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MULTIRESOLUTION AND WAVELETS

by RONG-QING JIA*f and ZUOWEI SHENfJ

(Received 20th August 1992)

Multiresolution is investigated on the basis of shift-invariant spaces. Given a finitely generated shift-invariant
subspace S of L2{W), let Sk be the 2*-dilate of S (fceZ). A necessary and sufficient condition is given for the
sequence {St}tez

 t 0 form a multiresolution of L2(R'1). A general construction of orthogonal wavelets is given,
but such wavelets might not have certain desirable properties. With the aid of the general theory of vector
fields on spheres, it is demonstrated that the intrinsic properties of the scaling function must be used in
constructing orthogonal wavelets with a certain decay rate. When the scaling function is skew-symmetric
about some point, orthogonal wavelets and prewavelets are constructed in such a way that they possess
certain attractive properties. Several examples are provided to illustrate the general theory.

1980 Mathematics subject classification: 41A63, 41A30, 42C99, 46C99.

1. Introduction

In this paper we investigate multiresolution and wavelet decomposition in the
multivariate situation. Our study is based on the theory of finitely generated shift-
invariant spaces. Certain basic questions concerning multiresolution are addressed and
solved. Orthogonal wavelets are constructed explicitly under almost the weakest
assumptions. When the scaling function is skew-symmetric about some point, orthogo-
nal wavelets and prewavelets are constructed in such a way that they possess certain
desirable properties.

Refinable shift-invariant spaces constitute an appropriate setting for wavelet theory.
Given a linear space S of (complex-valued) functions defined on W, we say that S is
shift-invariant if, for any seS and jeZd, the shift s(- — j) of s is also in S; we say that S
is refinable if, for any seS, its dyadic dilate s(/2) is also in S. For example, for each
pe[l,oo], the space LP(W) is refinable and shift-invariant, where L^Ud) denotes the
Banach space of all measurable functions / such that

For <£eL2(R
1'), we define S(0) to be the smallest closed shift-invariant subspace of
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272 RONG-QING JIA AND ZUOWEI SHEN

L2(R'1) containing <j>. We say that <j> is refutable if S(<f>) is. A refinable function is also
called a scaling function.

Most methods used in wavelet decompositions rely on the notion of multiresolution
as introduced by Mallat [32] and Meyer (see [33]). Here we shall adopt the definition
of multiresolution put forward by de Boor, DeVoore, and Ron in [6], which is a
generalization of the definition given by Mallat and Meyer. Let S be a shift-invariant
subspaces of L2(W). For fceZ, let Sk be the 2*-dilate of S:

Sk = {s(2k-):seS}.

We say that {S^},^ forms a multiresolution of L2(U
d) if the following conditions are

satisfied:

(i) SkcSk+ukeZ;
(ii) \JkmzSt = L2{&);

Evidently, the condition (i) is equivalent to saying that S is refinable.
In [32] and [33], the space S was assumed to be S(</>) for some function <j> e L2(U

d).
Moreover, 0 was assumed to have stable shifts. The concept of stability involves
sequences on the lattice Zd. For each pe[l,oo], let /p(Z

d) be the Banach space of all
sequences a on Z such that

We also denote by lo{Zd) the linear space of all finitely supported sequences on Zd. For
a function <j> defined on W and a sequence a on J.d, we use the semi-convolution
notation <j>*'a to denote the sum

Z
jeZd

whenever this sum makes sense. In particular, <p*'a is well defined if aelo(Z
d). We say

that the shifts of a function 4>eL2{Ud) are stable if there exist two positive constants Ct

and C2 such that

CillflllaSll^'fll^CjUalla for all aelo(Z
d). (1.1)

The stability condition can be characterized in terms of the Fourier transform of <f>. The
Fourier transform of feLi(Ud) is defined by
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MULTIRESOLUTION AND WAVELETS 273

where i denotes the imaginary unit, and £,-x denotes the inner product of the two
vectors £ and x in Ud. The Fourier transform has a natural extension to L2(U

d). It is
well-known (see e.g., [33, Chap. 2]) that (1.1) is equivalent to the following conditions:

C\^ £ |#({ + 27t/3)|2^C\ for almost all £e W.

See the work of Jia and Micchelli ([24] and [25]) for a characterization of the stability
of the shifts of a finite number of functions in Lp(IR

d) l^p^co. When p = 2, their results
were generalized by de Boor, DeVore, and Ron in [5].

If </>eL2(W) has stable shifts, then <p*>a is well defined for any aeI2(Z
d), and S(0)

can be characterized as the space {$*' a: ae/2(Zd)}. In particular, <f> is refinable if and
only if <f> satisfies a refinement equation

where bel2(Z
d) is called the refinement mask. In the case when d= 1 and the (refinement)

mask is finitely supported, the stability of the shifts of <f> was characterized by Jia and
Wang [27] in terms of the mask.

Of fundamental importance in multiresolution analyses is the following question.
Under what conditions on <j> does S(0) generate a multiresolution of L2(U

d)l It was
proved in [33, Chap. 2, Theorem 5] that S(0) generates a multiresolution of L2(U

d)
provided that <j> is refinable, <f> has stable shifts, and <t> satisfies the regularity conditions:

|<£(jc)|gCm(H-|x|)m forallmeNandxeR'' , (1.2)

where N is the set of natural numbers, |x| denotes the Euclidean norm of x, and Cm are
positive constants which might depend on m. In the work of Jia and Micchelli [25], the
aforementioned regularity conditions were relaxed so that 4> is only required to satisfy

Z|0(--7) |eL2([O,l) ') . (1.3)
JeZ*

Various improvements of the above results were made in [31] and [39]. But the
ultimate solution to the question concerning multiresolution was obtained by de Boor,
DeVore, and Ron in [6]. Their results can be stated as follows.

Theorem 1.1. Let S = S^(<f>) be the shift-invariant subspace generated by a function
<f>eL2(U

d), and let Sk be the 2k-dilate of S for ks Z. //, in addition, <f> is refinable, then
U if and only if

f| (
keZ
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274 RONG-QING JIA AND ZUOWEI SHEN

is a set of measure zero, where Z(<ji): = {£e

Theorem 1.2. Let S = y(</>) for some <t> e L2(W). Then (~)keZSk = {0}.

Note that in Theorems 1.1 and 1.2 (p is not assumed to have stable shifts. In fact, it
was proved earlier in [25] that the union of Sk (fceZ) is dense in L2(U

d) provided that <p
is refinable, <p satisfies (1.3), and $(0)#0.

