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Abstract
Parametric mortality models permit detailed analysis of risk factors for actuarial work. However, finite data
volumes lead to uncertainty over parameter estimates, which in turn gives rise to mis-estimation risk of
financial liabilities. Mis-estimation risk can be assessed on a run-off basis by valuing the liabilities with
alternative parameter vectors consistent with the covariance matrix. This run-off approach is especially
suitable for tasks like pricing portfolio transactions, such as bulk annuities, longevity swaps or reinsurance
treaties. However, a run-off approach does not fully meet the requirements of regulatory regimes that view
capital requirements through the prism of a finite horizon, such as Solvency II’s one-year approach. This
paper presents a methodology for viewing mis-estimation risk over a fixed time frame, and results are given
for a specimen portfolio. As expected, we find that time-limited mis-estimation capital requirements
increase as the horizon is lengthened or the discount rate is reduced. However, we find that much of
the so-called mis-estimation risk in a one-year value-at-risk assessment can actually be driven by idiosyn-
cratic variation, rather than parameter uncertainty. This counter-intuitive result stems from trying to view
a long-term risk through a short-term window. As a result, value-at-risk mis-estimation reserves are
strongly correlated with idiosyncratic risk. We also find that parsimonious models tend to produce lower
mis-estimation risk than less-parsimonious ones.

Keywords: Mis-estimation risk; Level risk; Annuities; Longevity risk; Recalibration risk; Solvency II

1. Introduction and Motivation
When pricing or reserving for a block of insurance contracts, mortality assumptions are com-
monly divided into a minimum of two separate components: (i) the current level of mortality
rates and (ii) projection of future trends. For each basis element, there are risks in getting the
assumption wrong. For example, for future trends there is no way of knowing if the chosen pro-
jection model is correct. This model risk in forecasting is discussed elsewhere; see for example
Cairns (1998) and Richards et al. (2020). However, this paper is concerned with the first basis
element, i.e. the current level of mortality rates in a portfolio and the estimation risk thereof.

In deriving an assumption for current mortality rates, a model must be proposed and calibrated
to the available experience data for the portfolio concerned. Using experience data unrelated to the
portfolio should be avoided as far as possible, since this could introduce bias from lives with dif-
ferent mortality characteristics, i.e. basis risk. In this paper, we will assume that a best-estimate
basis for a portfolio can be derived from its own experience data. Many approaches exist: from
non-parametric methods (Kaplan & Meier, 1958) to semi-parametric models (Macdonald et al.,
2018) to fully parametric models (Richards, 2012). In each case, there is a risk that the true under-
lying mortality rates are different from the estimated rates due to sampling error. This risk is
potentially compounded by the tendency for liabilities to be concentrated in a relatively small
sub-group of lives (see Table A.1, where over half of the pension payments are made to just a
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fifth of pensioners). These risks – sampling error and concentration of liabilities – combine to
produce uncertainty over the current mortality rates and a magnified impact on the value of
the liabilities. This uncertainty is variously labelled mis-estimation risk or level risk.

When pricing block transfers of risk, such as bulk annuities or longevity swaps, an insurer is
interested in the financial impact of mis-estimation risk over the entire lifetime of the portfolio.
The methodology in Richards (2016) provides the run-off view of mis-estimation risk required for
such tasks. However, regulatory frameworks like Solvency II view risk over a one-year horizon, not
in run-off. This paper adapts the pricing mis-estimation methodology of Richards (2016) to frame
mis-estimation risk over a short time horizon like 1–5 years. To illustrate the methodology, we use
the records of a large UK pension scheme described in detail in Appendix A.

Theplanof the restofpaper is as follows: section2defines various termsused; section3describes the
methodology for assessing mis-estimation, together with some basic validity conditions; section 4
describes how thismethodology is adapted to viewmis-estimationover a limited timehorizon; section
5 outlines howmulti-factor mortality models are structured, while section 6 looks at specimen results
over various horizons; section 7 considers what could be used as the best-estimate liability; section 8
considers the impact of liability concentration in a small proportion of lives, while section 9 examines
the role played by portfolio size; section 10 considers the sensitivity to discount rate, while section 11
looks at variation bymortality law; section 12 considers the correlation between adverse idiosyncratic
risk and mis-estimation risk over the same horizon, while section 13 concludes.

2. Definitions
Insurers have to hold capital against various risks, including economic and demographic risks as well
as many others; see Kelliher et al. (2013) for a review based on classifications used in the UK and
Germany and for two large UK insurance groups. Even within a given risk, there are sub-risks;
Table 1 gives an example of the components of longevity risk for a UK insurer. This list is not intended
to be exhaustive, and insurers may have additional, portfolio-specific sub-components. Note that dif-
ferent definitions are possible; the CMI’s Mortality and Morbidity Steering Committee (2020, section
9) reviews five published taxonomies for components of longevity risk and proposes a sixth.

We assume that we have a data set spanning the time period �y0; y1� and that we are interested
in the mis-estimation risk of the liabilities at time y1. Denote by θ̂ the maximum-likelihood esti-
mate of a parameter vector θ that is calibrated to a model for the mortality of the lives observed
over �y0; y1�. Let θ̂�n� be the revised maximum-likelihood estimate of θ from the addition of n years
of further experience data after y1.

Denote by V�θ; y1� the scalar value of life-contingent liabilities in-force at time y1 using the
mortality rates effective at time y1 according to the model specified by the parameter vector θ.
We assume that all basis elements for the calculation of V�θ; y1� are known apart from the level
of mortality rates at y1, i.e. V�θ; y1� is a deterministic function of θ, but uncertainty is introduced
through uncertainty over θ. Throughout this paper, mortality improvements will be modelled up
to y1, but no future mortality improvements after y1 will be assumed – the mortality rates used will
be those applying at y1 with no allowance for future changes in time apart from the ageing of the
lives assured. We are concerned in this paper with a value-at-risk assessment of the mis-estimation
risk in V�θ̂; y1� only; for a value-at-risk approach to longevity trend risk after time y1, see Börger
(2010), Plat (2011) or Richards et al. (2020).

V�θ; y1� �
X
i

a�i; y1; θ� (1)

a�i; y1; θ� � wi

Z ∞

0
tpxi;y1;θv

tdt (2)
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In this paper, V will be the reserve for a portfolio of continuously paid single-life annuities, as
defined in equations (1) and (2). In equation (2), wi is the level annuity paid to life i aged xi at time
y1 and tpx;y1;θ denotes the t-year survival probability at outset age x at time y1 under parameter
vector θ. vt is a discount function, which can be adapted to allow for escalating benefit payments if
necessary. In this paper, we will mainly discount at a constant net rate of 0.75% per annum,
applied continuously, although section 10 considers the impact of different discount rates.

