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Abstract

We will study one-parameter families (^").,e[,,./j] of differentiable optimal control problems
given by:

Min J*"(.s,.v) := /J" L(s,t,x(t),u(s,t))dt, where

x = F(s,t,x,u) (t € [a,b])

G(s,t,x, u, y) > 0, (y 6 Y'(s,t,x,u),t € [a,b])

H^(s, a, .v(a), u(s, a), b, x(b), u(s, b)) = 0

Gh
a(s, a, x(a), u(s, a), b, x(b), tt(s, h), y) > 0

(v e Y2(s, a, x(a), u(s, a), b, x(b), u(s, *))).

Here, at given times / the inequality constraint functions are of semi-infinite nature, the
objective functional may also be of max-type. For each i e K the problem &>" is equivalent
to a one-parameter family (P^.(f ))/ei«.*i of differentiable optimization problems. From these
the consideration of generalized critical trajectories, such as a local minimum trajectory,
comes into our investigation. According to a concept introduced by Hettich, Jongen and
Stein in optimization, we distinguish eight types of generalized critical trajectories. Under
suitable continuity, compactness and integrability assumptions, those problems, which
exclusively have generalized critical points being of one of these eight types, are generic.
We study normal forms and characteristic examples, locally around these trajectories.

Moreover, we indicate the related concept of structural stability of optimal control
problems &>" due to the topological behaviour of the lower level sets under small data
perturbations. Finally, we discuss the numerical consequences of our investigations for
pathfollowing techniques with jumps.

1. Introduction, model and motivation

During the eighties, Jongen, Jonker and Twilt were able to introduce and to work out
a Morse theory for nonlinear differentiable optimization (c/. [27]). They made use of
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464 Gerhard-W. Weber [2]

methods from differential topology. In particular, their presentation and investigation
of five "generic" types of generalized critical points, for example, Kuhn-Tucker points,
turned out to be a markstone for the qualitative understanding of nonlinear problems
P_g: of minimization under finitely many equality or inequality constraints (cf. [29,
30]). To be more precise, the property of genericity originally refers to the set of all
(/»tL> Q) defining those one parametric optimization problems whose generalized
critical points only belong to one of these five types. Genericity which we introduce
in Section 2, is a stronger condition than density (cf. also [62]).

The numerical evaluation which takes account of this generic classification was
elaborated by Guerra Vasquez [19], and others. For the qualitative and numerical
evaluation it is geometrically easier and very helpful to investigate the problems
P_jr(s), locally around (s, x), in normal form, where x is a generalized critical point.

After a corresponding contribution of Rupp [57] in the meantime, recently Hettich,
Jongen and Stein extended that classification from finite to semi-infinite optimization
admitting now infinitely many inequality constraints. They arrived at eight generic
types (cf. [20]).

We remark and later on remember the fact that these generic classifications can
moreover be extended to the nondifferentiable case with the objective function being
of maximum-type f(s,x) = ma\vk(s, x) [39]. Besides the typical argumentation

with perturbations the main idea consists in an interpretation of this nondifferentiable
problem in R" as a differentiate problem in K"+l. This idea is worked out in [64, 65].

Now, we take these investigations over into the infinite-dimensional context of
optimal control theory. We study the behaviour of a problem in such a variational
setting locally around, for example, a local minimum trajectory x = J" and maybe
close to a locally minimal control variable u = ~u. However, we are interested in
the larger entity of generalized critical trajectories (embedding). These are motivated
and induced by the intimate relation between optimal control and optimization that is
founded in the flow coming from the controlling differential equation. Taking account
of this relation and a careful topological reasoning, the author extended Guddat's and
Jongen's topological concept of structural stability of an optimization problem [ 18,37,
64], namely of its lower level sets with respect to small data perturbations, into optimal
control theory (cf. [66]). Moreover, in the case of compactness of the feasible set, it
turned out that this condition can again essentially be characterized by means of both-
a Mangasarian-Fromovitz type condition (cf. [49], see also [17]) on the feasible set,
and a condition of strong stability (in the sense of Kojima; cf. [43, 44]), on the Kuhn-
Tucker trajectories. Hereby we have for a moment ignored the aspect of optimality
with respect to the control variable, which shall soon also be reflected (Remark 2).
Those trajectories are the most important generalized critical trajectories. We can
again introduce eight generic types of generalized critical trajectories and study the
behaviour of the optimal control problem around each of these trajectories. For
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this purpose we locally represent the problem by an easy one which is called its
normal form. Such a normal form might be achieved by a canonical change of
local coordinates and it exhibits the characteristics of the problem at a generalized
critical trajectory. Hence, it supports both a better geometrical understanding and the
numerical efforts in treating the control problem.

We remark that in the past it had been conjectured, for example, by Malanowski [47],
that there is a relation between semi-infinite optimization and optimal control theory
with respect to the problems' structures and qualities. This paper is a small contribu-
tion on this behalf and on to a better understanding in the qualitative theory of optimal
control [45].

Let C*(^, R) for any open set W c R" denote the space of real valued, /:-times
continuously differentiable functions over fy. By C*(^#, R), where ^ = [a, b\, or
= [a, fi]x[a, b] (a < fi;a < b), we denote the set of all functions w : J% -*• OS which
can be extended to a function w e Ck{%, R) {*% being some open neighbourhood
of JM) that gives us the derivatives of w at the boundary. Here we fix the index sets
/ : = { ! , . . . , « } and /* :={ l , . . . ,m2} .