In this paper we investigate multiresolution induced by finitely generated shift-
invariant (FSI) spaces. A shift-invariant space is said to be finitely generated if it is
generated by a finite number of functions. Let O be a finite set of functions in L2{W). By
y(<S>) we denote the smallest closed shift-invariant subspace of L2(U

d) containing tf>. We
say that O provides an orthonormal (resp. stable) basis for a shift-invariant space S if
y(<D) = S and the shifts of the functions in <D are orthonormal (resp. stable). As we shall
see, Theorem 1.1 has an easy extension to FSI spaces. In the next section we extend
Theorem 1.2 to FSI spaces. Note that the method used in [6] to prove Theorem 1.2 is
not readily applicable to FSI spaces. Thus we shall take a different approach to this
problem.

Given a refinable shift-invariant subspace S of L2(U
d), we define the wavelet space W

as the orthogonal complement of So in S,. It follows that Wk, the 2*-dilate of W, is the
orthogonal complement of Sk in Sk+1 (fceZ). Thus, in order to find an orthonormal
basis for L2(U

d), it suffices to find an orthonormal basis for the wavelet space W. A
subset 4* of W is called an orthogonal wavelet set if 4* provides an orthonormal basis for
W; 4* is called a prewavelet set if 4* provides a stable basis for W.

The construction of univariate orthogonal wavelets is relatively simple (see, e.g., [32]
and [33]). Let § be a function in L2(U) having orthonormal shifts. If (p satisfies the
refinement equation

JeZ

then the function

provides an orthonormal basis for the wavelet space W, where we have used the
notation a to denote the complex conjugate of a complex number a. Daubechies in [15]
constructed smooth scaling functions of compact support having orthonormal shifts and
then applied the above method to obtain smooth orthogonal wavelets of compact
support. A construction similar to the one given above was used by Chui and Wang
([7] and [8]), and Micchelli [34] to produce prewavelets.

In the multivariate case (d> 1), if the scaling function is a tensor product of univariate
functions, then the construction of orthogonal wavelets is also straightforward (see e.g.,
[40]). However, when the scaling function is not a tensor product of univariate
functions, the construction of wavelets is much more complicated than the construction
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MULTIRESOLUTION AND WAVELETS 275

of wavelets in one variable. Under the conditions that cf> has stable shifts and satisfies
the regularity condition (1.2), Grochenig [19] first proved the existence of orthogonal
wavelet sets (see also [33, p. 92]). Under a weaker condition Jia and Micchelli [26] gave
another proof of the existence of orthogonal wavelet sets. But these proofs are not
constructive. In [6], assuming $ # 0 a.e., de Boor, DeVore, and Ron gave an explicit
construction of orthogonal wavelet sets. But their construction does not cover all the
cases considered in [26]. In Section 3, we will give a simple construction of orthogonal
wavelets provided

n)\2 > 0 for almost all £ e W.

We will also discuss how to construct wavelets when S is generated by a finite number
of functions. This discussion extends the previous results in [18] and [35]. Also see [13]
and [23] for nonorthogonal wavelet decompositions associated with refinable FSI
spaces.

Following the approach of Jia and Micchelli in [25] and [26], we shall establish our
results of wavelet decomposition on the basis of the notion of extensibility. See [36] for
an exposition of the work of Jia and Micchelli. Section 4 is devoted to a discussion of
extensibility. More precisely, we shall reduce the problem of wavelet decomposition into
a problem of matrix extension. The latter problem can be formulated as follows. Given
a vector whose components are functions on the unit sphere, find a matrix whose entries
are also functions on the sphere such that the matrix is always nonsingular, and has the
given vector as its first row. If the entries of the matrix are only required to be
measurable, then the extension problem can be easily solved. The disadvantage of using
merely measurable functions in wavelet decomposition is that usually we can say
nothing about the decay of the resulting wavelets. To have some control of the decay of
the wavelets, we must require that the entries of the matrix be continuous. Thus, one is
led to the deep theory of vector fields on spheres. In view of this theory, we shall see
that there is no universal way of constructing wavelets except for some special cases.
One exceptional but important class of scaling functions is the class of symmetric
functions in the low dimensions (d^3). For this class of scaling functions
Reimenschneider and Shen in [37] and [38] gave a very useful construction of
orthogonal wavelet and prewavelet sets. (Also see [9].) Simple constructions of wavelets
were given in [30], [39], and [6] for those scaling functions whose Fourier transforms
are positive almost everywhere.

The discussion in Section 4 suggests that the intrinsic properties of the scaling
functions must be employed in order to construct wavelets with certain decay rates. The
property of a scaling function being symmetric not only has physical significance (see
[15] and [8]), but also is useful in the construction of wavelets and prewavelets. In
Section 5 we shall give an explicit construction of wavelets with certain decay rates and
compactly supported prewavelets for scaling functions that are skew-symmetric about
some point in Ud, where the space dimension d can be arbitrary. In particular,
orthogonal wavelets generated by box splines in W will be discussed.
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276 RONG-QING JIA AND ZUOWEI SHEN

2. Multiresolution

In this section we investigate multiresolution of L2{WI) based on FSI spaces. We give
a complete solution of questions concerning the density of the union and the triviality of
the intersection of the dyadic sequence of an FSI space used in multiresolution. This is
an extension of the corresponding result in [6] to FSI spaces.

Theorem 1.1 has an easy extension.

Theorem 2.1. Let S = £f(<b), where O is a finite subset of L2(W), and let Sk be the
2k-dilate of S (fceZ). If{Sk}keZ is a nested sequence, then \JkezSk = L2{W) if and only if

is a set of measure zero.

This theorem can be proved in the same way as Theorem 4.2 of [6] was done. One
first proves that the space (J^zS* is translation-invariant and then invoke the
well-known result of Wiener [41, p. 100] about the characterization of the density of a
translation-invariant subspace in L2(W) in terms of its Fourier transform.

Theorem 1.2 can also be extended to FSI spaces.

Theorem 2.2. Let S = S^(<S>) be an FSI subspace of L2(W). Then

m { }
keZ

Our proof of Theorem 2.2 is based on the following lemma.

Lemma 2.3. Given <b = {<l)u...,<f>n}cL2(W), one can find 4' = {i/f1,...,
such that S(<I>)SS(4') and the shifts of\j/u...^bnare orthonormal.

Proof of Theorem 2.2. Assuming that Lemma 2.3 is valid, we prove Theorem 2.2 as
follows (cf. [12], [33], and [39]). By Lemma 2.3, it suffices to prove the theorem for the
case when O = {01,...,0n} and the shifts of 01(...,<£„ are orthonormal.