We value liabilities with θ̂�n� at time y1, rather than at time y1 � n, because we are interested in the
potential impact on current liabilities of n additional years of experience after time y1 (a risk against
which we can hold additional capital). Note that insurers under Solvency II must also hold capital
against idiosyncratic risk, which for annuities would be the risk that more annuitants survived the
following n years than expected. This idiosyncratic risk capital would often be determined separately
from the mis-estimation risk capital, but the two are obviously correlated. One could use the approach
outlined in this paper to carry out a combined assessment of mis-estimation risk and idiosyncratic risk
by valuing at time y1 � n instead of at time y1, a subject touched on in section 12.

The risk measure of interest is VaRp�V�θ̂�n�; y1�� defined in equation (3), i.e. the proportion of the
best-estimate needed to cover a proportion p of losses that might occur due to a change in the best-
estimate assumption caused by an additional n years of experience data after time y1. Qp�V�θ̂�n�; y1�� is
the p-quantile of the distribution of liability V�θ̂�n�; y1�, which we will estimate according to Harrell &
Davis (1982). In the UK and the European Union (EU), the Solvency II regime for insurer solvency
calculations is based on n � 1 and p � 99:5%, i.e. VaR99:5%�V�θ̂�1�; y1��.

Table 1. Specimen Itemisation of the Components of Longevity Risk. Source: adapted from Richards (2016, Table 1)

Component Description

Model risk It is impossible to know if the selected model is correct and capital must be held in respect of
the risk that one’s chosen model is wrong. Model risk applies primarily to the choice of forecast-
ing model for future mortality – see Cairns et al. (2009) and Richards et al. (2014) – but also to
the risk factors included in a model of current differentials (see section 11).

Trend risk Even assuming that one knew what projection model to use, there is the possibility that an
adverse trend may result by chance that is nevertheless fully consistent with the chosen model.

Event risk The COVID-19 pandemic (The Novel Coronavirus Pneumonia Emergency Response Epidemiology
Team, 2020) is a timely and ongoing example of an unanticipated event with a major impact on
both population mortality and that of insured portfolios; see CCAES (2020) and Istat (2020) for
data on the early impact of COVID-19 mortality in Spain and Italy, and Richards (2021) for illus-
trations of the impact on annuity portfolios in the UK, USA and France.

Basis risk Models are sometimes calibrated to population or industry data, rather than the data of the
portfolio in question. This is most obviously the case for forecasting models of mortality
improvements, where few portfolios have a long enough time series of data for calibrating pro-
jection models. However, there are cases where pension schemes in particular have mortality
bases set with reference to a third-party data set or rating tool, rather than the portfolio’s own
experience. Capital must be held for the risk that the lives in the portfolio are different from
those of the external data set or rating tool.

Idiosyncratic
risk

Capital must be held against the risk of unusually light mortality experience from random varia-
tion in individual lifetimes; see Plat (2011) and Richards & Currie (2009) for examples. There are
two sources of risk over a fixed period: (i) higher-than-expected payments during the period and
(ii) higher-than-expected reserves at the end of the period.

Mis-estimation
risk

Uncertainty exists over the portfolio’s underlying mortality rates at a given point in time, since
these can only be estimated to a degree of confidence linked to the scale and richness of the
portfolio’s own experience data. This is the subject of this paper. As our approach involves using
a parametric model, mis-estimation risk here is assumed to be driven by parameter uncertainty.
However, while this is true for a non-value-at-risk assessment of mis-estimation risk (Richards,
2016), Figure 5 shows that this is not necessarily true for a value-at-risk assessment of mis-
estimation risk over a short horizon like one year.
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VaRp�V�θ̂�n�; y1�� �
Qp�V�θ̂�n�; y1��
E�V�θ̂�n�; y1��

� 1 (3)

Pr�V�θ̂�n�; y1� ≤ Qp�V�θ̂�n�; y1��� � p (4)

In equation (3), the best-estimate of the liability at time y1 is taken to be the expected value,
E�V�θ̂�n�; y1��, which for annuities work we have found to be indistinguishable from V�θ̂; y1�;8n.
However, this is not guaranteed, even assuming that θ̂ and θ̂�n� have the same distribution: for a
random vector X and non-linear scalar function f, E�f �X��≠ f �E�X�� in general (Perlman, 1974).
The relationship between E�V�θ̂�n�; y1�� and V�θ̂; y1� depends on the concavity or convexity of the
liability function, V, and the size of the gap E�V�θ̂�n�; y1�� � V�θ̂; y1� depends on the covariance
matrix of θ̂. This is considered further in section 7.

3. Parameter Risk and Mis-Estimation
We broadly recapitulate the mis-estimation methodology of Richards (2016). We assume that we
have a log-likelihood function, ‘�θ�, that is twice differentiable so that a Hessian matrix may be
calculated (McCullagh & Nelder, 1989, page 6). The true underlying value of θ is unknown and is
denoted θ	. The maximum-likelihood estimate of θ	 is θ̂. Under the maximum-likelihood theo-
rem θ̂ 
 N �θ	; I�1�, where I is the Fisher Information (Cox & Hinkley, 1996, Chapter 9). In
practice, we replace the unknown θ	 with θ̂, i.e. θ̂ 
 N �θ̂; I�1�. Parameter uncertainty is sum-
marised in I�1, i.e. not just the parameter variances along the leading diagonal but also the cova-
riances between parameter estimates (Richards et al., 2013, Table 14). To explore parameter risk,
we can generate an alternative parameter vector, θ0, that is consistent with the data and model
from θ0 � θ̂� Az, where A is the Cholesky decomposition (Kreyszig, 1999, pp. 896–898) of
I�1 and z is a vector of independent N �0; 1� variates of the same length as θ.

For assessing mis-estimation risk in run-off, Richards (2016) looked at the variation in
V�θ0; y1� from repeated simulation of z. The alternative valuations were normalised by dividing
by the mean of the values for V and various quantiles computed to express mis-estimation risk as a
percentage of the expected reserve. There are several important conditions for a model to be suit-
able for this kind of approach, and a summary overview is given in Table 2.

4. A Value-at-Risk Approach to Mis-Estimation
The methodology in section 3 was used in Richards (2016) for what might be called pricing mis-
estimation, such as when transferring a block of liabilities. The experience data of the block up to
time y1 are used to calibrate a model for best-estimate purposes, and the pricing risk is represented
by the range of values for V consistent with θ̂ and the estimated covariance matrix, I�1.

However, regulatory frameworks like Solvency II view risk over a fixed horizon, a feature that is
absent from the run-off approach in section 3. We can however adapt the methodology to an n-year
view of mis-estimation risk in two stages. In the first stage, we use the model to simulate the future
lifetimes of the survivors and censor those surviving more than n years; Richards (2012, Table 7) lists
formulae for simulating future lifetimes under various mortality models. As per Table 3, we have two
options for simulation: we can either use the best-estimate parameters, θ̂, or else we can use the per-
turbed parameters, θ0. Using the latter will increase the variability in the survival times and corresponds
to what one would intuitively understand to drive mis-estimation. The only point in this paper where
we will not include parameter risk is in section 6, where we will switch it off to quantify the relevant
contributions of parameter risk and idiosyncratic risk.