The final and underlying desire consists in tracing the given maybe hard prob-
lem, &uc,s{&), back to a problem, &'^(a), which is connected with it and more
easy to resolve (continuation, homotopy method). Then numerical pathfollow-
ing techniques might work in order approximatively to find a solution of the ori-
ginal problem &"^,j,(fi). Hence we look at the following family of problems

€[<*,/?], a<py.

Mm, J?"(s,x) := J* L(s,t,x{t),u(s,t))dt, where

x = F(s, t,x, u) (t e[a,b])

H(s,t,x,u)=0 ( r e [$,..., C))

G(s,t,x,u,y)>0 (i€Y'(s,t,x,u),te[a,b])

Ha
h(s, a, x{a), u(s, a), b, x(b), u(s, b)) = 0

C*(5, a, x(a), u(s, a), b, x(b), u(s, b), y) > 0

(y e Y2(s, a, x(a), u(s, a), b, x(b), u(s, b))).

Here, the notation is condensed and, in particular, the s- and /-dependence of u
or x is not written out. Due to the index sets /, J, /*, yj", we refer to functions
fk e C4(K"+"+2, R) (k € {l,...,n)),ut G C4(1R2, R) (i e { I , . . . , ? } ) , maybe

. restricted on the rectangle [a, 0] x [a, b], hi e C3(K"+«+2, R) (k e / ) , (/?*), e

C3(K"+*+2, K). We use the notation F, u, H, //* in order to comprise these coordinate
functions as vectors, respectively. The functions G, Gh

a could also be vector valued.
Moreover, the state constraints of equality type are demanded at given discrete times
r* e [a,b] (k e { 1 , . . . , w}) with /* < /Q+' (k e { 1 , . . . , w - 1}).
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Because of the underlying infinite dimension of the state variables and of the
control variables as well, problems of the form above are of infinite nature. Looking
at their structure and their stability behaviour these problems and related ones were
investigated in [66]. These infinite problems do also possess a semi-infinite character
coming from the maybe infinite number of inequality constraints either at each time
/ e [a, b] or being a boundary value condition. We might call the problems &^(s)
semi-infinite optimal control problems, symbolically: S^J1. Whenever both set-
valued mappings YJ(-) (j e {1, 2}) are pointwise of finite cardinality, then we call
our optimal control problems finite. This special case is symbolically indicated by &
and &%{s).

For Yj(-) (j e {1, 2}) we demand upper semi-continuity [33, 64], and compactness
of all values in Rp whose two sets of unions of all of them, respectively, are also
supposed to be disjoint. According to [20], in the parametric case we call this
condition Assumption 1.

Let us in particular think that pointwise these index sets are feasible sets i» the
sense of finite optimization, hence they are of the form

y ' O , /, x, u) = {y e K" | hl(s, t, x, u,i)=0(ke A]),

g\(s,t,x,u,y) > 0 ( £ e B1)},

Y2(s, a, x(a), u(s, a), b, x(b), u(s, b))

= b e r | h\(,s, a, x(a), u(s, a), b, x(b), u(s, b),y) = 0(ke A2),

§2(s, a, x(a), u(s, a), b, x(b), u(s, b),y) > 0 (I € B2)},

where A', BJ are analogous to /, / , respectively, with cardinalities \AJ\, \Bj\ < oo.
We comprise all the defining functions which define the constraints on y, due to both
j = 1 and j = 2 and due to the different sets where these functions are defined on.
Namely, therefore we introduce the notation / / (•) , G (•). For these vectors of functions,
which shall also be of class C \ the part on upper semi-continuity in Assumption 1
holds generically (see [33, 64]). We consider them together with the other functions
which define the optimal control problem, and now we precisely call the problem for
the parameters e [a,b]:

^ •), F{s, •), (H(s, •), G(s, •)), ( / / > , •), Gh
a(s, •)),

REMARK 1. The problem description presented above can be generalized in several
directions. Namely, the index sets Y\ Y2, pointwise defined, may consist of vectors
having different length p\ p2, respectively. Each of these sets may also be replaced
by a finite number of sets. Moreover, the discrete times ^ , . . . , t£ may in a C3 -manner
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depend on the parameters. We call the w-tuple, consisting of these (component) func-
tions /Q (S) (v e { 1 , . . . , if}) the function C(s), say over K. Moreover the time interval
[a, b] may be substituted by means of a of union of finitely many disjoint intervals
W i L i K ^ ) ' bn(s)] (s e [a, ft]) with ordered endpoint functions a^, frM of class C3,
say over K: a < a^Cs) < ^-iC?) < a^(s) < b (/LA e {2, . . . , u}), comprised by _/4
and _5, the list of functions describing the optimal control problem would become ex-
tended such that we get &%\L{s, •), F(s, •), (//(*, •). G( J , •)). (#*(*, •). C*(s, •)),
(//(s, •), G(s, •)), Cd(*).^(*). Q(s))). Moreover, we may replace J?"{s, x) by an ob-
jective functional being of maximum-type, that is, by max-eZ(i) y(s, x, z). Then the
index set Z(s) of functionals in competition would, in analogy with Y\s, tf,x, u),
Y2{s,a,x}, w1 , b, xr, w2), be supposed to fulfill the following condition.

ASSUMPTION V. Z is upper semi-continuous and compact-valued.