Let Pk be the orthogonal projector from L2(W) onto Sk (keZ). The theorem will be
established if we can prove

PJ"->0 as fc->-oo (2.1)

for every feL2(W). Since ||Pt|| = l for all keZ, and since compactly supported
functions are dense in L2(U

d), it is sufficient to show that (2.1) is true for any compactly
supported function /eL2(IR''). Let / be such a function. Then Pkf can be expressed as
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where ckJ are sequences in /2(2d) (j=l,...,n). Since the shifts of <f>it...,(f>n are
orthonormal, we deduce from the above equality that

If / is supported in the cube [ —H,/?]* for some R>0, then by the Cauchy-Schwartz
inequality we have that for k<0, \k\ sufficiently large,

||n/||I ̂  11/111 Ej|tf>,(*)|2^, (2-2)

where

Ek= I

Now (2.1) follows by letting fc-» - oo in (2.2). D

In order to prove Lemma 2.3, we first establish an auxiliary result concerning linear
homogeneous equations with the coefficients being measurable functions. To this end, let
X be a nonempty set, and let Jt be a <x-algebra on X. Then (X,J() is a measurable
space and the sets in M are called measurable sets. A function f:X-*C is called
measurable if the preimage of any open set in C under / is measurable.

Lemma 2.4. Let A = (ajk)l^JSmtl^k^n be a matrix of measurable functions on (X,Jf).
Ifn>m, then there exist measurable functions ult...,un such that for almost all xeX,

ZK(x)|2 = l (2.3)
*=i

and

£ aJk(x)uk(x)=0, j=l,...,m. (2.4)
k=l

Proof. For a subset J of {l,...,m} and a subset K of {1,...,«} ,we denote by
A(J,K) the matrix (aJk) jey ik6X. To each pair (J,K) we associate a set E(J,K) as follows.
If # J # # K , where # J denotes the number of elements in J, let E(J,K) be the empty
set; otherwise, let

E{J, K): = {xeX: rank(A(J, K)(x)) =#J = rank(/4(x))}.
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It is easily seen that E(J, K) is a measurable set and

X= U E(J,K),

where J and K run over all possible subsets of {l,...,m} and {l,...,n}, respectively. We
can find measurable subsets F(J,K) of E(J,K) such that X is the disjoint union of
F(J,K). We shall define ult...,ua piecewise on each set F(J,K). For this purpose we fix
a pair (J,K) such that F(J,K) is not empty. Then #J=#KfLm. If # J = 0, then A(x)
is the zero matrix for every x e F(J, K). In this case, set

v^xy.^l and i;2(x) = ••• =yn(x): = 0 for xeF(7,K).

If # J ^ 1 , then we choose an element /e{l,...,«}\K. For xeF(J,K), let u,(x): = l,
t>k(x): = 0 for fce{l,...,n}\JC\{/}. By Cramer's rule one can determine vk(x), keK in a
unique way such that for all jeJ,

k=l
aJk(x)vk(x)

But rank(/l(x))= # J , hence the above equality is true for all j=l,...,m. The functions
vk (k=l,...,n) so defined are measurable on F(J,K). Now we define uk (k=l,...,n) on
X as follows:

uk(x) = vk(x)l( X |i;f(x)|2Y'2, x e F(J, K).

Since X is the disjoint union of the measurable sets F(J, K), each uk is well defined and
is measurable. Clearly, (uk)lSkSn satisfies (2.3) and (2.4). •

The proof of Lemma 2.3 also relies on the basic theory of shift-invariant spaces. Let
us first recall the bracket product notation, which was introduced in [25] and refined in
[4]. For/,g6L2(IRd),set

(-+2«P)g{-

Then \_f,g] is a 27t-periodic function. Note that [/,g]eL1([O,27r)'/) as long as
f,geL2(U

d). Thus, [/,g] has a Fourier series expansion:

The Fourier coefficients ca(f,g) can be easily found:
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J
[0,21)"

=</,«<•+«)>,

where </,g> denotes the inner product of f,g in L2(IR
d). Three useful facts can be easily

derived from the above discussion. First, the shifts of feL2(M?) are orthogonal to the
shifts of geL2(W) if and only if [/,£]=0 a.e.; second, the shifts of feL2(U

d) are
orthonormal if and only if [/,/] = l a.e.; third, if feL2(U

d) does not have orthonormal
shifts but [/, / ] > 0 a.e., then the function /„ given by

generates £f{f) and has orthonormal shifts.
We also need the following characterization of PSI spaces (see [20] and [4]). Let

y(<l>) be the PSI space generated by a single function <f>eL2(U
d). Then a function

feL2(W) belongs to y(</>) if and only if

for some 27r-periodic function x. In particular, <f> is refinable if and only if

for some 27t-periodic function rj.

Proof of Lemma 2.3. The proof proceeds by induction on n. If <S> contains only one
function #eL2(R'i), then we define \ji as follows:

1, if [$,$](<!;) = 0 and ^e[0,2n)d;

0, elsewhere.

Clearly,

[$> $](£) = 1 f°r almost all t, e Ud.

Hence \j/ e L2(R
d) and the shifts of i]/ are orthonormal. Moreover,
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This shows that <t>eSP{4i), and hence
Now let «>1 and <D = {<f>u...,0n}cL2(IR''). By induction hypothesis, there exist

i/'1,...,i/fII_1eL2([R'') such that

^Wi ^-ils^i *,-i) (2-5)

and the shifts of i]/1,...,1/0,-1 are orthonormal. We may assume that (j>n is orthogonal to
y ^ ! , . . . , ^ , , - ! ) , for otherwise we may replace <£„ by (j>n — P<j>n, where P0n is the
orthogonal projection of </>„ on the space S?(il/l,...,\l/n-1). It follows that

[&,#j ]=0 for j = l , . . . , n - l .

Consider the set

Y: = Ke[0,27r)':[<L <£„](£) = 0}.

Evidently, the set Y is measurable. Let

, ^ 7 ; i = l , . . . , n - l ; k = l n,

where et denotes the d-vector (1,0, ...,0). Consider the matrix A={ajk)l^i^n-ll^k^n. In
what follows, for a given matrix B, we denote by B and B r the complex conjugate and
the transpose of B, respectively. By Lemma 2.4, we can find measurable functions
Vi,...,vn on Y such that for almost all £e Y,

and

We define a function g on IR"1 as follows:

i f o r s o m e me{l,...,n};
8((;>- jo, if

The functions g was constructed in such a way that g is measurable and possesses the
following two properties:

(a) [g,i?j] = 0for ; = l , . . . , « - l , and

(b)
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Now let il>n be the function defined by the rule

g(Q, elsewhere.

