
11
Pairing in exotic nuclei

Much of the recent research in nuclear structure focuses on nuclei near the neutron
and proton drip lines. These are the loci in the chart of nuclides of the isotopes
and isotones which are stable against neutron and proton emission and which
have the largest number of neutrons and protons respectively. The most exotic of
these nuclei, which have been produced in the laboratory, are light nuclei lying
just within the drip lines. The nucleus 11

3 Li8, containing three protons and eight
neutrons, is bound by only a few hundred keV and is one of the best-studied
examples of a ‘halo’ nucleus to date.

According to the shell model, two of the six neutrons in the 9Li nucleus occupy
the lowest s1/2 orbital while the remaining four neutrons fill the p3/2 orbital. The
separation energy of the last neutron in 9Li is Sn ∼ 4 MeV which is typical for
a light nucleus. The halo nucleus 11Li has two neutrons outside a 9Li core and
the simple shell model predicts that they should fill the p1/2 orbital. A special
feature of 11Li is that the last two neutrons are bound by only 290 keV, while the
last neutron in 10Li is not bound. A consequence of the small binding energy of
the last two neutrons in 11Li is that the radius of the orbital they occupy is much
larger than the radius of the 9Li core. They form a low-density cloud or ‘halo’
around the core.

In simple versions of the shell model the s1/2 level from the s–d shell has
an energy which is significantly larger than the p1/2 level but in light neutron-
rich nuclei the energy difference between these two levels decreases and there
is evidence that in 10Li the s1/2 level lies below the p1/2 level. In that case the
last two neutrons in 11Li might occupy the s1/2 level. Consequently, the 11Li
ground state has a more complicated structure than that predicted by the pure
independent particle model, which involves both the s1/2 and the p1/2 orbitals.
The self-energy due to the neutron–phonon interaction is a possible mechanism
for the change in the relative energies of the s1/2 and p1/2 levels.
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258 Pairing in exotic nuclei

It is still an open question which mechanisms provide the glue needed to
bind the two halo neutrons to the tightly bound 9

3Li6 core. To some extent, this
problem seems to be similar to that of the instability of the normal state of
an electron system at zero temperature, solved by Cooper, a solution which
is at the basis of BCS theory of superconductivity. The main difference with
the present case is associated with the shell structure of the system, implying
a threshold in the intensity of the attractive interaction needed to produce a
bound state (see Chapters 1 and 8). The bare nucleon–nucleon interaction is
attractive in the 1S0 channel and, if it was strong enough, it could bind the last
two neutrons in 11Li. Owing to the fact that the angular momentum content of
the space available to the two ‘halo’ neutrons to correlate is low (essentially one
s, p and d-orbitals are involved), the system can hardly profit from the large
pairing component of the nucleon–nucleon potential (see Section 8.1), as, for
example, nucleons in 120Sn can (see Figs. 8.4 and 8.9). On the other hand, 11Li is
highly polarizable displaying a soft dipole mode, as well as collective quadrupole
vibrations. As discussed in Chapter 10 there is an induced neutron–neutron
interaction due to phonon exchange and there is evidence that the enhancement
of the pairing force due to the induced interaction is necessary to bind the 11Li
nucleus.

Phenomena similar to those mentioned in connection with 10
3 Li and 11

3 Li have
also been found in the case of 11

4 Be and 12
4 Be. The main difference with respect

to the case of 11Li is that both s1/2 and p1/2 neutron orbitals are bound in 11
4 Be7,

while they are resonant states in 10
3 Li7. Thus, larger overlaps between the s2, p2

with the d2 two-neutron configurations are found in 12Be compared with 11Li.
The role of the d5/2 configuration in the ground state of 12Be is consequently
quantitatively different than in the case of 11Li. Furthermore, no soft dipole
mode has been observed in 12Be. Renormalization effects are, in this case, due
to quadrupole vibrations.

The focus of this chapter is on the contribution of neutron–phonon coupling
to the neutron single-particle energies in 10Li and 11Be and the binding of 11Li
and 12Be. Our discussion is based on results of a study by Barranco et al. (2001),
Broglia et al. (2002) and Gori et al. (2004a), results which are to be compared
with those of Zukhov (1991, 1993), Esbensen et al. (1997), Bertsch and Esbensen
(1991), Bertsch (1994) and Sagawa et al. (1993).

11.1 The halo nucleus 11Li

The basic experimental facts which characterize 11Li and which are also of par-
ticular relevance in connection with pairing in this system are (see Table 11.1):
(a) 9

3Li6 and 11
3 Li8 are stable, 10

3 Li7 is not; (b) the two-neutron separation energy in
11Li is only S2n = 0.294± 0.03 MeV (Tanihata (1996)) compared with values of
10 to 30 MeV in normal stable nuclei; (c) 10Li displays s- and p-wave resonances
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11.1 The halo nucleus 11Li 259

Table 11.1. Single-particle energies associated with the states s and p in
10Li. Two-neutron separation energy S2n, amplitude of the s2- and of the p2-
configurations in the ground-state wavefunctions, mean square radius 〈r2〉1/2
of 11Li and full width �p⊥ = σ⊥ of the momentum distribution of the neutrons
emitted in the direction perpendicular to the beam during the breakup of 11Li
(after Barranco et al. (2001); see also Broglia et al. (2002)).

Theory

Particle-vibration
Exper. +v14 Mean field

s 0.1–0.2 MeV 0.2 MeV ∼1 MeV
10
3 Li7 (virtual) (virtual)
(not bound) p 0.5–0.6 MeV 0.5 MeV −1.2 MeV

(res.) (bound)

S2n 0.294± 0.03 MeV 0.330 MeV 2.4 MeV
11
3 Li8 s2, p2 50%, 50% 40%, 58% 0%, 100%

(bound) 〈r2〉1/2 3.55± 0.1 fm 3.75 fm

σ⊥ 48± 10 MeV
c 55 MeV

c

at low energy, their centroids lying within the energy range 0.1–0.25 MeV
and 0.5–0.6 MeV respectively (Zinser et al. (1995)), while these orbitals are
well bound in nuclei of the same mass lying along the stability valley; (d) the
mean square radius of 11Li, 〈r2〉1/2 = 3.55± 0.10 fm (Kobayashi et al. (1989),
Al-Khalili and Tostevin (1996), Hansen (1996)), is very large compared with
the value 2.32± 0.02 fm of the 9Li core, and testifies to the fact that the neutron
halo must have a large radius (≈ 6–7 fm); (e) the momentum distribution of the
halo neutrons is very narrow, its FWHM is σ⊥ = 48± 10 MeV/c for the (per-
pendicular) distribution observed in the case of the break-up of 11Li on 12C and
is of the order of one-fifth of that measured during the break-up of normal nuclei
(Kobayashi (1993), Tanihata (1996)); (f) the ground state of 11Li is a mixture
of configurations where the two-halo nucleons move around the 9Li core in s2-
and p2-configurations with almost equal weight (Aoi et al. (1997), Simon et al.
(1999)). The wavefunctions of two-particle-like normal nuclei can be strongly
mixed but are, as a rule, dominated by a single two-particle configuration (see e.g.
Table 5.1 where the ground-state wavefunctions of 210Pb and 206Pb are given).