Here Z would also be supposed to have the form Z{s) = [z 6 W \ hk{s, z) =
0 (A: e C),g€(5, z) > 0 {t 6 D)} with finite index sets C, D and defining functions
of class C\ Then our entire problem would be called P^ max(s) := ^"J^\L(s, •),
F(s, •), (//(*, •), G( J , •)), (//*(*, •). C*(J, •)), (H(s, •), G(s, •)), (A(s), B(s),C(s)),
(H(s, •), G(5, •))). Finally, in [66] it is possible to let the objective functional be
a sum of the integral functional with an additional finite-valued penalty-like func-
tional l(x{a), u(a), x(b), u(b)), or, in this research, with the parametrized functional
l(s, x(a), u(s, a), x(b), u(s, b)). Then / and l(s, •), respectively, would enlarge the
list of functional parameters (data) of our optimal control problem.

In order to work out the basic topological features of our optimal control problem
we may concentrate on the differentiable problem ^"^(s) = S?Uyj(L{s, •), F(s, •),
(H(s, •), G(s, •)), ( / / > , •), Gh

a(s, •)), (H(s, •), G(s, •))). Let us for the "nondiffer-
entiable minimization" of a generic function(al) of continuous selection type (for
example, max-type) only remark that one can on the one hand separately study normal
forms of the differentiable objective function(al)s being involved. On the other hand
one can also use the transformation of such an objective function from optimization
into an easier nondifferentiable normal form, which was with the help of singularity
theory presented by Jongen and Pallaschke [32].

" REMARK 2. In [66] a survey on three approaches to the structure of optimal control
problems is given, where the latter are easier than ^"^(s). Namely, all the equality

. constraints are of boundary type, there are no boundary conditions of inequality type,
and only finitely many of the inequality constraints for all / € [a, b]. However, the
minimization jointly refers to {x, u). Then, under generic assumptions the problems'
structure can on the one hand be expressed by finite optimization problems in M and
semi-infinite problems in x_. With the minimizing in £ which is based on the minimum
principle, we have the opportunity to take account of the goal of optimality in u, jointly
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with x. On the other hand, hereby a certain further auxiliary flow structure is utilized
in order to reflect the infinite dimensionality of optimal control. Those semi-infinite
problems are defined by means of inserting control variables of the form u°v(s, t, •).
Referring to these, the explanations of this paper hold, too. Moreover, one can also
work out this paper such that u (s, •) becomes treated as the implicitly defined function
u1(s, •). Then it is no longer a part of the list of given functional data. However, the
technicalities would rapidly rise.

Finally, we remark that our problems ^"^(s) can be considered as pieces within
the piecewise structure that generically appears for those easier problems from [66].
Hereby, the control variables are allowed to be piecewise differentiable.

Indeed, the first step of our investigation is to trace the optimal control problem
back to an optimization problem or, in other words, to a one parameter family of
equivalent optimization problems. This is possible because of the parametrized flow
<E>" (s, •) due to our time-dependent differential equation (a system due to the parameter
s) under a suitable integrability (controllability) assumption (cf. [2, 66]).

Namely, we make the following assumption.

ASSUMPTION 2 (LB). With continuous nonnegative(-valued) functions a, /3, we have
that

\\F(s,t,x,u)\\ <a(s,t,u)\\x\\+p(s,t,u) f o r a l l (s, t,x, u) e W+q+2.

In our typical problems we may, for example, look at linear differential equations
which always fulfill Assumption 2 and can often easier, or explicitly, be evaluated.
For harder differential equations, numerical methods should approximately be used.

Because of Assumption 2 we may conclude (see, for example, [2, Theorem 7.6
and 7.8]) that all initial value problems due to the prescribed differential equation are
solvable over the whole time space KL (Problems for which Assumption 2 does not
hold, that is, where a violation of controllability raises, will be treated in a following
paper.) Here we get all the parametrized C4-solutions JC(-) = xs(-), over OS and in
particular over [a, b], namely xs() = ^ " ( s , ^ , — to+-), where x^ = xs(t0), and a two-,
parameter family of C4-diffeomorphisms <t>"(s, -, t) ((s, t) e [a, ft] x K). Moreover
we have that

=x, <&"(s,<t>u(s,x_,tl),t2) = <i>"(s,x, t]+tl) (x € W\t\t2 6 K).
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For £ = ,v(/), t e K, we define

(hh
o),,(s, a, <t>"(s, x, -t + a), u(s, a), b, <$>"{s, x, -t+b), u(s, b)),

for / = mw + p, p e l£,

g"(s, t, x, (y, £)) := G(s, £, <t>"(s, x, — t + £), u(s, £), y)
(la)

:= (Gh
a)p(s, a, <P"(s, x, -t + a), u(s, a), b, <i>"(s, *, -t + b), u{s, b),y).

Because of the index sets for the inequality constraints depending on x_, we establish
the same dependence as above, inserting the flows:

~I.II

h_. (s,t,x_, (y,%)) :=h)(s, %,<$>"{s,x_,—t + %),u(s,%),y), f o r / e / 4 1 ,

h_. {s,t,x_,(y,%)):=h2(.s,a,$>"{s,x_,—t-\-a),u{s,a),b,

<$>"(s, x_, -t + b), u(s, b), y), for / e A2,

Q ' ($ j % (y £}) '^z Q (s £ cj)" ($ x —/ ~\~ $:) u(s ^) v) for I P B

for / e /4'I hL"

