there is sliding or not. This make~ 
it likely that plane glacier-flow problems can be solved 
with the Morland-Hutter model for a larger range of basal 
conditions permitting adherence or sliding. 

Allswer (iii) . The Morland-Hutter model emerges from an 
asymptotic analysis of the basic viscous flow equations of 
isotropic ice (see Hutter, [cI983], chapter 3) by stretching 
coordinates. The "stretched" equations are valid approxima­
tions except for boundary-, edge-, and transition-layers. 
Since longitudinal stretching is ignored in the model but 
important in the vicinity of the divide, it follows that the 
transition layer is governed by the full unstretched 
equations . Local solutions of this transition layer must be 
matched, in principle, with the solutions of the Morland­
Hutter model far away from the divide, and, since the 
steady-state system is now elliptic, the latter must be 
matched with local margin solutions. Numerically, such a 
solution procedure must be difficult. Our preliminary 
investigation indicates that solving the full original problem 
is just as easy. 

Work of this kind will guide our future avenues. 
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