Two-neutron halo nuclei are commonly described as three-body systems con-
sisting of two valence neutrons interacting with each other and with a structure-
less core (see Esbensen et al. (1997) and reference therein).
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260 Pairing in exotic nuclei

The three-body Hamiltonian can be written as

H = p2
1

2m
+ p2

2

2m
+ Vnc(1)+ Vnc(1)+ Vnn +

( 	p1 + 	p2
)2

2Acm
.

It includes the kinetic energy of each neutron, their interaction Vnc with the core,
the interaction between the two valence neutrons, and the recoil kinetic energy
of the core, which has the mass number Ac.

The single-particle Hamiltonian for a neutron interacting with the core is

hnc = p2

2μ
+ Vnc(r ),

where μ = m Ac/(Ac + 1) is the reduced mass.
The three-body Hamiltonian then takes the form

H = hnc(1)+ hnc(2)+ Vnn + 	p1 · 	p2

Acm
. (11.1)

This Hamiltonian is to be diagonalized in the space of 0+ two-neutron states
with wavefunctions


nn′l j
(	r1, 	r2

) = [
φnl j (	r1)φn′l j (	r2)

]
00 ,

constructed from the eigenstates

φn�jm
(	r) = Rn�(r ) [Y� (r̂ )χ (σ )] j�

of the single-particle Hamiltonian hnc. To do this, one needs to calculate the
matrix elements of Vnn and of 	p1 · 	p2/Acm between all 0+ two-particle states.
Note that 	p1 · 	p2/Acm ∼ 	∇1 · 	∇2. Consequently, the matrix elements of the re-
coil term are intimately connected with the matrix element of the operator (see
Appendix in Esbensen et al. (1997))

r̂1 · r̂2 =
∑

m

Y1m(	r1)Y ∗1m(	r2).

The recoil term, needed to eliminate the spurious centre of mass motion of the
system, is intimately connected to an (isoscalar) dipole–dipole field. In fact, the
self-consistent value of the dipole–dipole residual interaction needed to describe
the giant dipole resonance in the sum-rule conserving RPA leads to a zero-energy
isoscalar dipole mode.

A central issue connected with this model is how accurately one must treat
the various terms appearing in the Hamiltonian given in equation (11.1).

The ground state of 11Li has been studied in several Faddeev and Faddeev-like
three-body calculations (Zhukov (1991, 1993)) which make use of a shallow neu-
tron core potential Vnc and a simple Gaussian interaction Vnn acting between the
valence neutrons (see Table 11.2, lines 1 and 2). Calculations with the same Vnc

but using for Vnn a density-dependent (to quench the interaction inside the core)
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11.1 The halo nucleus 11Li 261

Table 11.2. Comparison of the ground-state properties of 11Li as calculated by making
use of different approaches. Line 5 contains results of nuclear field theory calculations
(NFT) discussed in Section 11.1. These results are compared with results published in
the literature: (I) obtained with a technique based on a density-dependent, cutoff, contact
interaction between the valence neutrons including (lines 3 and 6, Esbensen et al. (1997))
and neglecting (lines 4 and 7, Bertsch and Esbensen (1991)) recoil effects, (II) obtained
by making use of a Faddeev approach based on realistic interactions (lines 1, 2 (Zhukov
(1991), Ian Thompson, see Esbensen et al. (1997)) and 8 (Zhukov (1993))). The basic
quantities that characterize the low-energy nn scattering are the scattering length ann

and the effective range rnn. They are the parameters in the expansion of kcotδ in powers
of the relative momentum k (kcotδ ≈ −1/ann + 1

2rnnk2), where δ is the s-wave phase-
shift. The empirical values are ann = −18.5± 0.5 fm and rnn = 2.8± 0.1 fm (Bertsch
and Esbensen (1991), Zinser et al. (1997)).
The results reported in lines 1 and 2 were obtained by making use of a shallow neutron-
core potential (Vnc(r ) = −7.8 exp[−(r/2.55)] MeV), which does not support any bound
states, and a single Gaussian interaction (Vnn(r12) = −3(exp[−(r12/1.8)2] MeV), lead-
ing to s-wave phase shifts which are in good agreement with the empirical values. The
results quoted in lines 3 and 4 also made use of the shallow neutron–core potential
and a density-dependent contact interaction in the T = 1, S = 0 channel (quenched
inside the core). The two-halo neutrons are allowed to move in a radial box of 40 fm
with a cutoff of 25 MeV (line 3) and 15 MeV (line 4) respectively. The results in line 6
are based on a stronger core–neutron interaction (potential) in even-parity states pro-
ducing an s-wave scattering length of an0 = −5 fm. The results shown in line 7 were
obtained in the non-recoil limit, with a neutron–core p1/2 resonance at 800 keV. A
particular set of Faddeev results, based on a p1/2 resonance at 200 keV and realistic
nn-interaction is shown in line 8. In column 3 we display the low-energy nn-scattering
length ann, in column 4 the two neutron separation energy S2n, in column 6 the neutron
separation 〈r2

n,n〉1/2 = 〈
g.s ||	r1 − 	r2|2|
g.s〉1/2, in column 5 the dineutron core distance
〈r2

c,2n〉1/2 = 〈
g.s |(	r1 + 	r2)2|
g.s〉1/2, while in column 7 we display the mean square

radius 〈r2〉1/2A = (
δ〈r2〉 + Ac

A 〈r2〉Ac

)1/2
where δ〈r2〉 = 1

A

( 2Ac
A 〈r2

c,2n〉 + 1
2 〈r2

n,n〉
)

(Bertsch
and Esbensen (1991)). In columns 8 and 9 we display the probability of the two-particle
configurations to appear in the ground-state wavefunction.