£",,, foriedM'l

| j " , for^eB1

| - a , for€=|fl ' |

"2.M

Note that g", h^ (i 6 /42), g2'" {t e fl2) do not depend on ̂ . Moreover, we put

T:=[l,...,\Al\ + \A2\], T:= {1, . . . , \Bl\ + \B2\ + 2),

We state that /" , / /" , G", // , G are three times continuously differentiable.
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For each s e [a, ft] we use the notation u_ = u(s, /), we take account of the
constraints a < £ < b (see also g^,£ G {|B'| + 1, \B2\ + 2}), set

Y _ \ s , r , x , u ) : = { ( y , i - ) e f x R | h \ ' \ s , t , x , 0 > , £ ) ) = 0 (i e A 1 ) ,

|J-"U, /, jf, (>, f)) > 0 (I e B1), « < § < & }

and choosing, for example, § = a:

Y_2(s, t, x, u) := [(y, a) e Kp x K | ^'"(5, t, x, (y, a)) = 0 (/ e A2),

Now our problem ^"^(s) is equivalent with each of the following optimization
problems

,t) := E.yjf{fu{s,t, •), (JL"(s,t, -),G_"(s,t, •)), (H.\s,t, -),(?'(s,t, •))),

also written P_yj,(r(s, t, •), H_"(s, t, •), G"(s, t, •)),

Minimize f"(s, t, •) on M%,, where

M", = M[//"(5, /, •), G"(s, t, •)]

:= {x G K" | /;"(i, f, x) = 0 (/ G /.), fi"(5, f, x, (v, ^)) > 0
—; —

(f 6 [a, b\). As these problems are indeed equivalent, it is sufficient to deal with
t — a. In order to work within topological manifolds, we assume that the cardinality
\I_\ := mw + mh

a of l_ is less than/?, and, similarly, \A{\ 4- |A2| < p + 1.
Besides the notation of the feasible set of E!'^y(s, t) given above, we write M"

for the feasible set of state variables of the problem £?^,j,(s). Let us denote the sets
of active inequality constraints of the problems P^y^{s, t) and ^^{s) at a feasible
point x or at a feasible trajectory x, respectively, in the following way:

Xi(s, t, x, u) = {(y, ?) e YJ(s, t, x, u) | g(s, t, x, (y, $)) = 0} (J e {1, 2})

Y*(s,t,x,u) := {ye Yl(s,t,x,u) | G(s,t,x,u,y) = 0}

and yo
2(5, a, x(a), u(s, a), b, x{b), u{s, b)) analogously.

By Df, D2f(DLf, D2
xf) we denote the row-vector of first or the matrix of second

derivatives of / G C2(^#, K), Ji c B&*, respectively (or, due to the variable x). In
the case / e {Cx{Ji, K))€, Df (and £),/) denote the functional matrix. Note that
for k = 1 we have D / = / .

DEFINITION 1. Let a parameter value I e [a, y3] and a control variable u e (C4([a, f3]
x [a, 6], K))" be given.
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(a) A point x e K" is called a generalized critical point of the optimization problem
F^'yjpCs, 7), where 7 e [a, b] is a given time, if the vectors

DLf(s, 7, x), DjfiJ, 7, x) (i e / ) ,

O,sJ(I,7,J, (>>,£)) ((>>,£)€ 1^(1,7,7,77(1,7)),./ e{l,2})

are linearly dependent.
(b) A trajectory ~x e (C4([a, b], K)" is called a generalized critical trajectory of the

optimal control problem &yj(J) if there is a time t e [a, b] with J = x(t) and
J(t) is a generalized critical point of £!yjl,(s, t).

We introduce the generalized critical point sets and the generalized critical trajectory
sets as follows:

_E?r(0 : = {(s, x) e K x W | x is a generalized critical point for_P^(.s, 0 ,

E?(. := {(s, x) e K x (C4([a, fo], K))" | x is a generalized critical trajectory for

^ ( s ) , s e [ a , | 3 ] )

= {(5, .v) e R x (C4([a, 6], R))" | (5, JC(r)) e ^ . ( z ) for some f € [a, b],

The generalized critical points and generalized critical trajectories need not to be
feasible. However, feasibility is one property which we demand for the subsequent
important and large class of generalized critical points and generalized critical traject-
ories.

DEFINITION 2. Let a parameter value I e [a, /3] and a control variable u 6 (C4([a, yS]
x[a,b], OS))* be given.

(a) A point J e A/j7 ' s called a Kuhn-Tucker point of the optimization problem
i2!sv(•*> 0 where 7 6 [a, b] is a given time, if there exist nonnegative integers
K\, K2, indices (yix, %je) e Z^(?, 7, J, 77) and real numbers A, = A"(J, 7, J) (/ e
L),fj.j.e = i x ' l t ( s , 7 , x ) (C e { l , . . . , K j ] , j e { 1 , 2 } ) s a t i s fy ing t he f o l l o w i n g
relations KT1J, 2̂  :

(J, 7, J) = J

+ E E
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KT2i!. nj.e > 0 (£ e {1, . . . , *,•}, y € {1, 2}).

The numbers A,, /z, f are called Lagrange multipliers.
(b) A trajectory x e (C4([a,b], 08))" is called a Kuhn-Tucker trajectory of the

optimal control problem &"yj:(s) if there is a time t € [a,b] with J = J(t) and
1(0 is a Kuhn-Tucker point of £!yjt(5, t).

In analogy with the corresponding sets due to "generalized criticality" we introduce
the Kuhn-Tucker point sets and the Kuhn-Tucker trajectory sets,

ZKT(t) (te[a,b]), HKT,

respectively. We note that each Kuhn-Tucker trajectory x is feasible, that is, x e M"
with the corresponding s.