In the second stage, we take the real experience data up to time y1, add the additional n years of
simulated pseudo-experience and refit the model; this will yield an alternative parameter vector,
θ̂�n�. θ̂�n� can be viewed as the response of the parameter estimates to n years of new experience
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data, and we use it to value the liabilities at time y1. We repeat this process of simulating lifetimes,
refitting the model and revaluing the liabilities to collect (say) 10,000 realisations of the liability
value, Vj; j � 1; . . . ; 10; 000. The approach of repeatedly refitting models and revaluing liabilities
is necessarily computationally intensive, so we use parallel processing over 63 threads to reduce
run-times (Butenhof, 1997).

It is worth noting that viewing mis-estimation risk over a finite horizon in this manner is perhaps
more accurately described as model recalibration risk (Cairns, 2013). Since the simulated individual
lifetimes will affect the recalibration of the model, idiosyncratic risk will also be driving the portfolio
valuations. Indeed, the liability valuations are only affected by parameter estimation risk if we use θ0 in
Table 3 for simulating individual lifetimes. In contrast, if we use θ̂ in Table 3 for simulating the indi-
vidual lifetimes, then what is notionally a VaR mis-estimation risk exercise actually has no parameter
risk element at all (in the sense of the covariance matrix for θ̂ being entirely unused) and is therefore
purely about recalibration risk. The importance of this distinction is shown in Figure 5.

5. Model Structure

‘ � �
X
i

Hxi;yi�ti� �
X
i

di logµxi�ti;yi�ti (5)

Hx;y�t� �
Z

t

0
µx�s;y�sds (6)

µx;y � eαi�βix�δ�y�2000� (7)

Table 2. Assumption Checklist for Mis-Estimation Methodology

Assumption Potential problem Solution or check

Independence of life-
times in model-fitting
and simulation.

Multiple benefit records per individual, lead-
ing to failure of independence assumption
and under-estimation of parameter vari-
ance.

Deduplication of benefit records; see
Macdonald et al. (2018, section 2.5).

Parameter estimates
have multivariate
Normal distribution.

Parameters not distributed as multivariate
Normal.

Plotting of marginal log-likelihoods to check
inverted quadratic shape; see Figure 1.

Static mortality or
time trends allowed
for.

Using multi-year data without allowing for a
time trend leads to false confidence in esti-
mate of current mortality.

Tests of fit by calendar year (Macdonald
et al., 2018, section 6.5), inclusion of time-
trend parameter in model (Figure 11).

Model suitable for
financial purposes.

Liabilities are disproportionately concen-
trated in small sub-group with different
mortality characteristics; see Table A.1 for
example.

Tests of fit by pension size (Macdonald
et al., 2018, section 6.5) or “bootstrapping”
(Richards et al., 2013, section 8.3).

Table 3. Parameter Options for Simulating Individual Lifetimes

Parameter vector Parameter risk Description

�̂ No Maximum-likelihood estimate (MLE).

�0 � �̂� Az Yes Perturbed MLE.
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Following Macdonald et al. (2018), we use survival models for individual lifetimes. We maximise
the log-likelihood shown in equation (5), where µx;y is the mortality hazard at exact age x and
calendar time y. Life i enters observation at exact age xi at time yi and is observed for ti years. di is
an indicator variable taking the value 1 if life i is dead at xi � ti, and zero otherwise. Hx;y�t� is the
integrated hazard function, defined in equation (6). We have a wide choice of functional forms for
µx;y for post-retirement mortality and Richards (2012) reviews seventeen such models applied to
the mortality of UK annuitants. However, we start with the simple and familiar model of Gom-
pertz (1825) in equation (7), where the offset of �2000 is to keep the parameters well-scaled. δ
represents the portfolio-specific time trend; here, it is common to all lives, but it could be inter-
acted with any risk factor (such as with gender to estimate separate time trends for males and
females).

αi � α0 �
Xm
j�1

α�j�z�j�i (8)

βi � β0 �
Xm
j�1

β�j�z�j�i (9)

αi and βi are parameters for life i structured as in equations (8) and (9), where α�j� is the main
effect of risk factor j and β�j� is the interaction of the jth risk factor with age. z�j�i is an indicator
variable taking the value 1 if life i has risk factor j and zero otherwise. Using the data in Appendix
A, we fit a model with age, gender (male or female), early-retirement status (pension commencing
before or after age 55), widow(er) status, pension size and calendar time as explanatory variables.
Pension size is treated as an ordinal factor with three levels: below £ 5,385 p.a., £ 5,385–12,560 p.a.
or above £ 12,560 p.a. (these being the rounded boundaries of an optimised assignment of pension
vigintiles to the three factor levels). For multi-level factors, we adopt a policy of making the most
numerous level the reference value, i.e. the baseline case is a male first life retiring after age 55 with
a small pension. We therefore have parameters for those retiring early, widow(er)s, females and
those with medium or large pensions. We estimate these parameter values by maximising the log-
likelihood in equation (5), with the results shown in Table 4. Of particular note are the different
mortality characteristics of those with the largest pensions. Uncertainty over the mortality of this
small sub-group could potentially have a disproportionately large impact on uncertainty over the
liability value, V.

We need to check the validity of our assumptions using the checklist in Table 2 before perform-
ing any mis-estimation assessments. We have already deduplicated the data, as described in
Appendix A, so the independence assumption holds true.

Regarding the assumption of a multivariate normal distribution for the parameter estimates, we
can see in Figure 1 that all profile log-likelihoods are suitably quadratic around the maximum-
likelihood estimates. Note that the choice of horizontal scale is important, as it would be possible
to find a quadratic-like shape for even poor models by selecting a suitably narrow range; in con-
trast, in Figure 1 the horizontal range is determined by the estimated standard error of the
parameter.

Since we are only interested in detecting exceptions to the quadratic shape, we can create a
space-saving signature for the profile log-likelihoods in Figure 1 by plotting them one after
another without labels to see if there are any that do not have a cleanly inverted U-shape;
Figure 2 shows this summary graphic of the shapes in Figure 1. This approach becomes particu-
larly useful when the number of parameters grows large. For an example where a parameter fails
this quadratic test, see the signature for the Makeham-Perks model in Table 7.

The model in Table 4 has a time-trend parameter, so the only remaining item to check is finan-
cial suitability. Figure 3 shows that the residuals by pension size band are plausibly drawn from a
N(0,1) distribution (Macdonald et al., 2018, section 6.5); the apparent outlier is not unduly
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extreme and is of minimal financial significance. Furthermore, the bootstrapping procedure of
Richards (2016, section 8.3) shows that on average the model in Table 4 predicts 100.1% of
lives-based mortality and 98.9% of amounts-based mortality. The model is therefore broadly suit-
able for financial purposes, and so all four validity criteria in Table 2 are fulfilled.