ann S2n 〈r 2
c,2n〉1/2 〈r 2

n,n〉1/2 〈r 2〉1/2A (s1/2)2 (p1/2)2

Line Comments (fm) (keV) (fm) (fm) (fm) % %

1 HMMa −18.5 300 5 7.8 3.59 98.4
2 Faddeeva −18.5 318 5.3 7.9 3.66 95.1
3 Esbensena −15 318 5.2 7.9 3.64 91.1
4 Bertscha −15 318 5.0 8.2 3.63 94.4
5 NFT −18.5 330 5.1 8.6 3.75 40 58
6 Esbensenb −15 295 5.1 6.8 3.52 23.1 61.0
7 Bertschb −15 200 4.9 6.2 3.42 6.1 76.9
8 Q9b −18.5 295 4.6 6.7 3.41

a. Table I Esbensen et al. (1997).
b. Table IV Esbensen et al. (1997).

https://doi.org/10.1017/9781009401920.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.012


262 Pairing in exotic nuclei

contact pairing interaction have also been published (see lines 3 and 4, Table 11.2)
(Esbensen et al. (1997), Bertsch and Esbensen (1991), Bertsch (1994)). Note that
the density-dependent interaction can simulate three-body forces. These forces
have been found, in the most refined many-body calculations of light nuclei
avaliable in the literature (see e.g. Pudliner (1995)), to play an important role in
obtaining the correct binding energy.

In lines 6, 7 and 8 of Table 11.2, the results of contact interactions and realistic
force Faddeev calculations are reported, where the parameters of Vnc and Vnn

were adjusted so as to ensure the observed position of the p1/2 and s1/2 resonances
and of the 1S0 phase shifts.

It is seen that in all cases the observed two-neutron separation energy of 11Li
is adequately reproduced. The associated mean square radii are in reasonable
agreement among each other. Larger variation among the results of the differ-
ent calculations is found for the amplitude with which the s2

1/2(0) and p2
1/2(0)

two-particle configurations enter the ground state of 11Li. To be able to obtain a
sizeable s2

1/2(0) component as required by the experimental findings (Aoi et al.
(1997), Simon et al. (1999)) (see line 6 of Table 11.2) one is forced to use a differ-
ent Vnc interaction for even and for odd single-particle states so as to place both
the p1/2 annd the s1/2 resonances at the observed values (Esbensen et al. (1997)).

None of the above calculations was concerned with the influence that core
polarization effects may have in the properties of the system. In Nuñes et al.
(1996) the three-body model was extended to include explicitly certain core
degrees of freedom and the model was applied to 12Be where sizeable effects
were found (see Section 11.2).

While the calculations discussed in this section provide an overall account of
the experimental findings, they depend on a number of parameters, in particular
those associated with Vnc (and determing the position of the resonant single-
particle state), parameters which are likely to change from case to case, thus
reducing the predictive power of the realistic calculations.

It is likely that much of this ambiguity can be eliminated by properly taking into
account the influence of core polarization effects. In other words, by generalizing
the models discussed above, in particular that of Bertsch and Esbensen (1991)
and Esbensen et al. (1997), allowing the two neutrons to feel not only the 	p1 ·
	p2/Acm, dipole–dipole like interaction, but also to couple to the vibrations of the
core of multipolarities different from L = 1, vibrations which are also strongly
modified by the presence of halo neutrons. This constitutes the essence of the
paper of Barranco et al. (2001) which we discuss in the next section.

11.1.1 Single-particle states in 10Li: effective mass processes

Nuclear field theory (NFT) provides a systematic description of the nuclear
spectrum in terms of the motion of the nucleons, of the collective vibrations
of the system and of their interweaving. While (dressed) single-particle states
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11.1 The halo nucleus 11Li 263

and collective excitations are directly related to the experimental observations,
all the degrees of freedom of the nucleus are already exhausted by the single-
particle degrees of freedom. Consequently, overcompletness and Pauli principle
correction processes are essential in the NFT description of the nuclear structure
(Bes et al. (1976a), (1976b), Bortignon et al. (1977)).

This treatment is, to a large extent, equivalent to a full shell model calculation.
As in the case of such calculations, the mean-field single-particle levels are used
and the coupling to core excitations give rise, through self-energy and Pauli
(blocking) effects, to parity inversion (Sagawa et al. (1993)) (inversion in the
sequence between s1/2 and p1/2 states (resonances)).

Before discussing the sources of pairing correlations in 11Li, one needs to
determine the single-particle resonant spectrum of 10Li. The basis of (bare)
single-particle states used is determined by calculating the eigenvalues and eigen-
functions of a nucleon moving in the mean field of the 9Li core, for which
one can use a Saxon–Woods potential (Bohr and Mottelson (1969)), of depth
U0 = −(51− 30(N − Z )/A)MeV = −41 MeV. The continuum states of this
potential are calculated by solving the problem in a box of radius equal to 40 fm,
chosen to make the results stable. Arising mainly from Pauli principle effects
(Fock potential, see Section 8.2.1) the k-mass is expected to be dependent on the
density of the system. While in nuclei along the stability valley mk ≈ 0.7 m, it
is expected that in ‘halo’ nuclei 0.8 � mk/m � 1.

While mean-field theory predicts the orbital p1/2 to be lower than the s1/2

orbital (see Fig. 11.1, I(a)), experimentally the situation is reversed. Similar
parity inversions have been observed in other isotones of 10

3 Li7, such as 11
4 Be7

(see Section 11.2). Shell model calculations have indicated that the effect of core
excitation, in particular of quadrupole type, plays a central role in this inversion
(Sagawa et al. (1993), see also Vinh Mau (1995)). Within the framework of
Chapters 8 and 9, it is important to study the effect of the coupling of the p1/2

and s1/2 orbitals of 10Li to quadrupole vibrations of the 9Li core on the properties
of the 1/2+ and 1/2− states of this system. Monopole and dipole vibrations have
no low-lying strength in this nucleus and their coupling to the single-particle
states of 10Li lead to negligible contributions. The quadrupole vibrational state
of 9Li can be calculated by diagonalizing, in the random phase approximation
(RPA), a quadrupole–quadrupole separable interaction (see e.g. (8.39)) taking
into account the contributions arising from the excitation of particles into the
continuum states. A natural choice of the coupling constant is the self-consistent
value introduced in equations (8.58) and (10.27). A similar calculation carried
out using this value for the neighbouring nucleus, 10Be, yields good agreement
with the experimentally known transition probability of the quadrupole low-lying
vibrational state (Ajzenberg-Selove (1988, 1990), Raman et al. (1987)).