From the numerical point of view we shall discuss the underlying geometrical
structure of these critical sets on which pathfollowing techniques with jumps (see
[1, 19, 57]) from optimization may be applied with respect to finitely many times or
equivalently, because of the equivalence of our optimization problems, to one time /.
For more underlying theory in parametric optimization see [7] and, from the viewpoint
of (structural) stability, [34].

Taking account of the flows and our definitions, the six items which are given in
the sequel follow after a little thought.

As our item 1, for each given s € [a, ft] all the sets Y^(s, t,x^, u) (j e {1,2})
of active inequality constraints do not depend on the value of t € [a, b]. Item 2
says, again for each given s, that all the feasible sets .M", are C4-diffeomorphic
for different values of / G [a,b]. Moreover, item 3, whenever a trajectory runs
through a generalized critical (or a Kuhn-Tucker) point then this generalized critical
(or Kuhn-Tucker) trajectory entirely consists of generalized critical (Kuhn-Tucker)
points (respectively). Here we use the chain rule. Item 4 is given in the sequel.

Let a pair (J, u) e (C4([a, b], R))" x (C\[a, /3] x [a, b], K))« be locally optimal,
that is, a local minimum with respect to a topology to be precisely stated later,
for the following problem of optimal control ^yyis) (s e [a, /J] being given) in
which H, jointly with x, is in competition, too. Then J is locally optimal, that is,
a local minimum, for ff"y^{s) with the given control variable H(s, •). Moreover,
provided that for the feasible set the subsequently introduced constraint qualification
(the extended Mangasarian-Fromovitz constraint qualification) holds, we learn from
optimization (see [21, 36]) that x is a Kuhn-Tucker trajectory and, hence, a generalized
critical trajectory.

DEFINITION 3. Let s G [a, /J], / e [a, b], C4-state and -control variables x and w,
respectively, with x € M", and x e M1'S,^\L = u(s> 0 be given.
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(a) (i) The Extended Linear Independence Constraint Qualification is said to
hold for P^sis, t) at (t,x), if the conditions ELI1?, 2"s are fulfilled.

ELI1". The set of active inequality constraints

Y_"(s, t, x) := I 1 (s, t, x, u) \+) Y_2(s, t, x, u)

(disjoint union) is finite.
ELI2^. The vectors D^{s,t,x),i e /.,

DL^(s,t,x,(l^))((y^)eYi(s,t,x,u,(l^)), ye {1,2})

are linearly independent.

(ii) The Extended Mangasarian-Fromovitz Constraint Qualification is said
to hold for ^ ( i , i ) at (t,x), if the conditions EMF1?, 2"s are ful-
filled.

EMF1". The vectors DJ£{s, t,x),i e _/, are linearly independent.
EMF2S

U. There exists a vector £ = f ^ f e K" satisfying

| ^ 0 Uy,$) eYi(s,t,x,u), j e {1,2}).

Such a vector £ is called an EMF-vector.
(b) The Extended Linear Independence Constraint Qualification and the Mangasarian-

Fromovitz Constraint Qualification, are said to hold for 2?"^^ (s) at the trajectory
x if there is a time t' € [a, b] with x_ = x{t') and with the extended linear
independence constraint qualification or the extended Mangasarian-Fromovitz
constraint qualification (respectively) holding for_P'^(s, t1) at (/', x).

As our item 5 we state now that the extended linear independence constraint qual-
ification is a stronger condition than the extended Mangasarian-Fromovitz constraint
qualification. For further investigations of these and for the following conditions in
the context of optimization we refer to [33, 40, 41, 64].

The conditions which are introduced next, contribute to the notions given in the
Definitions 1 and 2.

DEFINITION 4. Let s e [a, fi],t e [a,b], C4-state and -control variables .v and u,
respectively, x e A/",, u_ = u(s, t) and j € {1, 2} be given.

(a) (i) A point (_y, £) € Y_\s, t, x_, u) is called a critical point for the minim-
ization problem of g"(s, t,x_, •) on Y_* (s, t, A;, M) if both the linearized
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independence constraint qualification, that is, the extended linear inde-
pendence constraint qualification for finite optimization, holds and there
exist real numbers A] (/ e A'), t̂j (k e Bg(s, ?,*,«, (y, £))), called
Lagrange multipliers satisfying

ieA

Here, we refer to the set of active inequality constraints at the feasible
point (y,£):

B ^ ( s , t , x , u , ( y , £ ) ) : = { £ e { l , . . . , | f l ' | + 2 } \ f £ " ( s , t, x , (y,!•)) = 0}.

(ii) A point (y, £) 6 Y?(s,t,x_,u) is called a critical point for the minim-
ization problem of g"(s, t, x_, •) on Y?(s, t, x_, u) if $ = a, and if both
the linearized independence constraint qualification holds and there ex-
ist Lagrange multipliers A2 (/ e ^ 2 ) , ^ 2 (k € B2(s, t,x, u, (y, a))),
satisfying

Dyf£(s, t, x, (y,a)) = ^A, 2 D^. ' " (5 , t, x, (y, a))
ieA2

Here, we refer to the set of active inequality constraints at the feasible
point (y, a):

B2
0{s, t,x,u, (y, a)) : = [I e B2 \ £"(s, t,x, (y, a)) = 0 } .

(iii) Let (y, £) e Y^(s, t,x_, u) be a critical point with Lagrange multipliers

A/ (I € A*), fJ (k e Bits, t,x, u, (y, ?))).
—* —A J.u

We define the Lagrange function .if as

The critical point (y,^) is called nondegenerate if the following condi-
tions hold.
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ND2S
U.