Before considering the value-at-risk approach to mis-estimation of section 4, we first consider
the run-off approach of section 3. Figure 4 shows the distribution of reserves with 10,000 simu-
lations of the parameter column in Table 4. The 99.5% point of the distribution is 2.61% above the
mean, with a 95% confidence interval of 2.55–2.67%. On a run-off basis, the mis-estimation capital
requirement would therefore be around 2.6% of mean liability.

The run-off approach to mis-estimation is useful for setting a confidence interval on the pricing
basis for a bulk annuity or longevity swap. For a best-estimate basis, the mean of the distribution
in Figure 4 can be back-solved to a given percentage of a chosen table (or done separately for the
reserves for males and females). For example, if we use the S2PA table (CMI Ltd, 2014) the equiv-
alent best-estimate percentages are 109.7% for males and 100.1% for females. We can further use
the 2.5% and 97.5% points of the distribution in Figure 4 to form a 95% confidence interval for this
basis: back-solving leads to 95% confidence intervals of 103.6–116.3% for males and 95.3–105.0%
for females. Note that the confidence interval is not symmetric around the central estimate in part
because the distribution of reserves is not normal – the p-value of the test statistic from Jarque &
Bera (1987) is 0.2581 for males, but 0.0009158 for females. One clearly cannot simply assume
normally-distributed liabilities for mis-estimation.

6. The Roles of VaR Horizon and Parameter Risk
Using the model from Table 4, we turn to the question of the n-year value-at-risk capital assess-
ment; this is shown in Figure 5 for the same portfolio. The impact of horizon, n, is shown both
with parameter risk (simulating lifetimes with θ0 as per Table 3) and without (simulating lifetimes

Table 4. Parameter Estimates under the Gompertz (1825) Model. The Estimate Column is θ̂ in the Sense of sections 3 and 4,
while the Standard-Error Column Contains the Square Roots of the Entries in the Leading Diagonal of I�1. Source: own
calculations fitting model in equations (5)–(9) to the data in Appendix, using data for ages 60–105 over 2001–2009

Standard error

Contributors:

Parameter Estimate Z-value p-value Lives Deaths Years lived

Age (�0) 0.10097 0.0020 49.81 0 44,616 10,663 260,374.0

EarlyRetirement 1.1306 0.2572 4.40 0 8,848 1,305 49,681.6

EarlyRetirement:Age −0.011712 0.0035 −3.37 0.0007 8,848 1,305 49,681.6

Widow(er) 0.903570 0.2384 3.79 0.0002 9,183 3,285 51,643.6

Widow(er):Age −0.0098666 0.0029 −3.38 0.0007 9,183 3,285 51,643.6

Female −1.6377 0.2117 −7.74 0 25,541 5,693 150,089.0

Female:Age 0.014363 0.0027 5.35 0 25,541 5,693 150,089.0

Intercept (�0) −10.390 0.1618 −64.22 0 44,616 10,663 260,374.0

Medium pension −0.76801 0.2266 −3.39 0.0007 8,924 1,889 51,846.4

Large pension −2.7358 0.4985 −5.49 0 2,226 329 12,546.5

Medium pension:Age 0.0072229 0.0028 2.56 0.0104 8,924 1,889 51,846.4

Large pension:Age 0.028330 0.0062 4.60 0 2,226 329 12,546.5

Time (�) −0.039991 0.0037 −10.72 0 44,616 10,663 260,374.0
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Figure 1. Profile log-likelihoods around estimates in Table 4. The horizontal scale is determined as two standard errors on
either side of the joint maximum-likelihood estimate of each parameter.
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with θ̂ only). The capital requirements without parameter risk in Figure 5 are fairly flat, as the
simulated experience is similar to the real data. In contrast, the capital requirements including
parameter risk rise with increasing horizon; most of this difference is driven by the uncertainty
over the experienced time trend, which makes the estimate of mortality levels at 1st January 2010
more uncertain.

Figure 2. “Signature” formed from profile log-likelihoods in Figure 1.

Figure 4. Distribution of 10,000 simulations of V�θ0; 2010� for model
in Table 4 applied to survivors at 1st January 2010 for portfolio in
Appendix. Mortality rates are at 1st January 2010 with no further
improvements.

Figure 3. Deviance residuals by pension size band (1 ≡ 5% of lives with
smallest pensions, 20 ≡ 5% of lives with largest pensions).

Figure 5. VaR99:5%�V�θ̂�n�; 2010�� capital requirements as per-
centage of the mean reserve, with (�) and without (�) parameter
risk in simulation of additional n years of experience data. 95%
confidence intervals are marked with -.
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A comparison of the two series in Figure 5 shows the relative role of parameter risk over a short
horizon and reveals an oddity: the value of VaR99:5%�V�θ̂�1�; 2010�� would be used for Solvency II
mis-estimation capital, yet most of the capital requirement is clearly driven by the idiosyncratic
variation in the simulated experience, not parameter risk: we have 1.27% of mean liability with
parameter risk, but we still have 1.08% without it. The run-off or pricing mis-estimation assess-
ment at the end of section 5 was driven solely by estimation error in θ, but 85% of the one-year
VaR mis-estimation capital stems from idiosyncratic risk. This counter-intuitive aspect of the
value-at-risk approach is not an anomaly: Kleinow & Richards (2016, Table 5) found that most
of the value-at-risk capital for longevity trend risk was similarly driven by the simulated experi-
ence, not parameter risk. Thus, what is described as a value-at-risk approach to either longevity
trend risk (Richards et al., 2014) or mis-estimation risk (this paper) is in fact largely recalibration
risk in both cases (Cairns, 2013).

Figure 6 shows the distribution of V�θ̂�1�; 2010� from which VaR99:5%�V�θ̂�1�; 2010�� was cal-
culated. As with Figure 4, we can use percentiles to back-solve to a percentage of a standard table:
the 99.5% reserves for males and females equate to 106.1% of S2PA for males and 97.0% for
females. Compared with the central estimates in section 5, a shorthand 99.5% stress for Solvency
II mis-estimation risk would then be −3.6% of S2PA for males and −3.1% for females (larger
portfolios would likely have smaller mis-estimation stresses).

7. Choice of Best-Estimate Liability
In equation (3), we used E�V�θ̂�n�; y1�� as our best-estimate of the liability. However, there are at
least three options, as described in Table 5, and there is no guarantee that they are the same.

Table 6 shows the values of each of the three measures of best-estimate liabilities for the port-
folio in Appendix A, assuming level single-life annuities discounted at 0.75% per annum. As can
be seen from the p-values of the t statistics, there is no meaningful difference between the three
measures of best-estimate liability for this portfolio.

8. The Role of Liability Concentration
One question is the extent to which the relative mis-estimation VaR capital requirements are
driven by the concentration of liabilities in a small sub-group of lives with large pensions. To
investigate this, Figure 7 shows the relative VaR mis-estimation capital requirements using actual
pension amounts (wi in equation (2)) and with wi � 1 for all lives. The differences are surprisingly
modest.