Then ij/n is measurable and [t?n,i?n] = l. Hence ^/neL2{Ud). Moreover, [$„,$,]=() for
j = l,...,n— 1. Thus, the shifts of ij/1,...,il/n are orthonormal. Finally, since $„ =
[<?„><?„] 1/2$n, we have <j>neSf(\l/n). This together with (2.5) implies

The proof of Lemma 2.3 is complete, and so is that of Theorem 2.2. •

Remark 2.5. DeVore and Lucier in [17] quoted [6, Theorem 4.3] differently from
what was stated there. Let <f>eL2(W) and S = Sf(<f)). It was claimed in [17] that
U*ez^* = ^2('^'') whenever <f> is refinable and, in addition,

[$, $ ] > 0 a.e. (2.6)

This confusion must be clarified. We point out that the condition (2.6) and the
condition

f) (2kZ($)) is a set of measure zero (2.7)
fceZ

are incomparable. For example, if <$> is defined on IR by the rule

[, for £e[0,27t);
), otherwise.

Then <f> is a refinable function satisfying the condition (2.6). However, n*ez(2*Z(<?)) =
( — oo,0) is not a set of measure zero. On the other hand, if <f> is given by the formula

, fl, for { e [ - « A « / 2 ) ;
(0, elsewhere.

Then <p is also refinable. In this case the condition (2.7) is satisfied, but [$, $](<!;) = 0 for
Ze{n/2,3n/2).

Remark 2.6. Multiresolution based on non-dyadic dilations of PSI spaces was
investigated in [26] and [31]. Theorems 2.1 and 2.2 can be extended to such a situation.
Let T be a nonsingular matrix whose entries are all integers. Assume that the spectral
radius of T~l is less than 1. Let S be an FSI subspace of L2(W) and let
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Sk: = {f(Tk-):feS}, ksZ.

Then n*ezSn = {0} still holds. To see this, we may assume that O consists of functions
whose shifts are orthonormal. Consequently, an argument similar to that used in the
proof of Lemma 2.2 tells us that n*ezSt = {0}. Moreover, if {Sk}keZ is a nested
sequence, then UneZSt is translation-invariant. This can be proved in the same way as
Theorem 4.2 of [6] was done. Thus, we can invoke a well-known result of Wiener [40,
p. 100] to conclude that \JkeZSk = L2(W) if and only if

Q f] (TkZ(<f>)) is a set of measure zero.
<t>e<t> fceZ

3. Wavelet decompositions

This section is devoted to a study of the existence and construction of orthogonal
wavelets. We shall give an explicit construction of orthonormal wavelet bases for L2(U

d),
provided that the conditions (2.6) and (2.7) are satisfied.

Let 0 be a function in L2(U
d). As before, y($) denotes the PSI space generated by <j>,

and Sk is the 2*-dilate of y(</>) (fceZ). We assume that 4> is refinable, i.e., SQCZSJ^. The
wavelet space W is defined as the orthogonal complement of So in St. Our goal is to
find a subset *F of W such that 4* provides an orthonormal basis for W. If T is such a
set, and if {Sk}keZ forms a multiresolution of L2(U

d), then

{2kd/24/(2k • - a): \ji e ¥ , k e Z, a e Zd}

forms an orthonormal basis for L2(U
d).

There has been an extensive study of the existence of orthogonal wavelet sets (see
Section 1 for a brief discussion of the related literature). In the multivariate case, Jia and
Micchelli ([25] and [26]) considered the construction of orthogonal wavelets and
prewavelets under the conditions that the function <j> has stable shifts and the
periodization

H°:= IJ*(--«)|

of |$| is in L2([0, l)d). de Boor, DeVore, and Ron in [6], investigated this problem under
the assumption that $ / 0 almost everywhere. Their assumption is too restrictive for
some interesting wavelets such as the Meyer wavelet (see [16, p. 137]) whose Fourier
transform is compactly supported. Moreover, their study does not cover the results of
[25] and [26]. Here is an example. Let </> be a function on U defined by its Fourier
transform:

- 3/(47t)|̂ |, for
0, elsewhere.
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Then $ is compactly supported, but <f> satisfies all the conditions required in [25].
In our opinion, (2.6) is an appropriate condition for the wavelet decomposition. We

assume that (2.6) holds throughout this section. Let §n be the function given by

Then S^{<t>Jt.) = S^(4>) and $„ has orthonormal shifts. Thus, without loss of any generality,
we may assume from the beginning that <j> has orthonormal shifts.

Let g be a 27r-periodic function whose restriction to [0,2n)d belongs to L t . Then g can
be expanded into a Fourier series. We simply write

g(Q= £ a(a)e*t, SeW, (3.1)

to indicate the fact that the sum on the right-hand side is the Fourier series of g. In
particular, if ae/2(Z<(), then there exists a unique function g such that (3.1) holds, and in
this case the sum on the right-hand of (3.1) converges to g in the L2-norm. Often we
write (3.1) in another form:

p(z)= £ a(a)z°, zeT",

aeZ«

where Td is the d-torus

{{zl,...,zi)eC:\z1\ = - = \zi\ = l},
and p is the function on Jd defined by p(eii)=g(£) for £eUd. We say that p is the symbol
of a, and a the coefficient sequence in the Laurent expansion of p. The symbol of a
sequence a is often denoted by a.

Let & = $d be the set of all extreme points of the unit cube [0,1]', i.e.,

(f = <£,: = {(v,, . . . ,v^v — O or 1 for all j}.

This affects a decomposition of the lattice Zd into 2d sublattices 2Zd + /x (^e<?). Since <f>
is refinable, it satisfies a refinement equation

* = £ *(«M2--«), (3.2)
aeZ"

where b e /2(Z
<() is the refinement mask. Let

Then S, =£/'(<f>), where <b = {4>^.nsS}. Using the functions </>„ {neS), we can rewrite
(3.2) as
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4>=ItfV*'*V <3-3)

nee

where fcM (n e S) are the sequences in l2 {!.*) given by

bll(P) = b(n + 2fi), PeZd.

Taking the Fourier transforms of both sides of (3.3), we obtain
e~% {eR*. (3.4)nee

where /?„ (fj. e S) are the Laurent series given by

Pn(zY-= £ 2~d/2bl,(P)z0, zeJ".