^ l(}Yi«.>.x,u) i s nonsingular, if j = 1

J^'\s, t, x, (y, §))|r£^cf.i.£.«)is nonsingular, if ; = 2.

^Y'is, t, x, u) := R e lp+1 | % ? ) / r ' V f, x, (y, §))£ = 0

0' e A1),

Here Tiy^Y_\s, t, x_, u) denotes the tangent space of Y^(s, t, x_, u) at
<j, | ) , that is,

(2)

Moreover, D2
(y^S^_ I r^,!1 (*.'.*.«) stands pointwise for the matrix

VTD\y^££_ V, where V is some matrix of {p + l)-vectors which form

a basis for the tangent space T(>,,?)F_' (s, t, x_, u).

Finally, £^J? lrlTj(J.<,£,«) is understood in the same sense, with p + 1

replaced by p and with £ ( • ) defined by Y^(-) x {a} = Y_2(-).
A critical point is called a nondegenerate Kuhn-Tucker point or a

nondegenerate local minimum if it is both a nondegenerate critical point,
and a Kuhn-Tucker point or a local minimum, respectively.

(b) The Reduction-Ansatz holds for the optimization problem P.yjf(s, t)at(t,x) if
each index (y, f) G 2^,(s,', x_, u) \+}X^(s, t, JC, M) is a nondegenerate as a local
minimum of g"(s, t, x_, •) or gu(s, t, *, •), respectively.

H.2

For this definition which refers to optimization problems of the lower stage the
following item 6 holds. If the point (y, £) e Yj(s, t, x, u) is a critical point or a
nondegenerate critical point, a nondegenerate Kuhn-Tucker point or a nondegenerate
local minimum then, with s remaining fixed ands moving with (t, x), x_ = x{t), along
the flow 4>", (.y,§) e Y_'{s, t,x_, u) has the same property at any other timer' e [a,b],
respectively. This fact is based on the definition of the data on the lower stage,
with <t>" being inserted. Moreover, because of a similar reasoning, the definition of
the Reduction-Ansatz is ^'-independent in the same sense, too. This means that the
Reduction-Ansatz holds with respect to a given local minimum (_y, £) either at no
/' e [a, b] or at each t' e [a, b]. Hence, we might refer to the Reduction-Ansatz for
the optimal control problem &uyj (s) at x where x is a given feasible trajectory.
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•"• /.if

CONVENTION 1. The previous introduction of Lagrange functions ££_ gives rise to a
further generalization of our different critical point conditions or constraint qualifica-
tions (Definitions 1-4). Namely, we replace g" by J? .

If the Reduction-Ansatz holds at (t, x), x_ e A/",, with respect to the parameter s,
then we get the opportunity locally around (s, t, x) and around an active index (y, £)
to represent each of the corresponding local minima (_y, f) as an implicit function
(_y,f) = (y"(s, t,x), £"0, t,x)). Then, near (jy,£) we have, in essence, only one
inequality constraint defined by a marginal function (cf. [67]):

g®"(s, t, x) := g".(s, t,x_, y"(s, t,x), $u(s, t, x)) > 0 (3)

(here, £" is the constant function a, if j = 2). This reduction always leads us to a
locally defined problem P_%'"(s, t) called a problem of the upper stage.

Of course, the notions "(nondegenerate) critical", "(nondegenerate) Kuhn-Tucker"
and "(nondegenerate) local minimal", as given above for j — 1, can also be introduced
for problems Z j " (s, 7), and hence g?"yjf(s). Therefore they also lead us to the notions
of a (nondegenerate) critical trajectory, and, in particular, of a nondegenerate Kuhn-
Tucker trajectory and of a nondegenerate local minimum trajectory. Note, that for a
point or a trajectory being critical is a weaker condition than being "Kuhn-Tucker",
but a stronger condition than being "generalized critical".

Our stability and genericity investigations in spaces of functions are based on the
following topologies. The topology (C|, C\) for the product (fl-Li
(fI7=,.|+i CA{^j, OS)), with Jtk being some K* or [a, fi] x [a, b], will be the product-
topology generated by the strong (or Whitney-) C'-topology Cd

s on each factor
Cd(^k, K) (d e {3,4}, respectively; cf. [22, 28]). As for d = 3 we need only
to refer to the derivatives up to order 3, and for d e {0, 1, 2} correspondingly, let us
consider d = 4. A typical base-neighbourhood of a function p 6 C4(^( 1, K) (j0 e
{rt + 1, . . . , r2}) is the set p + W(, where ^ is defined with the aid of a controlling
continuous positive function e : Mja —> K:

<~ / .i.j

i

d2r]
a a

OY]

OOJj
co)

+
/ Ji.j.k

i.j.k.C

Note, that in the case Jtja = [a, /$] x [a,
constant controlling e, while in the case ^

for all

] we may equivalently concentrate on all
= Ke the variability of e(w) allows us to

take asymptotic effects into account when |&>| goes to infinity.
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2. Generic types, main results

Following the general presentation in [20] let us now give a short introduction of
the eight types of generalized critical points x € M^T (s G [a, /J], 7 G [a, b]) which
may later be called "generic" corresponding to the generalized critical points. They
have in common that their degeneracy at the upper or at the lower stage, if ever such
a degeneracy is allowed, is as slight as possible. Examples will be given in the next
section with the normal forms there.