Figure 6. Distribution of 10,000 simulations of V�θ̂�1�; 2010� for
model in Table 4 applied to survivors at 1st January 2010 for port-
folio in Appendix A. Mortality rates are at 1st January 2010 with no
further improvements.
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9. The Role of Portfolio Size
Section 6 found that parameter risk played a surprisingly small role in one-year 99.5% VaR capital
requirements and that most of these capital requirements were driven by the idiosyncratic risk in
simulated lifetimes. This raises the question of how VaR mis-estimation capital requirements vary
with portfolio size. To investigate this, we created an artificial second portfolio by repeating the
records ten times. The new pseudo-portfolio is then ten times the size in terms of number of lives,
but has the same profile and characteristics (such as concentration of liabilities). Figure 8 shows
the VaR mis-estimation capital requirements for the real portfolio and the scaled portfolio, show-
ing that portfolio size has a large impact and that this impact increases with horizon.

10. The Role of Discount Rate
Figure 9 shows the VaR mis-estimation capital requirements using various discount rates. For a
given horizon, risk capital increases as the discount rate falls. Mis-estimation assessments clearly
need to be regularly updated as the shape or level of the yield curve changes.

Table 6. Measures of Best-Estimate Liability in Denominator of equation (3). (b), (c) and (d) are Calculated from the 10,000
1-year VaR Simulations with Parameter Risk from section 6

Measure Males Females

a V��̂; y1� £ 1,187.73 m £ 844.72 m

b E�V��̂�1�; y1�� £ 1,187.64 m £ 844.69 m

c Q50%�V��̂�1�; y1�� £ 1,187.52 m £ 844.66 m

d Standard deviation of V��̂�1�; y1� £ 10.87 m £ 6.54 m

e t-statistic, a�b
d=

����������
10;000

p 0.818 0.457

f p-value of (e) at 9,998 d.f. 0.207 0.324

Figure 7. Mis-estimation VaR99:5%�V�θ̂�n�; 2010�� capital requirements
with actual pension amounts (�) and homogeneous pensions ( × ).

Table 5. Options for Measuring Best-Estimate Liability in Denominator of equation (3)

Measure Description

V��̂; y1� Liability evaluated at time y1 using maximum-likelihood estimate, �̂, from calibrating model to
experience data up to time y1.

E�V��̂�n�; y1�� Mean liability at time y1 using large sample of recalibrated parameter estimates. Recalibrations
are from refitting the model after simulation of survivor lifetimes censored n years after y1, i.e.
real experience data to y1 plus pseudo-data to y1 � n.

Q50%�V��̂�n�; y1�� As E�V��̂�n�; y1�� above, but using median liability instead of mean.
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With historically low interest rates and inflation-proofed defined-benefit pensions, annuity lia-
bilities for bulk buy-outs will at times have to be valued using a net negative discount rate, imply-
ing possibly even higher relative mis-estimation capital requirements than those in Figure 9.

11. The Role of Mortality Law

µx;y �
eα�βx�δ�y�2000�

1� eα�βx�δ�y�2000� (10)

µx;y �
eα�βx�δ�y�2000�

1� eα�βx�ρ�δ�y�2000� (11)

µx;y �
eɛ � eα�βx�δ�y�2000�

1� eα�βx�δ�y�2000� (12)

The results in this paper have so far all been based on the Gompertz (1825) mortality law. In
this section, we explore some alternative mortality laws, starting with the simplified logistic model
from Perks (1932) in equation (10). It has the same number of parameters as the Gompertz law,

Figure 8. Mis-estimation VaR99:5%�V�θ̂�n�; 2010�� capital
requirements with actual portfolio records (�) and with each
record repeated ten times to create a larger portfolio with
the same profile (�). Source: 10,000 simulations with parameter
risk of model fitted to data for UK pensioner liabilities in
Appendix.

Figure 9. Mis-estimation VaR99:5%�V�θ̂�n�; 2010�� capital
requirements using various discount rates. Source:
10,000 simulations with parameter risk of model fitted
to data for UK pensioner liabilities in Appendix.
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but captures the tendency for log(mortality) to increase less slowly than linearly at advanced ages;
see Barbi et al. (2018) and Newman (2018) for the ongoing debate as to the validity of this phe-
nomenon. Individual mortality differentials are handled in the same way as the Gompertz model
with equations (8) and (9). A variation on the logistic Perks law is the model from Beard (1959) in
equation (11). The Beard and Gompertz laws are linked: if individual mortality follows a
Gompertz law, but there is also Beta-distributed heterogeneity in α, then observed mortality will
follow the Beard law; see Horiuchi & Coale (1990). Another variation on equation (10) is to add a
constant Makeham-like term (Makeham, 1860), as in equation (12).

logµx;y � αh00�t� �m0h10�t� � ωh01�t� (13)

A more recent option is the Hermite-spline model of Richards (2020) in equation (13), where
the Hermite basis-spline h functions are shown in Figure 10. Hermite splines are defined for
t 2 �0; 1� and so we map age x onto �0; 1� with t � �x � x0�=�x1 � x0� with pre-defined values
of x0 � 50 and x1 � 105. We assume µx � µx0 ; x ≤ x0 and µx � µx1 ; x ≥ x1.

This new class of Hermite-spline mortality models is highly parsimonious when modelling dif-
ferent risk factors. It was specifically designed for modelling post-retirement mortality such that
differentials automatically narrow with increasing age. This reduces the number of parameters
compared to the other four models, and further avoids the crossing-over of fitted mortality rates
at advanced ages; see Richards (2020, section 1). Individual mortality differentials are therefore
handled with just equation (8) – narrowing age differentials are handled automatically and so
there is no need for equation (9) with the Hermite family.

Richards (2020) modelled age-related mortality changes with a peak improvement at an age
estimated from the data. Here we instead extend equation (13) for time variation as follows:

logµx;y � �α� δ�y � 2000��h00�t� � �m0 �mtrend
0 �y � 2000��h10�t� � ωh01�t� (14)

where δ plays a similar role to equations (10)-(12) by changing the level of mortality in time and
mtrend

0 changes the shape at younger ages. A common feature to both parameters is the automatic
reduction in influence with age when multiplying by the Hermite spline functions h00 and h10. We
find that δ in equation (14) does not improve the fit for the data set in Appendix, so we use the
simpler version in equation (15):

logµx;y � αh00�t� � �m0 �mtrend
0 �y � 2000��h10�t� � ωh01�t� (15)

Equations (7), (10), (11) and (12) are therefore all one-parameter approaches to changes in
mortality level: the parameter δ adds or subtracts to the level set by α. Figure 11 shows the implied
annual mortality improvements by age for the baseline combination of risk factors in Table 4 (the
implied improvements under the Beard model are not shown as they are indistinguishable from
those of the Perks model). Each model has a single-parameter allowance for mortality change, but
clearly some models have a more reasonable shape for improvements by age than others. At one
extreme, the Gompertz model in equation (7) has a simple-but-unrealistic constant rate of
improvement at all ages. In contrast, the Hermite model of equation (15) has perhaps the most
realistic near-zero mortality improvement leading up to age 100. The Hermite model also has zero

Figure 10. Hermite basis splines for t 2 �0; 1�.
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improvement at age 50 by design because there is too little experience data at the youngest ages to
carry out reliable estimation (see Figure 13). Since we are modelling mortality from age 60 only,
this design decision has minimal impact.