Since 4> has orthonormal shifts, [<j>, $] = 1 a.e., so it follows that

[2d/2^,2d/2^v] = (5>lv a.e., (3.5)

where <5MV denotes the Kronecker symbol. We can deduce from (3.4) and (3.5) that

1 = X \p^e-li)\2 for almost all £ e W. (3.6)

Consequently, pueLx(T
d) for all \it$. Suppose we are given 2d functions ifi^eS

Each !/>„ has a representation of the form

' fc l , , , ( 3 -7 )

where bllvel2(Z
d) (n,ve#). Let

P^v(z):= I fc^/Oz*. zeT". (3.8)

The following theorem plays a prominent role in wavelet decompositions (see [33, p. 84]
and [25, Theorem 7.1]).

Theorem 3.1. The set {iAM(" — a):/*e<?, aeZ11} forms an orthonormal basis for St if and
only i/(p^,(z))^,ve* is a unitary matrix for almost every zeTd.

Theorem 3.1 tells us a general procedure to find an orthogonal wavelet set.
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Algorithm 3.2. Let 0 be a function in L2(W) having orthonormal shifts. Suppose
that 4> satisfies the refinement equation (3.2) with b as its mask.

Step 1. Find pp (fie£) by the equation pfI(z): = X/,6z«2~'(/2b(2j3 + /i)z<', zeld.

Step 2. Find p(IveL00(T
<l) (n,ve£) such that pOv=pv for all ve<? and that the matrix

(/Vv(z))/i,ve# is unitary for almost every zeTd.

Step 3. Expand ppv into the Laurent series: p^»(z) = Xaez"^v(a)z<2-
Step 4. Set i/v=£ve*2''/20v*<b,,v for all ne£\{0}, where <£V = (f>(2• -v), ve<£

Then {>/'„(• —<x):fie^\{0}, aeZd} forms an orthonormal basis for the wavelet space W.

The above algorithm reduces the problem of wavelet decomposition into the problem
of completing a unitary matrix with the first row given. In order to investigate this
matrix problem, we first recall some basic facts about Househoulder matrices (see, e.g.,
[10, p. 152]).

Given a matrix A, its (complex) conjugate traspose is denoted by A*. If i; is an n x 1
vector in C", then vv* is an nxn matrix, and v*v is a nonnegative number. For a
nonzero n x l vector v in C". let H(v) be the Householder matrix given by

H(v): = I-2vv*/v*v, (3.9)

where / denotes the n x n identity matrix. It is easily verified that H(v) is both Hermitian
and unitary.

Lemma 3.3. Let a=(a1,...,an)
T be a nonzero vector in C". Let coeU be such that

a1 = cto|a1|. Then

where et is the nxl vector (1,0,.. . , 0)7", and ||a||2: = (Z;=i | a j |

Proof. Write v: = a + \\a\\2 e"° eY. Then

H(v)a = a-2v(v*a)/(v*v).

We have

= 2||a||2(||a||2 + |a1|)

= 2v*a. (3.10)

It follows that
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if(»)o = a-o=- | | f l | | 2e t oe1 . D

This lemma is of particular interest when ||a||2 = 1. In this case,

H(v)a=-eitoe1.

Since H(v) is a unitary matrix, H(v)~l =H(v)*, so

Let diag{—e"°, 1,..., 1} denote the nxn diagonal matrix with — eiu>, 1,...,1 as its
diagonal entries. Then the matrix

(3.11)

is unitary and has (a,,...,aB) as its first row. We may express e"° in another form:

where a is the function on C given by the rule

1, if w=0.

Note that a is not a continuous function. Let us compute the (j,k)-entry ajk of the matrix
A. It follows from (3.9) and (3.11) that

But u*i; = 2(H-|a1|) in view of (3.10). Thus, we find that for j> 1

= f-a/T(o1), for fc=l;
jk \d-aaAl + \<*M fo r fc>1

The forgoing discussion is summarized in the following theorem.

Theorem 3.4. Given (au...,an)eC with £* = i K | 2 = 1- Let alk = ak (k=l,...,n) and
let aJk be given as in (3.12) when j>l. Then (ajk)itk=l „ is a unitary matrix.

Theorem 3.4 yields an explicit method of wavelet decomposition described in the
following.

Theorem 33. Let 4> be a function in L2(U
d) satisfying the refinement equation (3.2) and
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having orthonormal shifts. Then the functions ip^ (//e<?\{0}) produced by Algorithm 3.2
provide an orthonormal basis for the wavelet space W, ifpMV (fie<a\{0}, ve£) are chosen as
follows:

f-p>(Po), for v = 0;
"V U ,V-P>V/ (1+ |PO | ) , for v

While Theorem 3.5. gives a very general result, it has a serious shortcoming. The
decay rates of the wavelets ip^ (fieS\{0}) are beyond our control, even when the scaling
function <p has a certain decay rate. Let us take a closer look into this problem. If we
want the sequences b^ in Algorithm 3.2 to be in lx{Zd), then the functions pMV must be
continuous. But the discontinuous function a was used in the above construction. It will
be demonstrated in Section 4 that the use of discontinuous functions is unavoidable if
the information about the intrinsic properties of the scaling function <j> is not available.
Nevertheless, if some intrinsic properties of the scaling function 4> are known, then it is
possible to construct orthogonal wavelets having the same decay rates as <f> does. The
following example illustrates this point.

Example 3.6. Let 0 be a function satisfying (2.6) and (3.2). Suppose in addition that
$ is nonnegative almost everywhere. Then there exists a null set Ec:Rd such that
[<£, <£](£) >0 and $ ( a ^ 0 for all £eUd\E. It follows from (3.4) that

'«'2), (3.13)
where

p{e~iil2) = 2-il2YJ c"'v?/2Pv(e"'*)• (3.14)

Let F:=(E + 2nZ)u2(E + 2nZ). Then F is also a null set. If ZeW\F, we have
fa/2 + 2na)^0 for all <xeZd and [$,0](£/2)>O; hence fa/2 + 2nP)>0 for some /?eZd.
With this P we deduce from (3.13) that

fa + 4n0) = fa/2 + 2np)p(e ~ii/2).

Since £$(E + 2nZ), we also have $(£ + 4710)^0. This shows that p(e~lil2)^0 for almost
every £eW. Now (3.14) tells us that for almost every

vet

Consequently, a(po) = l and |po|=Po- Therefore p^v are continuous functions as long as
pv are. Furthermore, if <j> has orthonormal shifts and decays exponentially fast, then the
wavelets if/,, (/i e <?\{0}) provided by Algorithm 3.2 also decay exponentially fast. D

In the rest of this section we extend the preceding discussion to wavelet decompo-
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sitions generated by a finite number of functions. This problem was studied by
Goodman, Lee, and Tang [18] for the univariate situation, and by Micchelli [35] for
the multivatiate situation. Let S = Sf(<&) be an FSI subspace of L2(W). We assume that
the Gram matrix G&:=([<}>,xJ)<t,,Xe<» ' s nonsingular almost everywhere. This assumption
covers all the cases considered in [18] and [35]. From the general theory of shift
invariant-spaces developed in [5], we see that there exists a finite subset <&m of L2(R

d)
such that y(4>*) = y(<l>) and the shifts of the functions in <&„ are orthonormal. Thus, we
may assume from the beginning that G> has this property.