In the calculation of the renormalization effects of the single-particle res-
onances of 10Li due to the coupling to vibrational states one has to consider
not only the effective-mass-like diagrams (upper part graph of Fig. 11.1, I(b))
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Figure 11.1. (I) Single-particle neutron resonances in 10Li. In (a) the position of the levels
s1/2 and p1/2 calculated using mean-field theory is shown (dotted area and thin horizontal line
respectively). The coupling of a single-neutron (upward-pointing arrowed line) to a vibration
(wavy line) calculated using the Feynman diagrams shown in (b) (schematically depicted
also in terms of either solid dots (neutron) or open circles (neutron hole) moving in a single-
particle level around or in the 9Li core (hatched area)), leads to conspicuous shifts in the energy
centroid of the s1/2 and p1/2 resonances (shown by thick horizontal lines) and eventually to an
inversion in their sequence. In (c) we show the calculated partial cross-section σl for neutron
elastic scattering off 9Li. (II) The two-neutron system 11Li. We show in (a) the mean-field
picture of 11Li, where two neutrons (solid dots) move in time-reversal states around the core
9Li (hatched area) in the s1/2 resonance leading to an unbound s2

1/2(0) state where the two
neutrons are coupled to zero angular momentum. The exchange of vibrations between the
two neutrons shown in the upper part of the figure leads to a density-dependent interaction
which, added to the nucleon–nucleon interaction (v14 Argonne), correlates the two-neutron
system leading to a bound state |0+〉, where the two neutrons move with probability 0.40,
0.58 and 0.02 in the two-particle configurations s2

1/2(0), p2
1/2(0) and d2

5/2(0) respectively (after
Barranco et al. (2001)).

https://doi.org/10.1017/9781009401920.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.012


11.1 The halo nucleus 11Li 265

Table 11.3. RPA wavefunction of the collective low-lying quadrupole vibration
of 9Li (X and Y are the forward-going and backward-going amplitudes respec-
tively, equation (8.38)), calculated using a separable quadrupole–quadrupole
interaction (equation (3.50), see also equation (8.44)) and allowing particles
to move in the levels of the Saxon–Woods potential discussed in the text. The
self-consistent value (κ2 = 0.013 MeV−1; see equation (8.58)) of the coupling
constant has been adopted. The energy of this state is E2+ = 3.3 MeV. All the
listed amplitudes refer to neutron transitions, except for the last two columns.
The resulting value for the quadrupole transition probability corresponds to the
deformation parameter β2 = 0.66. A calculation of the low-lying quadrupole
transition in the neighbouring nucleus 10Be with the same coupling constant
yields the value β2 = 0.9, close to the experimental value β2 = 1.1 (Raman et
al. (1987)).

1p−1
3/21p1/2 1p−1

3/28 f7/2 1p−1
3/29 f7/2 1s−1

1/2d5/2 1p−1
3/2 p1/2 (π ) 1s−1

1/21d5/2 (π )

Xph 1.02 0.07 0.08 0.07 0.15 0.09
Yph 0.28 0.05 0.06 0.06 0.09 0.07

leading to attractive (negative) contributions to the single-particle energies, but
also those couplings leading to ground-state correlation (repulsive) corrections
associated with diagrams containing two particles, one hole and a vibration in
the intermediate states (lower part diagram of Fig. 11.1, I(b) (see Section 9.1,
and Fig. 9.2). Because of such ground-state correlation processes, the p1/2 state
experiences an upward shift in energy. This arises from the coupling of this or-
bital to the p3/2 hole-state through quadrupole vibrational states resulting from
the exchange of the odd particle state p1/2 with that participating in the vibration,
in keeping with the fact that the (p1/2 p−1

3/2) particle–hole excitation constitutes an
important component of the quadrupole vibration wavefunction (see Table 11.3).
As a consequence, the p1/2 state becomes unbound, turning into a low-lying res-
onance with centroid Eres ≈ 0.5 MeV. Owing to the coupling to the vibrations
the s-state is instead shifted downwards. There are essentially no (repulsive)
contributions arising from the ground state correlation-correction processes for
the s-state.

On the other hand (attractive) effective-mass-like processes with intermediate
states consisting of one particle plus a vibrational state of the type (d5/2 × 2+)
lead to a virtual state with Evirt = 0.2 MeV (see Fig. 11.1, I(b)). The above results
provide an overall account of the s- and p-resonances observed experimentally.
The important difference between the distribution of the single-particle strength
associated with the resonant state p1/2 and the virtual state s1/2 can be observed
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266 Pairing in exotic nuclei

in Fig. 11.1, I(c), where the partial cross-section σl for neutron elastic scattering
off 9Li is shown. While σp displays a clear peak at 0.5 MeV, σs is a smoothly
decreasing function of the energy. A small increase in the depth of the potential
felt by the s-neutron will lead to a (slightly) bound state, hence the name of
virtual resonance.

11.1.2 11Li and the Cooper pair problem

In the infinite system bound Cooper pairs exist for an arbitrarily weak interaction
(see Section 1.7), while in the nuclear case this phenomenon occurs only if the
strength of the nucleon–nucleon potential is larger than a critical value related
to the spacing of single-particle levels in the nuclear spectrum (see Section 1.9).
In fact, calculations carried out using v14 Argonne NN potential (see Chapter 8)
show that the nuclear forces are able to bind Cooper pairs in open-shell nuclei
like, for example, 120Sn leading to sizeable pairing gaps (see Figs. 8.6 and 8.9),
but not in closed-shell nuclei.

The situation is quite different in the case of 11Li where the NN-Argonne
potential, is not able to bind the last two neutrons. To calculate the spectrum of
11Li one places two neutrons in the continuum of levels associated with the s1/2

and p1/2 resonances as well as in the d5/2 states, and diagonalizes the v14 NN
potential. The calculations show that the bare nucleon–nucleon interaction is not
able to bind the two last neutrons to the 9Li core. The low-lying states resulting
from the diagonalization of the Argonne nucleon–nucleon force are dominated
by one of the configurations |s2

1/2(0)>, |p2
1/2(0)> or |d2

5/2(0)>. The v14 NN
potential produces almost no mixing between s-waves, p-waves and d-waves,
and only shifts the energy of the unperturbed (resonant) configurations s2

1/2(0)
and p2

1/2(0) by about 80 keV without giving rise to a bound system. The d2
5/2(0)

configurations are essentially not shifted. Making use of the same single-particle
levels and the same matrix elements of the nucleon–nucleon potential to solve
the BCS gap equations, one obtains no solution other than the trivial one of zero
pairing gap (�ν = 0). At the basis of this negative result is the fact that the most
important single-particle states which contribute to correlations between the halo
neutrons of 11Li are the s1/2, p1/2 and d5/2 orbitals. In this low angular momentum
phase space, the two neutrons are not able to profit fully from the strong force-
pairing interaction associated with the v14 NN potential (see equation (8.7)). This
is because only the components of multipolarity L = 0, 1 and 2 of this force are
effective in 11Li because of angular momentum and parity conservation rules.