Figure 12 shows the relative mis-estimation capital requirements for each of the five models.
We see that the parsimony of the Hermite model in equation (15), and the more-realistic allow-
ance for improvements in Figure 11, results in less mis-estimation risk and thus less capital.
Table 7 shows that there are no unwelcome compromises: the Hermite model has the lowest
AIC (Akaike, 1987) of the five, while having an ability to predict lives- and pension-weighted
variation as good as any of the other models.

One possibility might have been that the relative Hermite mis-estimation capital requirements
were lower because the reserves themselves were higher to start with. Table 8 shows that the oppo-
site is the case for this portfolio – the Hermite model has both the lowest mean reserve (males and
females combined) and the lowest absolute one-year mis-estimation capital requirement.

12. Correlation with Idiosyncratic Risk
Table 1 lists specimen longevity-related risks in an annuity portfolio. Under Solvency II, a capital
amount for each component is itemised separately and then aggregated into a single longevity

Figure 11. Modelled percentage mortality improve-
ments per annum by age. Source: own calculations
of 100% × �1 � µx;2001=µx;2000� for male first lives with
the smallest 75% of pensions who retired after age
55. The period covered by the data is 2001–2009.

Figure 12. VaR99:5%�V�θ̂�n�; 2010�� capital requirements for var-
ious mortality laws. Source: 10,000 simulations with parameter
risk of model fitted to data for UK pensioners, single-life
immediate-annuity cash flows discounted at 0.75% p.a.
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capital requirement using a correlation matrix. However, in section 6 we noted that the one-year
mis-estimation capital requirements were largely driven by the recalibration of the model, rather
than the parameter uncertainty. This raises a question regarding a value-at-risk approach to capi-
tal setting: to what degree are the mis-estimation capital requirements correlated with those for
adverse experience over the same period? To investigate this, we took the mis-estimation reserves
at time y1 � 2010 with parameter risk behind Figure 5 and looked at the correlation of these
reserves with three alternative measures of the pseudo-experience in �y1; y1 � n� used to recali-
brate the model. Table 9 shows the results. As expected, higher numbers of deaths are strongly
negatively correlated with the mis-estimation VaR reserves, although this correlation reduces with
the VaR horizon. The correlation over a one-year horizon between mis-estimation VaR reserves
and the payments made is perhaps weaker than might have been expected.

Table 7. Summary of Model Fits. Note that one of the Makeham-Perks parameters, ε, does not have a Properly Quadratic
Profile in the Log-Likelihood Signature, Although the Impact is Minimal. Source: own calculations fitting to data in
Appendix; bootstrap percentages are the mean ratio of actual deaths v. model-predicted deaths from 10,000 samples of
10,000 lives (sampling with replacement)

Mortality law
Equation
number

Parameter
count

Log-likelihood profile
signature

Mean bootstrap
percentage:

AIC
(a)
lives (b) pensions

Gompertz (7) 13 79,642.7 100.1% 98.9%

Perks (10) 13 79,637.6 100.0% 99.3%

Beard (11) 14 79,625.6 100.1% 99.0%

Makeham-Perks (12) 14 79,624.8 100.0% 99.0%

Hermite (15) 10 79,623.4 100.1% 99.2%

Table 8. Best-Estimate Reserve at 1st January 2010, Together with One-Year 99.5% VaR Mis-Estimation Capital, Sorted by
Ascending Total

Model Mean reserve E�V��̂�1�; 2010�� 1-year 99.5% mis-estimation capital Total

Hermite £ 2,022.7 m £ 25.3 m £ 2,048.0 m

Makeham-Perks £ 2,028.2 m £ 28.4 m £ 2,056.6 m

Gompertz £ 2,032.2 m £ 25.7 m £ 2,057.9 m

Perks £ 2,031.9 m £ 26.7 m £ 2,058.6 m

Beard £ 2,032.6 m £ 27.3 m £ 2,059.9 m

Table 9. Correlations between the Mis-Estimation VaR Reserves at y1 � 2010 and Three Measures of the Simulated Pseudo-
Experience Underlying the Recalibration

VaR horizon Time lived New deaths Payments made

1 0.802 −0.901 0.765

2 0.808 −0.889 0.800

3 0.811 −0.877 0.825

4 0.817 −0.869 0.848

5 0.817 −0.862 0.864
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13. Conclusions
A value-at-risk approach to mis-estimation risk can be obtained by (i) fitting a suitable mortality
model, (ii) repeated simulation of additional experience with this model and (iii) refitting the
model and valuing the liabilities with the recalibrated parameters. Quantiles can be calculated
from the liability distribution and can be used to back-solve stress tests expressed in terms of
a standard table. We find that the resulting capital requirements for short time horizons are very
different from a run-off approach that might be used for pricing. At the shortest horizon of one
year, much of the capital requirement stems from the idiosyncratic variation in portfolio simula-
tion, not the parameter risk underlying the original model. This counter-intuitive result arises
from the somewhat artificial regulatory need to view risk through a one-year prism – a risk defined
in terms of parameter uncertainty ends up being quantified in a manner where parameter uncer-
tainty plays a surprisingly modest role. We find that parsimonious models with realistic allowance
for trends in the data tend to produce lower relative mis-estimation capital requirements.
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All models, simulations and mis-estimation calculations were performed with the Longevitas software suite, while quantiles
were estimated using the Hmisc package in R Core Team (2017). Graphs were done in tikz and pgfplots, while typesetting was
done in LaTeX.

References
Akaike, H. (1987). Factor analysis and AIC. Psychometrica, 52, 317–333. ISSN 0033–3123. doi: 10.1007/BF02294359.
Barbi, E., Lagona, F., Marsili, M., Vaupel, J.W., & Wachter, K.W. (2018). The plateau of human mortality: Demography of

longevity pioneers. Science, 360, 1459–1461. ISSN 0036-8075. doi: 10.1126/science.aat3119.
Beard, R.E. (1959). Note on some mathematical mortality models, in The Lifespan of Animals (ed. G. E. W. Wolstenholme &

M. O’Connor), pp. 302–311. Boston, Little Brown.
Börger, M. (2010). Deterministic shock vs. stochastic value-at-risk: An analysis of the Solvency II standard model approach to

longevity risk. Blätter DGVFM, 31, 225–259. doi: 10.1007/s11857-010-0125-z.
Butenhof, D.R. (1997). Programming with POSIX Threads, Boston, Addison-Wesley. ISBN 978-0-201-63392-4.
Cairns, A.J.G. (1998). Descriptive bond-yield and forward-rate models for the British government securities’ market. British

Actuarial Journal, 4(2), 265–321 and 350–383.
Cairns, A.J.G. (2013). Robust hedging of longevity risk. Journal of Risk and Insurance, 80, 621–648.
Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A., & Balevich, I. (2009). A quantitative comparison

of stochastic mortality models using data from England and Wales and the United States. North American Actuarial
Journal, 13(1), 1–35. doi: 10.1080/10920277.2009.10597538.