Theorem 3.7. Let O be a subset of L2(R
d) containing n elements such that the shifts of

the functions in O are orthonormal. If in addition, Sf(Q>) is refmable, then there exists a set
*F containing (2d— \)n elements such that *P provides an orthonormal basis for the wavelet
space W.

Sketch of proof. As was done before, this problem can be reduced to a problem of
matrix extension. Let T: = <t> x S. For y = {<j>,n) e O x S = T, let

Then {py:yeF} provides an orthonormal basis for Su the dyadic dilate of y(<t>). Each
feS1 can be represented as

where bfy are sequences in /2(Z
d). Let pfy be the symbol of the sequence bSy for each

pair (f,y). We associate to each feSt a vector-valued function p/.=(Pf,y)yer defined on
Td. In particular, each (/>e<I> is associated with p^:Td-»Cr. Since the shifts of the
functions in <S> are orthonormal, {p#(2):^eO} is an orthonormal set in Cr for almost
every zeTd. A subset *P of St provides an orthonormal basis for the wavelet space W if
and only if

forms an orthonormal basis for Cr for almost every zeTd. Thus, in order to establish
the theorem, it suffices to prove the following lemma.

Lemma 3.8. Let vu...,vm (m<n) be vector-valued measurable functions, i.e., v} =
{vJ1,...,vjn)

T with vJk (k=l,...,n) being complex-valued measurable functions on a
measurable space {X,J(). Suppose that {u1(x),...,t>m(x)} is an orthonormal set in C for
almost every xeX. Then one can find vector-valued functions vm+l,...,vn such that for
almost every xeX, the vectors vl(x),...,vn(x)from an orthonormal basis for C.

This lemma can be proved as follows. Choose a measurable vector-valued function
vm+i=(vm+i.1,...,vm+1J

T from (X,JC) to C such that for all xsX,
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n

£ k + i , * ( * ) | 2 = l and vf(x)Dm+l(x)=0, j=l,...,m.

The existence of vm+i is guaranteed by Lemma 2.4. Continuing in this way, one can
construct vm+l,...,vnso that they satisfy the requirements of the lemma. •

4. Extensibility

Having reduced the problem of wavelet decomposition to that of matrix extension, we
shall devote this section to a study of the extensibility in an abstract setting. It turns out
that this problem is closely related to the theory of vector fields on spheres.

Given a commutative ring R with identity, let R" be the free .R-module of rank n ̂  2.
We say that an element (p1,...,pn)eRn is extensible over R, if (pu...,pn) is the first row
of some nxn invertible matrix over R. We are particularly interested in the rings of
real-valued or complex-valued continuous functions on unit spheres.

For an integer «^2, let S"~l be the (n—l)-dimensional sphere

n - l

Let R be the ring of all real-valued continuous functions on S"~l. Consider the
functions pk e R given by

The row vector (po,...,pn-t) is extensible over R only if n = 2,4, or 8. This conclusion
comes from Adams' theorem (see [1]). Let p(n) — 1 be the maximal number of linearly
independent tangent vector fields on S"'1. Write n as n = a(n)2c('1)16'"n), where a(n), c(ri),
and d(n) are nonnegative integers, a(n) is odd, and 0^c(«)^3. Adams' theorem says
that

p(n) = 2eM + Sd(n). (4.1)

Since (po,...,pn^l) is extensible over R if and only if p(n) = n, Adams' theorem tells us
that this happens if and only if ne {2,4,8}. For /ie{2,4,8}, it is not difficult to complete
(Pof-.Pn-i) t o a n orthogonal matrix. For example, one can find such a construction
from [28, p. 31].

We remark that there is an oversight in [33, p. 92] (see also [16, p. 319]) concerning
vector fields on spheres. It was stated there that there exists no nowhere-vanishing
continuous vector fields tangent to the unit sphere S"~l except in real dimension 2, 4, or
8. In fact, the formula (4.1) tells us that for any even number n, there exists at least one
continuous nowhere-vanishing vector field tangent to the unit sphere S""1.
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Next, let us consider the ring of the complex-valued continuous functions on the
sphere

S"~l-= \(z z _ )e<C"- Y \z |2 = 1 >

Let fQk (k = 0,...,n— 1) be the function defined by the rule

J O k ( Z O > • • • > Z n - l ) = Z k > ( Z 0 > - - - > Z n - l "~

If n = 2, the 2 x 2 matrix

' z, z2

is unitary for every (zl,z2)eC2 with |z1|2 + |z2|2 = 1. The following theorem deals with
the case n > 2.

Theorem 4.1. If n>2, then there do not exist continuous functions fJk (j=l,...,n—l,
/c = 0 , . . . ,n— 1) on S Q " 1 such that the matrix F(z): = (fjk(z))Ogjk^n^l is invertiblefor every

1

Proof. This theorem can be derived from Corollary (3.7) on page 24 of [21]. Here
we give a proof based on Adam's theorem which works for all cases but n = 4.

Suppose that there exist continuous functions fjk on SJ"1 (j=l,...,n — l;
k = 0,...,n—l) such that the matrix F(z) = (fjk(z))0gjJlSl,_l is invertible for every
zeSJT1. Write Zj=Xj + iyj for Xj,yj6U. Then z = (zo , . . . ,zn_1)eSc~1 if and only if
(x o , y o , . . . , x n _ 1 , y n _ 1 ) eS 2 n - 1 . Let

Thus, fJk (j,k=0,...,n — l) may be viewed as functions of w on S2""1. Write
fjk—ijk + ihJk, where gJk and hjk are the real and imaginary parts of fjk, respectively. In
particular, gOk = xk, hOk = yk(k = 0,...,n — l). Consider the matrix

where each GJk is a 2 x 2 block:

We claim that
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detG(w)=0=>detF(z) = 0.