This negative result together with the fact that 11Li displays strongly collective,
low-lying vibrations suggests that the exchange of these vibrations between the
two outer neutrons of 11Li is likely to be the main source of pairing correlations
in that nucleus (see Fig. 11.2). This effect has been studied by Barranco et al.
(2001). The L = 0, 1 and 2-vibrational spectrum of 11Li needed to calculate the
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Table 11.4. RPA wavefunction of the collective low-lying quadrupole phonon in
11Li, of energy E2+ = 5.05 MeV. All the listed amplitudes refer to neutron transi-
tions, except for the last column. The self-consistent value (κ2 = 0.013 MeV−1)
for the coupling constant was used. The resulting value for the deformation
parameter is β2 = 0.5.

1p−1
3/21p1/2 2s−1

1/25d3/2 1p−1
1/26p3/2 2s−1

1/23d5/2 2s−1
1/25d5/2 1p−1

3/21p1/2 (π )

Xph 0.824 0.404 0.151 0.125 0.126 0.16
Yph 0.119 0.011 −0.002 −0.049 −0.011 0.07

matrix elements of this induced interaction was determined in much the same
way as in 9Li, i.e. making use of the RPA (see Table 11.3) with the same value of
the quadrupole coupling constant. Because the calculations are carried out on the
physical (correlated) 11Li ground state, the particle–hole transitions associated
with the vibrational states involving the p1/2 and the s1/2 states are to be calculated
with the energies and corresponding occupation numbers resulting from the full
diagonalization. The strength of the separable dipole–dipole interaction can be
adjusted to provide an overall account of the experimental dipole response in
11Li. Unperturbed particle–hole excitations up to 70 MeV have been included
and phonon states up to 50 MeV have been considered. Within this space there
are of the order of 102 states, exhausting the associated energy-weighted sum
rule (Section 8.3). The calculated soft dipole response is shown in Fig. 11.3 (see
also Fig. 11.2). The low-lying quadrupole response is concentrated in a single
peak, whose wavefunction is shown in Table 11.4. A Skyrme-type effective
interaction (SLy4) was instead used to calculate the monopole linear response.
The corresponding solutions were obtained in coordinate space making use of a
mesh extending up to a radius of 80 fm. The monopole response exhausts 94%
of the EWSR considering the summed contributions up to 40 MeV of excitation
energy (see Fig. 11.3(c)).

All the resulting vibrational states were coupled to the single-particle
states making use of the corresponding transition densities (formfactors, see
Fig. 11.3(b) and (d)) and associated particle–vibration coupling strengths. In the
monopole case, the response function was discretized in bins of 300 keV.

These calculations, which form the basis of the results shown in Fig. 11.1 and
Table 11.1, allowed the two outer neutrons of 11Li both to exchange phonons
(induced interaction, Fig. 11.1, II(a)), as well as to emit and later reabsorb them
(self-energy correction, Fig. 11.1, I(b)). It was found that the last two neutrons in
11Li form a bound (Cooper) pair, the lowest eigenstate of the associated secular
matrix being Egs =−0.270 MeV. This result is mostly due to the exchange of the
low-lying dipole vibrations shown in Fig. 11.3(a) with associated wavefunction
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Figure 11.2. In the upper part of the figure, the single-particle potential used to describe the
single-particle motion in Li is schematically shown. In the middle left part, the experimental
elements used to calculate the strength of the dipole and quadrupole separable interactions are
shown, while at the right the dependence of the T = 1, S = 0 v14 Argonne potential on the
relative distance r12 is displayed. Scattering events up to 200 MeV are to be considered due
to the repulsive core of v14. In the lower part of the figure, a schematic representation of the
matrices associated with the coupling of neutrons (arrowed lines) through the v14 potential
(dashed line) and through surface vibrations (wavy lines) for 10Li (left) and 11Li (right) are
displayed. The last row shows the basic processes taken into account to all orders in the
diagonalization of the corresponding matrices.
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11.1 The halo nucleus 11Li 269

Figure 11.3. Dipole and monopole linear response functions and transition densities
of 11Li calculated in the RPA. The dipole response (λπ = 1−) was determined making
use of the multipole–multipole separable interaction H = tzκ1(F1(	r1) · F1(	r2))0, with
F1M (	r ) = r ∂U

∂r Y1M . The coupling constant was fixed to provide an overall account of
the experimental findings. For simplicity we show in (a) the overall strength function
(coarse mesh representation) and not the individual states (about 100). The transition
density associated with the state close to the peak, at E1− = 0.75 MeV is shown in (b) (see
equation (10.47)). The corresponding wavefunction is shown in Table 11.5. No experimental
information exists concerning the monopole modes. An effective Skyrme interaction (SLy4)
was used to determine the strength function shown in (c). The transition density at the peak
(E0+ ≈0.5 MeV) is shown in (d) (after Barranco et al. (2001)).

collected in Table 11.5. Adding to the induced interaction the nucleon–nucleon
v14 Argonne potential one obtains Egs = −0.330 MeV, and thus a two-neutron
separation energy quite close to the experimental value. Measured from the
unperturbed energy of a pair of neutrons in the lowest state calculated for 10Li,
namely the s-resonance (Eunp = 2Es1/2 = 400 keV, see Fig. 11.1, I(b)), it leads to
a pairing correlation (Section 3.5) energy E0 = Eunp − Egs = 0.730 MeV (see
Fig. 11.1, II(b)).
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Table 11.5. RPA wavefunction of the strongest low-lying dipole vibration of 11Li
(E1− = 0.75 MeV), contributing most importantly to the pairing induced inter-
action (Fig. 11.1 II). All the listed amplitudes refer to neutron transitions. The
value κ1− = 0.0043 MeV−1 for the isovector coupling constant has been used. It
was determined in order to get a good agreement with the experimental findings.
Note that this value is quite similar to the self-consistent value of 0.0032 MeV−1.
The resulting strength function (see Fig. 11.3(a)) integrated up to 4 MeV gives
7% of the Thomas–Reiche–Kuhn energy weighted sum rule (equation (8.51) with
L = 1), to be compared with the experimental value of 8% (Zinser et al. (1997)).