CCAES (May 2020). Actualizacion no. 120. Enfermedad por el coronavirus (COVID-19). 29.05.2020. Technical Report 120,
Centro de Coordinacion de Alertas y Emergencias Sanitarias.

CMI Ltd (2014). Graduations of the CMI SAPS 2004–2011 mortality experience based on data collected by 30 June 2012 ––
Final “S2” Series of Mortality Tables. CMI Ltd.

Cox, D.R. & Hinkley, D.V. (1996). Theoretical Statistics. Chapman and Hall. ISBN 0-412-16160-5.
Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality. Philosophical Transactions of

the Royal Society, 115, 513–585.
Harrell, F.E. & Davis, C.E. (1982). A new distribution-free quantile estimator. Biometrika, 69, 635–640. ISSN 00063444. doi:

10.1093/biomet/69.3.635. http://www.jstor.org/stable/2335999.
Horiuchi, S. & Coale, A.J. (1990). Age patterns of mortality for older women: An analysis using the age-specific rate of mor-

tality change with age. Mathematical Population Studies, 2(4), 245–267.
Istat (2020). Total deaths per age class, week of demographic event and municipality of residence at the time of death.

Technical report, Istituto Nazionale di Statistica. https://www.istat.it/en/archivio/240106.
Jarque, C.M. & Bera, A.K. (1987). A test for normality of observations and regression residuals. International Statistical

Review, 55(2), 163–172.
Kaplan, E.L. & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical

Association, 53, 457–481.
Kelliher, P.O.J., Wilmot, D., Vij, J., & Klumpes, P.J.M. (2013). A common risk classification system for the actuarial pro-

fession. British Actuarial Journal, 18(1), 91121. doi: 10.1017/S1357321712000293.
Kleinow, T. & Richards, S.J. (2016). Parameter risk in time-series mortality forecasts. Scandinavian Actuarial Journal,

2016(10), 1–25. doi: 10.1080/03461238.2016.1255655.

16 S. J. Richards

https://doi.org/10.1017/S1357321721000131 Published online by Cambridge University Press

https://doi.org/10.1007/BF02294359
https://doi.org/10.1126/science.aat3119
https://doi.org/10.1007/s11857-010-0125-z
https://doi.org/10.1080/10920277.2009.10597538
https://doi.org/10.1093/biomet/69.3.635
http://www.jstor.org/stable/2335999
https://www.istat.it/en/archivio/240106
https://doi.org/10.1017/S1357321712000293
https://doi.org/10.1080/03461238.2016.1255655
https://doi.org/10.1017/S1357321721000131


Kreyszig, E. (1999). Advanced Engineering Mathematics (8th ed.). John Wiley and Sons. ISBN 0-471-33328-X.
Macdonald, A.S., Richards, S.J., & Currie, I.D. (2018). Modelling Mortality with Actuarial Applications, Cambridge,

Cambridge University Press. ISBN 978-1-107-04541-5.
Makeham, W.M. (1860). On the law of mortality and the construction of annuity tables. Journal of the Institute of Actuaries

and Assurance Magazine, 8, 301–310.
McCullagh, P. & Nelder, J.A. (1989). Generalized Linear Models (2nd ed.), vol. 37. Monographs on Statistics and Applied

Probability. London, Chapman and Hall. ISBN 0-412-31760-5.
Mortality and Morbidity Steering Committee (2020). IFoA longevity risk taxonomy (for consultation).
Newman, S.J. (2018). Errors as a primary cause of late-life mortality deceleration and plateaus. PLoS Biology, 16(12),

e2006776. doi: 10.1371/journal.pbio.2006776.
Perks, W. (1932). On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries, 63,

12–40.
Perlman, M.D. (1974). Jensen’s inequality for a convex vector-valued function on an infinite-dimensional space. Journal of

Multivariate Statistics, 4(1), 52–65. doi: 10.1016/0047-259X(74)90005-0.
Plat, R. (2011). One-year value-at-risk for longevity and mortality. Insurance: Mathematics and Economics, 49(3), 462–470.

doi: 10.1016/j.insmatheco.2011.07.002.
R Core Team (2017). R: A Language and Environment for Statistical Computing, Vienna, Austria, R Foundation for Statistical

Computing. https://www.R-project.org/.
Richards, S.J. (2012). A handbook of parametric survival models for actuarial use. Scandinavian Actuarial Journal, 2012(4),

233–257. doi: 10.1080/03461238.2010.506688.
Richards, S.J. (2016). Mis-estimation risk: measurement and impact. British Actuarial Journal, 21(3), 429–457. doi: 10.1017/

S1357321716000040.
Richards, S.J. (2020). A Hermite-spline model of post-retirement mortality. Scandinavian Actuarial Journal, 2020(2),

110–127. doi: 10.1080/03461238.2019.1642239.
Richards, S.J. (2021). Mortality shocks and reporting delays in portfolio data. Longevitas Ltd.
Richards, S.J. & Currie, I.D. (2009). Longevity risk and annuity pricing with the Lee-Carter model. British Actuarial Journal,

15(II), No. 65, 317–365 (with discussion). doi: 10.1017/S1357321700005675.
Richards, S.J., Kaufhold, K., & Rosenbusch, S. (2013). Creating portfolio-specific mortality tables: A case study. European

Actuarial Journal, 3(2):295–319. doi: 10.1007/s13385-013-0076-6.
Richards, S.J., Currie, I.D., & Ritchie, G.P. (2014). A value-at-risk framework for longevity trend risk. British Actuarial

Journal, 19(1), 116–167. doi: https://doi.org/10.1017/S1357321712000451. https://www.longevitas.co.uk/var.
Richards, S.J., Currie, I.D., Kleinow, T., & Ritchie, G.P. (2020). Longevity trend risk over limited time horizons. Annals of

Actuarial Science, 14(2), 262–277. doi: 10.1017/S174849952000007X.
The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team (2020). The epidemiological characteristics of

an outbreak of 2019 novel coronavirus diseases (COVID-19), China, China CDC Weekly, 2:113, 2020. ISSN 2096-7071.
http://weekly.chinacdc.cn//article/id/e53946e2-c6c4-41e9-9a9b-fea8db1a8f51.