From Assumption 1 and with a continuity argument it follows that the set-valued
mapping Y_\s, t, x, u) |+J Yj(s, t, x, u) is upper semi-continuous and has compact
values. This condition may be our Assumption 1 here.

We distinguish three groups of generalized critical points.

Group I (Types 1-5). At x the Reduction-Ansatz holds for £ ^ , ( 1 , 7). With
this fact and with the implicit function theorem whose application is based on the
Reduction-Ansatz, we conclude that the set

&, '.Z) := l id , t, x, u) [+J yg(1,7, x, u) (u = «(s, 0)

has at most a finite number of elements, say K, that is, there are nonnegative integers
K\, K2 with K = K\ + i<2 and with

yjd, 7, Z,«) = {(A £') , . . . , ( / \ D K

Y*(s, 7, J, u) = { ( / ^ , r i + 1 ) , - . . , ( / , n\ & = a, t e {*, + 1,..., *:}).

In the way of (3), locally around 1,7, J, (y, ^), say, especially, in a neighbourhood
^ = % x % x ^ £ of (s, 7, x) we introduce the marginal functions g1^" (5, f, x) ((5, /,
x) G ^ , £ e { 1 , . . . , K,}, j € {1,2}). Then we introduce the types 1-5 for the
generalized critical point of our given semi-infinite optimization problem referring
to the following finite optimization problem. Locally, in ty, both problems are
equivalent. We consider the functions

(j. •= U?, . £ 2 ) = K(8_Le )te{\ K,),{g_2[ )te{\ *2|)

and the finite problem

£%•*$,T) •= £%{£<*,I •),K"(s,I •), G^"(s,7, •)),

Min f"(s, 7, •) on M_f7", where

.Z" •= KIT ntyj = {xe%\ (5)
*(sj,x) = 0 (i € /), g*/(J,7,£) > 0 (i 6 {1, . . . , *;}, y G {1,2})}.
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Moreover, because of the equations (cf. [64])

D.sJ(1,7, x, ( / ,£<)) = Dzg/G, 7, x) {ke {I, 2})

we may for the (locally defined) finite and for the semi-infinite problem refer to the
same multipliers due to a generalized critical point (or due to a Kuhn-Tucker point, as
Lagrange multipliers). These were introduced in the Definitions 1 (a) and 2 (a) and
may for the inequality constraints now also be called fij := \xkX (j = I e { 1 , . . . , K\},
if* = \\j =Kt+e,ee {I, . . . , jc2},if* = 2).

For the locally defined Lagrange function of the problem P_%'"(s,l) we write
&*-v(s, 7, x).

A precise definition of these five types is given in [29, 30] referring to transversality
theory (cf. also [22, 28, 62, 69]). Here we may give a rough description essentially
pointing out for the types 2-5 the difference with type 1. The third order derivat-
ives which we shall demand for the optimization problem, are only motivated by
type 3.

Type 1. Ourpointx G MjV' s a n o n d e g e n e r a t e critical point, in the sense of Definition
4 (a)(iii), of P_% "(s, 7) (in particular, the linearized independence constraint
qualification is satisfied).

Type 2. The linearized independence constraint qualification is satisfied, and exactly
one of the (because of the linearized independence constraint qualification
uniquely determined) Lagrange multipliers fXj vanishes.

Type 3. The linearized independence constraint qualification is satisfied, and exactly
one eigenvalue at of the matrix D^Sf^'" \T M<u.* at (s, 7, x), vanishes.

Type 4. The linearized independence constraint qualification is violated, and the
number of active constraints satisfies the inequality |/J + \Y^(s, 7, T)\ < n.
It turns out that the version of the extended Mangasarian-Fromovitz constraint
qualification for finite optimization, the Mangasarian-Fromovitz constraint
qualification, is violated as well.

Type 5. The linearized independence constraint qualification is violated, and the
number of active constraints satisfies the equality \I_\ + \Y^(s, 7, x)\ = n + 1.
Then the Mangasarian-Fromovitz constraint qualification might be satisfied or
not.

For those types which belong to the groups II or III the Reduction-Ansatz is violated.
Let us indicate the characteristic features of these types.

Group II (Type 6)

(a) At all points (y, £) € Y£(s, 7, T) the linearized independence constraint qualific-
ation condition is satisfied at (_y, £)•

(b) Exactly one point (y*,i-*) € Y^(J,J,J) is a degenerate local minimum for
g*(s, 7, J, •) over Y^(s, 7, x, «) with k = 1 or k = 2. The degeneracy consists
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in the vanishing of exactly one Lagrange multiplier corresponding to an active
inequality constraint.

Note that here the particular degeneracy on the lower stage is known from type 2 on
the upper stage. A precise characterization of a point of type 6, essentially by means
of transversality conditions, is given in [20]. The types 7, 8 of the following last group
are in detail studied in [35].

Group III (Types 7, 8)

(a) At exactly one point (/;, £*) e Y%(s, 7, T), say (/;, £*) e Y%(s, 7,1,77), k* e
{1, 2), the linearized independence constraint qualification condition is violated.
All other points from Y^(s, 7, Y) are nondegenerate local minima for g" (s, 7, J, •)
over Y^(s, 7, J, 77) with k = 1 or k = 2, respectively.

p+l, if it* = 1
(b) Type7: \Ak'\ + |fl*'(J,7,1, «, (f_, £•))! <

Type 8 : \Ak' | + |fl**(J, 7, J, «, (y\ f •))! =

/?, if >t* = 2

p + 2, if A:* = 1

p + l , ifif = 2.