1p−1
1/22s1/2 1p−1

1/23s1/2 1p−1
1/24s1/2 1p−1

1/21d3/2 1p−1
3/25d5/2 1p−1

3/26d5/2 1p−1
3/27d5/2

Xph 0.847 −0.335 0.244 0.165 0.197 0.201 0.157
Yph 0.088 0.060 0.088 0.008 0.165 0.173 0.138

From the associated two-particle ground-state wavefunction �0(	r1, 	r2)(≡
〈	r1, 	r2|0+〉), Barranco et al. (2001) obtain a momentum distribution (whose
FWHM is σ⊥ = 56 MeV/c, for 11Li on 12C) and ground-state occupation prob-
abilities of the two-particle states s2

1/2(0), p2
1/2(0) and d2

5/2(0) (0.40, 0.58 and
0.02 respectively, see Fig. 11.1, II(b)), which provide an overall account of the
experimental findings. The radius of the associated single-particle distribution
is 7.1 fm. Adding to this density that of the core nucleons one obtains the total
density of 11Li. The associated mean square radius (3.9 fm) is somewhat larger
than the experimental value.

Within the framework of the above discussion it is unlikely that one can obtain
a good description of the medium polarization effects in 11Li by coupling the two-
halo neutrons to vibrations of 9Li. In fact, this model gives very different results
to those obtained by coupling the vibrations of 11Li to the two-halo neutrons,
correcting for Pauli principle violations (Appendix F) (in this connection see
Kuo et al. (1997)).

Also in this connection, we note that Hamamoto and Mottelson (2003) have
studied pairing correlations in weakly bound neutron systems by solving the HFB
equations in coordinate space with the correct asymptotic boundary conditions.
These are systems where the pair field provides a significant coupling between
neutron pairs in the bound state and neutrons moving in the low-energy contin-
uum. Making use of a local pair field of either volume type (that is,�(r ) ∼ f (r ),
see equation (8.14) or surface type�(r ) ∼ rd f (r )/dr ) they found that s1/2 neu-
trons with small binding energies are nearly decoupled from the main pair field.
Because s1/2 neutrons play a central role in halo nuclei, Hamamoto and Mottelson
conclude that the HFB approximation is inadequate to describe these nuclei.

Although the question is quite open, it is likely that this result is another
example of the limitations of static mean-field theories discussed at the end of
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Section 8.2. These limitations are, at least partially, removed by the dynamic shell
model (Mahaux (1985)), taking also into account, in a self-consistent manner,
the induced pairing interaction arising from polarization effects.

In fact, the exchange of vibrations with a long tail form factor (see Fig. 1l.3(b))
give rise to pairing fields which extend far beyond that associated with the density
of the core which is closely connected with the formfactor f (r ) (see Barranco et
al. 2001 as well as Figs. 11.4 and 11.5).

11.1.3 Spatial structure of the Cooper pair

The spatial structure of the Cooper pair described by the wavefunction�0(	r1, 	r2)
is shown in Fig. 11.4. The mean square radius of the centre of mass of the two
neutrons is 〈r2

cm〉1/2 = 5.4 fm. This result demonstrates the importance that the
correlations have in collecting the small (enhanced) amplitudes of the uncorre-
lated two-particle configuration s2

1/2(0) in the region between 4 and 5 fm, a region
in which the p2

1/2(0), helped by the centrifugal barrier, shows a somewhat larger
concentration (see Fig. 11.5). From the above results, it emerges that the exchange
of vibrations between the least bound neutrons leads to a (density-dependent)
pairing interaction acting essentially only outside the core (see also Bertsch and
Esbensen (1991)). Note that the long wavelength behaviour of these vibrations
is connected with the excitation of the neutron halo, the large size of which not
only makes the system easily polarizable but also provides the elastic medium
through which the loosely bound neutrons exchange vibrations with each other.
Because the vibrational states of 11Li are built out of excitations which occupy,
to some extent, the same particle states occupied by the loosely bound neutrons
being studied, the corresponding particle-vibration matrix elements have to be
corrected because of Pauli violating contributions (see Appendix F) following
the nuclear field theory rules (Bes et al. (1976a,b), Bes and Broglia (1977), Bor-
tignon et al. (1977))). In particular, the reduction factors of the particle–vibration
coupling Hamiltonian Hc (see Appendix F) associated with the matrix elements
< s1/2 × 1−|Hc|p1/2 >,< s1/2 × 0+|Hc|s1/2 > and< p1/2 × 0+|Hc|p1/2 > are
0.68, 0.25 and 0.25 respectively.

The average mean square distance between the halo neutrons is 〈r2
12〉1/2 ≈

9.2 fm, a result which is consistent with the fact that the coherence length as-
sociated with Cooper pairs in nuclei is larger than the nuclear dimensions thus
preventing the possibility of a nuclear supercurrent. On the other hand, this value
of<r2

12> does not prevent the two correlated neutrons being close together, the
corresponding (small) probability (see Fig. 11.4) being much larger than that
associated with the uncorrelated neutrons (see Fig. 11.5).

Similar results to those reported above are obtained solving the BCS equa-
tion for the two-neutron system making use of the matrix elements used in
the diagonalization, the sum of those of the nucleon–nucleon v14 Argonne
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Figure 11.4. Spatial structure of two-neutron Cooper pair. The modulus squared wavefunction
|�0(	r1, 	r2)|2 = |〈	r1, 	r2|0+〉|2 (see Fig. 11.1, II (b)) describing the motion of the two-halo
neutrons around the 9Li core (normalized to unity and multiplied by 16π2r2

1 r2
2 ) is displayed

as a function of the cartesian coordinates x2 = r2 cos(θ12) and y2 = r2 sin(θ12) of particle 2,
for fixed value of the position of particle 1 (r1 = 2.5, 5, 7.5 fm) represented in the right panels
by a solid dot, while the core 9Li is shown as a solid curve circle. The numbers appearing on
the z-axis of the three-dimensional plots displayed on the left side of the figure are in units
of fm−2 (after Barranco et al. (2001)).