British Actuarial Journal 17

https://doi.org/10.1017/S1357321721000131 Published online by Cambridge University Press

https://doi.org/10.1371/journal.pbio.2006776
https://doi.org/10.1016/0047-259X(74)90005-0
https://doi.org/10.1016/j.insmatheco.2011.07.002
https://www.R-project.org/
https://doi.org/10.1080/03461238.2010.506688
https://doi.org/10.1017/S1357321716000040
https://doi.org/10.1017/S1357321716000040
https://doi.org/10.1080/03461238.2019.1642239
https://doi.org/10.1017/S1357321700005675
https://doi.org/10.1007/s13385-013-0076-6
https://doi.org/10.1017/S1357321712000451
https://www.longevitas.co.uk/var
https://doi.org/10.1017/S174849952000007X
http://weekly.chinacdc.cn//article/id/e53946e2-c6c4-41e9-9a9b-fea8db1a8f51
https://doi.org/10.1017/S1357321721000131


Appendix A Description of Portfolio and Data Preparation

We have individual records for survivors and deaths in a local-authority pension scheme in England & Wales, and we follow
the data preparation steps outlined in Macdonald et al. (2018, Chapter 2). The data fields available for each record are as
follows: date of birth, gender, commencement date, total annual pension (either at death or at the date of extract), end date,
postcode, National Insurance (NI) number, employer sub-group and whether the pensioner was a child, main life or wid-
ow(er) (C, M or W, respectively). The end date was determined differently for deaths, temporary pensions, trivial commu-
tations and survivors to the extract date. For deaths, the end date was the date of death. For children’s pensions and trivial
commutations, the end date was the date the pension ceased or was commuted. For the other survivors, the end date was the
date of extract at the end of April 2010. To avoid bias due to delays in reporting of deaths, only the experience data to end-2009
was used. A check of death counts suggested that the earliest usable start date for the experience data would be late spring 2000.
However, in order to balance the numbers of each season, we start the exposure period on 1st January 2001 and end on 31st
December 2009. An exposure period with unequal representation of each season would require a seasonal term in the model
(Richards, 2020, section 8).

There were 55,169 benefit records available before deduplication, of which 21 were rejected due to corrupted dates. Of the
remaining 55,148 records, 12,832 were marked as deaths. However, life-office annuitants often have multiple benefits and this
phenomenon is also present in pension schemes. In both cases, it is necessary to identify the individual lives behind the benefit
records to ensure the validity of the independence assumption for statistical modelling. For this, we need a process of dedu-
plication (Macdonald et al., 2018, section 2.5), and for this portfolio, we used two composite deduplication keys: the first was a
combination of date of birth, gender and postcode (which identified 1,814 duplicates) and the second was a combination of
date of birth, gender and National Insurance number (which identified a further 191 duplicates). The highest number of
records for a single individual was 7. A particular business benefit of deduplication lies in creating a more accurate picture
of the liability for each life: during deduplication, the total pension across linked records is summed. There were no instances
where the alive-dead status was in conflict among merged records. After deduplication, we had 53,143 lives, of which 14 had
zero exposure due to ending on the commencement date. This gave 53,129 lives, of which 12,510 were deaths
(53,129= 55,169-21-1,814-191-14). The resulting data volumes are shown in Figure 13.

Pension-scheme benefits in the UK are increased from year to year. This creates a potential bias problem for cases which
terminated in the more-distant past, i.e. deaths and temporary pensions. To put all pension values on the same footing, we
need to revalue the pension amounts for earlier terminations. Unfortunately, the formula is exceptionally complex and affects
different tranches of benefit accumulated at different times. We therefore opted for a broad-brush approach and revalued early

Table A.1. Data by pension decile. Pensions to early terminations are revalued at 2.5% p.a. to the end of 2009. The impact
of trivial commutations can be seen in the reduced exposure time for the decile of the smallest pensions, S01

Revalued pension
p.a. (£)

Exposure
(years) Pensions (£million)

Percentage of
total scheme pensionSize band From. . . . . .to Lives Deaths

S01 0.00 537.87 5,314 1,090 52,332.8 1.6 0.7%

S02 537.87 963.68 5,313 1,595 70,624.0 4.0 1.8%

S03 963.68 1,464.66 5,313 1,538 70,053.0 6.4 3.0%

S04 1,464.66 2,063.94 5,313 1,507 73,249.5 9.3 4.3%

S05 2,063.94 2,763.69 5,313 1,431 75,705.0 12.7 5.9%

S06 2,763.69 3,602.49 5,313 1,388 77,726.7 16.8 7.8%

S07 3,602.49 4,649.55 5,313 1,174 77,333.2 21.8 10.1%

S08 4,649.55 6,202.61 5,313 1,106 75,465.2 28.5 13.2%

S09 6,202.61 9,009.18 5,313 959 71,680.9 39.4 18.2%

S10 9,009.18 104,751.71 5,311 722 67,329.9 75.3 34.9%

Total 53,129 12,510 711,500.2 215.9 100.0%
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terminations by 2.5% per annum from the date of termination to the end of the period of observation (the Retail Prices Index
RPIJ increased by a geometric average of 2.49% over this period).

To check for corruption of records related to paying benefits to surviving spouses, Macdonald et al. (2018, section 2.10)
recommend plotting the Kaplan–Meier survival curves for males and females. Such corruption often goes undetected by tra-
ditional actuarial comparisons against a standard table, and Macdonald et al. (2018, Figure 2.8) give an example of a UK
annuity portfolio that demonstrates this kind of problem (it is also known to occur in occupational pension schemes).
However, Figure 14 shows a clean separation of curves with the expected shape, so there is no such issue for the records
of this pension scheme.

Figure 13. Distribution of deaths (top) and time lived (bottom) for 2001–
2009 after data validation and deduplication.

Figure 14. Kaplan–Meier survival curves from age 60 using formula
from Richards (2012, section 11). Experience data 2001–2009.
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B Parameters

Table B.1 sets out the parameters whose values are estimated from the data and their role.

Table B.1. Overview of parameters

Parameter Name Description and role of parameter

�0 Intercept Baseline level of log(mortality) at youngest age for Gompertz model; see
equation (7).

��j� (factorname) In addition to intercept for presence of risk factor j at youngest age for
Gompertz model; see equation (8).

�0 Age Baseline rate of increase of log(mortality) by age; see equation (7). The effect
is broadly similar at younger ages for equations (10), (11) and (12), but the
increase in log(mortality) by age reduces at the oldest ages.

��j� (factorname):Age In addition to age for presence of risk factor j for Gompertz model; see
equation (9).

� Time Change in level of mortality by time for Gompertz model; see equation (7). The
effect is broadly similar at younger ages for equations (10), (11) and (12), but
leads to a different shape in improvements It also leads to reduced improve-
ments at older ages; see Figure 11.

m0 AgeGradientYoungest Initial rate of change in log(mortality) by age for Hermite model; see equation
(13).

mtrend
0 TrendShape Linear trend in AgeGradientYoungest for Hermite model. The impact on

improvements by age is shown in the bottom right of Figure 11.

! Oldest Log(mortality) at oldest age under Hermite model; see equation (13).
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