In order to verify this claim, we fix zeSc'1 for the time being. Clearly, detG(w)=0
implies that there exist ^,1/jER (j=0,...,n— 1), not all zero, such that

" l Kj. rij)Gjk(W) = 0 for all k = 0, . . . . n-1.
7 = 0

It follows that

. n - 1

w)-ijJfci»(w))=0 and £ (£/«*(w) + if#j»(w)) = 0.
J=0 j = O

Let Cj: = Zj + bij. Then (£„,..., C - J e C V O } . Moreover,

" l £/*(*) = 0 forallfc = 0 , . . . , « - l .
j = o

Hence detF(z) = 0. This verifies our claim. Thus, if d e t F ( z ) / 0 for every zeS"c~
l, then

detG(w)#0 for every weS2n~l. It follows that (wo,. . . ,w2 n_i) is extensible over the ring
of real-valued continuous functions on S2"'1. By Adams' theorem, this happens only if
2ne{4,8}, i.e., ne{2,4}. •

In the case n = 4 or 8, however, if a vector-valued function (/Oo.-- , /o,n-i) o n ^c"1

enjoys a certain symmetry, then it is possible to complete such a vector to a nonsingular
matrix. Here we describe without proof a construction essentially given by
Riemenschneider and Shen (see [37] and [38]). A mapping rj from Sd to itself is called
admissible if r\ satisfies the following two conditions:

7(0) = 0

and

is odd for

Admissible mappings on Sd were constructed in [37] for d ^ 3 . When d>3, there do not
exist admissible mappings on 8t. Suppose £v (ve<fd) are 2d complex numbers. For any
aeZ d , there exists a unique nsSd such that a — fie2Zd, we define („: = £„.

Theorem 4.2. Let ceZd be given, and let t] be an admissible mapping on & = Sd.
Suppose Cv (

v e <̂ ) are 2d complex numbers such that

V E *
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and

Cv = Cc-v for all ve<£

Let

. _ f( — 1)'(")V(V_M, 1/ /;(^) • c is even;

**" \(~I)'1*'1'vCv-)j> ' / n(n)~cisodd.

Then (wllv)llveg is a unitary matrix with ((v)ve^ as its first row.

5. Construction of wavelets and prewavelets

The results in the previous section tell us that, in general, the intrinsic properties of
the scaling function must be employed in order to construct wavelets with certain decay
rates. In this section we are particularly interested in symmetric scaling functions. The
property of a scaling function being symmetric has some nice consequences and enables
us to give a simple and explicit construction of wavelets and prewavelets. We also
discuss the construction of box spline wavelets in arbitrary dimension.

By virtue of Algorithm 3.2 we may concentrate on the problem of completing a given
vector to a nonsingular matrix. Let pt,...,pn be complex-valued continuous functions
on Jd such that

t\pj(z)\2 = l for all z e T". (5.1)

Consider the mapping

P:zi->(p1(z),...,pn(z)), zeJd.

Then P maps Td to SJ"1. If the functions Pi,...,pn are Holder continuous on Jd, then P
is a Holder continuous mapping on Td; that is, there are some »ce(0,1] and a constant
C > 0 such that

\P(z)-P{w)\^C\z-w\K for all z,weJd.

The Hausdorff dimension of Jd and SJ"1 is d and 2n—1, respectively. Thus, by a
version of the Sard theorem (see e.g., [26]), the image of the mapping P is a proper
subset of SQ~1 provided d<2n—\. In other words, if d<2n— 1, then there exists a point
in Sc"1 outside the range of P. After an appropriate rotation if necessary, we may
assume that this point is — eu where ex denotes the n-vector (1,0,...,0).

Now we are in a position to describe the results of Grochenig [19] and Meyer [33, p.
92] in a slightly different way (also see [39]). Let Pi , . . . ,pB be complex-valued
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continuous functions on T* satisfying the condition (5.1). If (pi(z),...,pB(z))# — et for
any z e Td, then for sufficiently small e > 0,

det
-p2(z)

-Viz) 0

for any z e l f . (5.2)

Then the Gram-Schmidt orthogonalization procedure is performed to obtain a unitary
matrix with (pl(z),...,pn(z)) as its first row.

A different construction was given in [26]. The following theorem is a slight
modification of [26, Prop. 2.1].

Theorem 5.1. Let I be the nxn identity matrix, e the n x 1 vector (1,0,..., 0)T, and t a
complex number with \t\ = l. For z=(zl,...,zn)

TeSc~1\{te}, let

(5.3)

Then Q(z) is a unitary matrix with (zu...,zn) as its first row.

Proof. First we compute {te — z)T(le—z) as follows:

( Ie -z ) r ( fe - f )= l - fz 1 - t z 1 + l = 2-fz1-rf1.

It follows that

Hence Q(z) is a unitary matrix. Moreover, the (1, l)-entry of Q(z) is

and the (l.fc)-entry (fc> 1) is (f-z1)zt/(f-z1) = zt. •
We contend that the construction given in Theorem 5.1 has two advantages over

those given by Grochenig and Meyer. First, the matrix given in Theorem 5.1 is already,
unitary, so no further orthogonalization procedure is needed. Second, the matrix in (5.2)
involves e, which depends on the magnitude of the functions pj(j=l,...,n). In contrast
to this inconvenience, the construction given in (5.3) is universal, as long as zeSc~1\
{ae}.

Theorem 5.1 can be applied to symmetric scaling functions. Given a function
) , we say that 4> is skew-symmetric about some point c^eW if
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If, in addition, <j> is refinable and $ # 0 a.e., then c^ must lie in 7Ldl2 (see [15], [8], and
[38]). Without loss of generality, we may assume that c^ e &J2. Let c: = 2c^. Then c e Sd

and (f> = (fi(c — •). Suppose that <j> has stable shifts and satisfies the refinement equation
(3.2). Then we have

-a ) . (5.4)

Comparing (5.4) with (3.2), we find

b(<x) = b~(c-a) for all a eZ". (5.5)

For/ieZd, let

l>, zeT". (5.6)

Then (5.5) implies that for all fieZd,

), zel". (5.7)

When d^3, Riemenschneider and Shen ([37] and [38]) gave an explicit construction
of orthogonal wavelet and prewavelet sets for the skew-symmetric scaling function </>. In
this section we consider the problem of constructing wavelets and prewavelets for the
skew-symmetric scaling function 0 in arbitrary dimension. Let P be the mapping from
Td to C* given by zi-»(Pp(z))/,e#. Since <f> has orthonormal shifts, (3.6) holds. In other
words, the range of P is contained in the sphere.

Let e be the vector {dOv)vee- It follows from (5.7) that po = Pc- Thus, if c£<^\{0}, then
-e$P{Jd); if c=0, then p0 is real, hence ie$P(Td). Applying Theorem 5.1 to the
current situation, we obtain the following results.