potential and those of the induced interaction. In this case, the correlation
energy is E0 = −0.7 MeV, the separation energy of the two neutrons becom-
ing S2n = 0.360 MeV. The radial structure of the projected BCS wavefunctions∑
ν>0(Vν/Uν)ϕν(	r1)ϕν(	r2) displays a spatial structure quite similar to�0(	r1, 	r2),

the admixture of s- , p- and d- two-particle configurations being now 46%, 51%

https://doi.org/10.1017/9781009401920.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.012


11.1 The halo nucleus 11Li 273

s2
1/2 (0) , r1 = 5 fm

0.06

0.04
0.02

0.06

0.04
0.02

12

12

12 12

12 12

12

6

6

6

6

6

6

0

0

0

x2

x2

y2

12

6

6

0
y2

p2
1/2 (0) , r1 = 5 fm

y 2

12

12

12 12

6

6

6 6

0

0

x2 (fm)

12

12

12 12

6

6

6 6

0

0

x2 (fm)

y 2

Figure 11.5. Spatial distribution of the pure two-particle configurations s2
1/2 (0) and p2

1/2(0)
as a function of the x- and y-coordinates of particle 2, for a fixed value of the coordinate
of particle 1 (r1 = 5 fm). For more details see the caption to Fig. 11.4 (after Barranco et al.
(2001)).

and 3% respectively. The coherence length ξ , i.e. the mean square distance be-
tween the two neutrons forming the Cooper pair, is in this case 〈r2

12〉1/2 = 7.8 fm.

11.1.4 Transfer reactions

The specific probe of pairing correlations is two-particle transfer reactions (see
e.g. Broglia et al. (1973) and references therein). Combined with single-particle
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Figure 11.6. (a) Field theoretical representation of the process 11Li(p, d)10Li. A double ar-
rowed line indicates the two-halo neutron Cooper pair, while a single arrowed heavy drawn
curve indicates a nucleon dressed through its coupling to a vibration (wavy line). In paren-
theses a specific contribution to the dressing process is shown. (b) Field theoretical represen-
tation of the two-neutron pick-up process 11Li(p, t)9Li.

stripping and pick-up reactions (see Fig. 11.6) they can provide a stringent test of
the main (microscopic) predictions that nuclear field theory makes concerning
10Li and 11Li, namely

|s̃1/2〉 = a|s1/2〉 + b|d5/2 × 2+; 1
2
+〉 + c|p1/2 × 1−; 1

2
+〉 + . . . , (11.2)

| p̃1/2〉 = A|p1/2〉 + B|p1/2 × 2+; 1
2
−〉 + C |s1/2 × 1−; 1

2
−〉 + . . . , (11.3)

and

|0+〉 = α|s2
1/2(0)〉 + β|p2

1/2(0)〉 + γ |d2
5/2(0)〉 + δ| (s1/2, d5/2

)
2+ × 2+; 0〉

+ γ | (s1/2, p1/2
)

1− × 1−; 0〉 + . . . . (11.4)

In what follows we shall discuss the one-particle spectroscopic factors asso-
ciated with (d, p) and (p, d) reactions and spectroscopic amplitudes associated
with (t, p) and (p, t) reactions. The measurement of these quantities could be,
in principle, attempted by making use of inverse kinematics techniques.
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11.1.5 Spectroscopics factors

Quite generally the 9Li(d, p)10Li reaction may provide information on

|〈ν̃|a+ν |gs
(

9Li
)〉|2 = {

a2 ν = s1/2,

A2 ν = p1/2,
(11.5)

and 11Li(p, d)10Li (see Fig. 11.6 (a)) on

|〈ν̃|aν |0+〉|2 =
{

(αa)2 ν = s1/2,

(βA)2 ν = p1/2.
(11.6)

11.1.6 B-coefficients

The spectroscopic amplitudes associated with the two-particle process
11Li(p, t)9Li is given by (see Fig. 11.6 (b))

Bν
(
0+

) = 〈9Li(gs)| [aνaν]0 |0+〉 =
⎧⎨⎩α ν = s1/2,

β ν = p1/2,

γ ν = d5/2.

(11.7)

The two-particle transfer cross-section is

σ (p, t) ∼
(∑

ν

Bν
(
0+

))2

≈ (α + β + γ )2 . (11.8)

11.2 The halo nucleus 12Be

In what follows we shall study the nuclei 11
4 Be7 and 12

4 Be8, allowing the nucleons
to interact through a nucleon–nucleon realistic potential (Argonne v14) taking
also into account the coupling between single-particle motion and collective vi-
brations of the system as was done in the previous section for the case of 11Li and
12Li. Special emphasis will be made, in the present case, on the calculation of the
spectroscopic factors of 12Be which, together with the ground-state occupation
probabilities of the two-particle configurations s2, p2 and d2, provide the most
sensitive predictions for a detailed comparison with the experimental findings
(Gori et al. (2004a)).

We start by considering the system 11
4 Be7 described as one neutron moving

around the core 10
4 Be6, in keeping with the fact that the value of the neutron

separation energy in 10Be is 6.813 MeV compared with the value of 0.504 MeV
in 11Be. The single-particle levels are determined by solving the Schrödinger
equation (

− �
2

2mk
∇2

r +U ′(r )

)
φ j (r ) = ε jφ j (r ), (11.9)
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Figure 11.7. Schematic representation of the effective matrix used in the Bloch–Horowitz
perturbation theory to calculate the eigenvalues of 11Be (see Section 10.2). An arrowed
line pointing upwards (downwards) indicates a particle (hole), while a wavy line indicates
a collective vibrational state. Reprinted with permission from Gori et al., Phys. Rev. C69:
041302 (R) (2004a). Copyright 2004 by the American Physical Society.

in a spherical box of radius equal to 30 fm so as to discretize the continuum
states. The quantity mk is the k-mass while U ′(r ) = (m/mk)U (r ), U (r ) being a
Saxon–Woods potential with a standard parametrization for the depth (Bohr and
Mottelson (1969))

V = −50.5+ 33
N − Z

A
MeV. (11.10)

In keeping with the fact that the k-mass is directly connected with non-locality
effects (mainly exchange effects associated with the Fock potential), it is expected
to strongly depend on the density of the system. In the case of nuclei along
the stability valley, mk ≈ 0.7m, while in the case of halo nuclei like 11Be, one
expects 0.8m ≤ mk ≤ m. Calculations using both of the limiting values of mk

were carried out, with rather similar results, as explained below.
Making use of the associated particle–hole basis and of a separable multipole–

multipole interaction, the Lπ = 2+ and 3− vibrations were calculated in the
QRPA (equation (8.47)). A self-consistent coupling constant kL (see equation
(10.27)), slightly adjusted to reproduce the energy of quadrupole vibrations, was
used. The range of the associated deformation parameters βL is consistent with
observation (Iwasaki et al. (2000a,b), Raman et al. (1987)).