Theorem 5.2. Let $ e L2(R'/) be a refinable function having orthonormal shifts. Let p
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{f) given as in
choosing
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be given as in (5.6). If (p is skew-symmetric about some point c^eSJ2\{0}, then
ng

iw+PoVO+Po). for fi 6 A{O},v = O
P"v ^ * •--V/(1+Po), / o r ^ v e A W - l - J

in Algorithm 3.2 produces an orthogonal wavelet set {^:/ie^\{0}}. / / 0 is skew-
symmetric about the origin, then the choice

_ f -P/.(' -Po)/(' + Po)> /or /̂  6 A{0}, v = 0
PMV ^^ - - V O ' + Po), /or/i, v 6 A W

gives rise to an orthogonal wavelet set
We note that the wavelets constructed here decay exponentially fast, if the scaling

function </> does so.
If <p is a real-valued refinable function, then the refinement mask b is real-valued. In

Theorem 5.2, if <p is symmetric about c0e(?/2\{O}, then the coefficient sequences £>„„ in
the Laurent series of pMV (//, ve<?) are real, because p^=pc-^. Hence the wavelets ip,,
(fie A{0}) a r e real-valued. However, if <j> is symmetric about the origin, the wavelets i/^
(lie A{0}) constructed in Theorem 5.2 are complex-valued in general. When <j> is a box
spline, the construction given in (5.8) is also valid for the latter case. Let us discuss this
problem briefly.

Unconditional spline bases for function spaces were constructed by Ciesielski [11]
and Stromberg [40] in the early 1980's. More recently, cardinal spline wavelets and
prewavelets were studied in [2, 29, 7, 8, and 34]. Box spline wavelets and prewavelets
were investigated in [37, 38, 25, 9, 30, and 39]. Let us recall the definition of box splines
(see [3]). Given a dxn integer matrix X of rank d^n, the box spline B(-\X) is defined
by the equation

J f(x)B(x\X)dx= J f(Xt)dt forall/eC(R").

R* [0,1]"

Any box spline is refinable. Let x u . . . , x n denote the columns of X. Then

B(-\X)= X b(a)B(2-a\X)
oteZ"

with

B(z):= f

It is well-known that the box spline B( |X) has stable shifts if and only if X is
unimodular, i.e., any d x d submatrix of X has determinant — 1, 0, or 1 (see [14], [22],
and [24]). Let

c*:= I Xj/2

aeZ* j= 1
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be the centre of the box spline B(-\X). There is a unique vector vxeZd such that
c ^ - ^ e ^ / 2 . Consider p: = B(•+vx\X). Then p is symmetric about cx — vxeSJ2.
Suppose that the matrix is unimodular. Then B(-\X) has stable shifts, and |p,p]>0
everywhere on W. Let <p be the function given by

<j>=p/[p,pY12- (5.9)

Then <p has orthonormal shifts and Sf(<l>) = ̂ (p). Moreover, <f> decays exponentially fast
at infinity. The function <f> is also refinable:

<t>= X a(a)(j)(2- -ix),
aeZ"

where the mask a is given by

6eUd,

so it also decays exponentially fast (see [25]). For neZd, let a,,(/?): = a(/i + 2/?) and

po(z): = 2-<"2 I a,(P)z>, zeT' . (5.10)

Then p^ {fieS) satisfy (3.6). We claim that there is no zeTd such that pft(z) = —dOll for
all n<=$. If cx$Td, then cx — vx&SJ2\{Q], so our claim is justified because (5.7) is valid
with c: = 2(cx — vx). If cxeZd, then vx = cx. In this case, b~(e~ie)eicX$ are real numbers for
9eUd. Moreover, it was proved by Stockier [39] that there is no OeW such that

fy j for al, v g s

Hence there is no 6 e W such that

a(e-''(e+VIt))<0 forallvecf. (5.11)

If there were some z = e~ie (8eUd) such that p^iz)^ —5Oll, then we would have

and (5.11) would follow. This contradiction verifies our claim. Consequently, Theorem
5.1 is applicable and we have the following results.

Theorem 5.3. Let B{• |X) be the box spline defined by a unimodular integer dxn
matrix X. Let <f> be the function derived from B(-\X) as given in (5.9), and (frll = (p(2- — fi)
(p,eS). For n,ve&, let p^ be given as in (5.8), where p^ are given as in (5.10), and let a^
be the coefficient sequences in the Laurent expansions of p^. Then the functions
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constitute an orthogonal set of wavelets with exponential decay.

In the rest of this section we study the construction of prewavelet sets for symmetric
scaling functions. Let us recall from [25] the general procedure for the construction of
prewavelet sets.

Algorithm 5.4. Let 0 be a completely supported function having stable shifts.
Assume that <$> satisfies the refinement equation (3.2) with a finitely supported sequence
b as the refinement mask.

Step 1. Find p^ (n e S) by the equation p^z):=£fl £ z i b(2/3 + /i) z", z e Jd.

Step 2. Find Laurent polynomials /?„„ (/i,veS) such that pOv=Pv for all veS and
that the matrix (p^v(r))M,v6/ is nonsingular for every zsJd.

Step 3. Let pll: = Ydve*(l>v*'!>„•,, where bMV are the coefficient sequences in the Laurent
polynomials p^, and <£v = </>(2- — v).

Step 4. Set #„: = [&f tp , - [p , , ,£ l& A»e A{0}.

Then î M (/i6^\{0}) are compactly supported and provide a stable basis for the wavelet
space W.

In order to apply Algorithm 5.4 to symmetric scaling functions, we first establish
some elementary results on determinants.

Lemma 5.5. Let ( a 1 , . . . , a n ) eC\{0} . If ax is a real number, then

ia2 1 ... 0

ian 0 ... 1

#0.

If al = a2, then

l-(fli+fl2)/2

-a3

Proof. The first determinant
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hence

Adding the first column to the second column in the second determinant A2, we obtain

J = 3
\

j=3

It follows that A2 #0. •

Lemma 5.5 yields the following construction of prewavelets for symmetric functions.

Theorem 5.6. Let <j> be a function satisfying all the conditions of Algorithm 5.4 and, in
addition, is skew-symmetric about some c^eSJl. Then Algorithm 5.4 produces a
prewavelet set of compactly supported functions if the Laurent polynomial p^v (n, veS) are
chosen according to the following rule. / / c ^ = 0, choose

pv, for n = 0,

1, for n = v

0, elsewhere.

0, let c = 2c<t> and choose

pv, for n=0,

c)A for fi = c,v = 0;

A for n=c,v = c;

/>„»= i -p,,, for ne£\{0,c}, v = 0;

p^, for /ieA{0,c}, v = c;

1, for /i = veA{0,c};

0, elsewhere.
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