The eigenvalues of the dressed single-particle states were obtained by diag-
onalizing (energy-dependent) matrices of the order 102 × 102 whose elements
connect a basis of unperturbed states containing both bound and continuum so-
lutions of equation (11.9) with energies up to 350 MeV, with states containing a
particle and a vibration (Fig. (11.7(b)) as well as two particles and a hole plus a
collective mode (Fig. (11.7(c)). The calculations were carried out for states with
quantum number s1/2, p1/2 and d5/2. Similar results were obtained by making use
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Table 11.6. Comparison of experimental binding energy and spectroscopic fac-
tors with those resulting from the NFT calculations (see Table 11.2, also referred
to as particle-vibration +v14 (see Table 11.1)) and from an independent parti-
cle (mean-field) model. The spectroscopic factors are those for the transfer of
one particle on s1/2 and p1/2 states. They were measured for 11Be and 12Be by
Navin et al. (2000) and Iwasaki et al. (2000a,b) respectively. For 12Be, we also
show the components of the resulting ground-state wavefunction (after Gori
et al. (2004a)).

Theory

Exper. Particle-vibration Mean-field

Es1/2 −0.504 MeV −0.48 MeV ∼0.14 MeV
E p1/2 −0.18 MeV −0.27 MeV −3.12 MeV

11
4 Be7 Ed5/2 1.28 MeV(∗) ∼0 MeV ∼2.4 MeV

S
[
1/2+

]
0.77 0.87 1

S
[
1/2−

]
0.96 0.86 1

S
[
5/2+

]
0.72 1

S2n −3.673 MeV −3.58 MeV −6.24 MeV
12
4 Be8 s2, p2, d2 23%, 29%, 48% 0%, 100%, 0%

S
[
1/2+

]
0.42± 0.10 0.31 0

S
[
1/2−

]
0.37± 0.10 0.57 1

∗ Tentative assignment.

of the unperturbed single-particle basis calculated solving equation (11.9) with
mk/m = 1 and mk/m = 0.8, as the larger (absolute) values of the energies ε j are
compensated by the stronger particle-vibration coupling vertices proportional to
βL and to ∂U ′/∂r (see equation (8.18)). In what follows we shall refer to the
results obtained with mk/m = 1, results which are displayed in Table 11.6, com-
pared with the experimental findings. Theory provides an overall account of the
experimental findings, also concerning the spectroscopic factors associated with
the reaction 10Be(d, p)11Be (Zwieglinski et al. (1979)). The way these quantities
were calculated is discussed below in connection with a shell model calculation
carried out in connection with the reaction 12Be(9Be,9Be +n + γ )11Be (Navin
et al. (2000)).

Note that there is experimental evidence of the existence of a resonant d5/2 state
at 1.28 MeV (Zwieglinski et al. (1979), Ajzenberg-Selove (1990)). A calculation
was carried out following the steps discussed in Navin et al. (2000) but setting
the unperturbed energy of the d5/2 resonance at 4.1 MeV, so that the dressed
resonance had an energy of 1.2 MeV. In this case the spectroscopic factors
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Figure 11.8. Schematic representation of the effective matrix used in the Bloch-Horowitz
perturbation theory to calculate the eigenvalues of 12Be. The dashed horizontal line represent
the bare (Argonne v14) nucleon–nucleon potential. Pairs of nucleons are coupled to angular
momentum L = 0. Reprinted with permission from Gori et al., Phys. Rev. C69: 041302 (R)
(2004). Copyright 2004 by the American Physical Society.

associated with 11Be are 0.9, 0.96 and 0.73 respectively, while the 12Be ground-
state wavefunction becomes (s2, p2, d2) 80%, 5%, 15%.

The self-energy (Fig. 11.7(b)) and Pauli principle correction (Fig. 11.7(c))
processes used to describe the dressed single-particle states of 11Be, which even-
tually accounted for the parity inversion experimentally observed, have been in-
cluded in the description of the ground state of 12Be as can be seen from Fig. 11.8,
which shows the effective matrix to be diagonalized in order to describe the
ground-state properties of the correlated three-body system 12Be (similar calcu-
lations carried out by Nuñez et al. (1996) did not include processes of type (c),
Fig. 11.8). The Hilbert space used to describe 12Be is made out of two-particle
states (see Fig. 11.8(a)), two particles and one phonon (Fig. 11.8(b) and Fig.
11.8(d)), and three particles, one hole and one phonon states (Fig. 11.8(c)). All
these configurations are coupled to zero angular momentum and display energies
up to 500 MeV. The effects of v14 and of the particle-vibration coupling in 12Be
are determined by diagonalizing the effective, energy-dependent (≈103 × 103)
matrix. The lowest eigenvalue−3.58 MeV is to be compared with the experimen-
tal two-particle separation energy of −3.67 MeV. The main contribution to the
nucleon–nucleon interaction arises from the induced interaction (Fig. 11.8(d)),
that associated with the bare nucleon–nucleon potential (see Fig. 11.8(a)) being
very small (≈100 keV), a situation already encountered in the study of 11Li and
associated with the small l-content of the s, p, d-subspace.
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The squared amplitudes of the 12Be ground-state wavefunction are shown in
Table 11.6. The large d2

5/2(0)-amplitude predicted for the 12Be ground state (see
also Navin et al. (2000)) compared with that calculated in the case of 11Li can be
understood in terms of the fact that the d5/2 orbital is, in 10Li, much less confined
than in 11Be, thus displaying much smaller overlaps with the 1s1/2 and 0p1/2

orbitals. Furthermore, this result is also connected with the fact that in 11Li the
dipole mode is much softer than in 12Be (Iwasaki et al. (2000a,b)). Using the 12Be
ground-state wavefunction and that obtained for the ground state and the first
excited state of 11Be, one has calculated the spectroscopic factors associated with
the knock-out reaction 12Be (9Be, 9Be +n + γ ) 11Be. The results are compared
in Table 11.6 with the experimental findings (Navin et al. (2000)).
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