REMARK 3. For each / e [a, b] the points of type 2-8 form a discrete subset of .£,,,. (0
(cf. [20, 30]).

We say that a generalized critical trajectory x is of one of the types 1-8 if for some
time t e [a, b] the point J = x(r) is a generalized critical point of the corresponding
optimization problem. Moreover, we state the following item which can be proved as
the related items 1-6 from Section 2. Namely, a generalized critical (or Kuhn-Tucker)
trajectory of one of the types 1-8 does exclusively contain generalized critical (or
Kuhn-Tucker) points precisely of this type.

Having turned from optimal control to optimization, for the moment we disregard
the fact that we generated our optimization problem from the given optimal control
problem in the way given by (la), (lb). In particular, 77 becomes suppressed. Further-
more, let us denote the variable / e [a, b] which we shall keep fixed, as an index, for
example, writing / (s, x) := f(s, t, x). However, we look at the optimization prob-
lem as another topological object of interest. So we let the C3-functions defining the
optimization problem vary such that we get the class of three times continuously dif-
ferentiable semi-infinite optimization problems of given form and dimensions. Up to
Assumption 1, now, we ask due to all these problems whether each of their generalized
critical points is of one of the eight types.

NOTE 1. For each t e [a, b] we set

^ ' ?2 A i . 9 . .
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Assumption 1 holds for the set-valued mapping corresponding to

(//,, (7,); g , h_jl (i € A ), g. (ye B ) do not depend on £}.

A related set of data of our optimal control problems will be given below.

Now, we can both specify and, hence, almost directly apply [20], Theorem 2, within
the context of semi-infinite optimization problems of the form ^ ( / " (s, t, •), (J£'(s, t,

•), G."(s, /, •)). (£L (•*, t, •)> Q_ (•*, U •))) such that we learn the following theorem on
the general position of optimization problems with generalized critical points exclus-
ively being of the types 1-8. Indeed, hereby, we additionally have only to realize
that the special functions g^ {I e {|B'| + 1, |B ' | + 2}), say, with § = a fixed,
may remain unchanged. In the density part, here, on the lower stage, for example,
we transversally perturb the (other) f-independent data g ,h_ji (i e A2), g {I e
(|B' | + 3, . . . , |B' | + \B2\ + 2}). For an in part similar argumentation we may refer
to [64, 65]. Indeed, in [64, 65] because of the special form of a max-type objective
function there is an invariant part played by its level parameter. Here, however, the
auxiliary time variable £ is treated as an invariant of the defining functions on the
lower stage.

THEOREM 1 (Genericity Theorem A). For each t e [a, b] there exists a C\-open and
-dense subset F^y(t) of(C\W'+\ K))lil+1 x C3(W+q+2, R) x CUSC(f) such that we
have for all

each element of the (corresponding) generalized critical point set 2±s,.(0 is of one of
the types 1—8.

As a Cj-open and -dense subset Fs'j'iO is in particular a generic subset of the
underlying restricted space of C3- functions. By definition, a generic or residual
subset needs (only) to contain the intersection of a sequence of open and dense
subsets; cf. [22, 23, 28].

Now, the question raises to what an extent this result can be formulated due the
varying functional data which define our optimal control problems. At first we write
referring to the different sets, that is, Euclidean spaces or full rectangles, where our
(functional) data are defined on:

CUSCLB : = ( . . . , h),... ,h2,..., gj,..., g2, . . . , / * , . . . , ut,...) \

the coordinate functions of (//, G), (F, u) are C3-, C4-functions, respectively;

Assumption 1 holds for the set-valued mapping Y' = Y'~ ~ , j e { l , 2 ) , being
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defined due to (H, G, u), and Assumption 2 holds for (F, u) (with a suitable

C4-extension u of u on K x K)}.

Next we note that the function which represents the generating the (functional) op-
timization problems' data from the (functional) optimal control problems' data is
continuous (cf. (la), (lb)). Let us denote this flow projective generating by £f. As a
reflection on the constant state functions x called the steady states, where F = 0, and
on (/, u) -independent optimization data shows, this function Sf is surjective. However,
Sf is not injective. Namely, for example, adding on L of a function i{t) which does
not depend on {x_, u) but which is symmetric with respect to the point t = ^ , does
not change the values of the objective function. Namely, we note / l{t) dt = 0. In
this sense it preserves the generated optimization problem.

Now, Theorem 1 and the properties of & imply that the class of optimal control
problems whose generalized critical trajectories exclusively belong to the types 1-8,
is C^-open in the underlying topological space of functions fulfilling Assumptions 1
and 2.

Moreover, whenever our optimization problem for t = a, being generated by an
optimal control problem, becomes slightly perturbed, namely in the C4

S- and C^-sense
for the C4-objective function and for the C3-constraints, respectively, then it remains
generated by a slightly C\- and C4-perturbed optimal control problem. Here for the
optimal control problem C$ precisely refers to the functional data (/•", u). In fact, the
latter problem may be made arbitrarily C3

S-close to the unperturbed optimal control
problem. Compared with the causal and constructive generating <& this calculation
refers to the opposite direction of thinking. We may call it reconstruction. Here for
the generating perturbation of the optimal control problem we do not even need to
change the functional data (F,u). Let us call the perturbing additional functions of
the optimization problem ((C3

S, C^)-)mixed variations.
For a better understanding of this reconstruction we state two items. The first item

says that by one raised order of differentiability, C4, both of 8f and of (F, u), takes
account of their partial derivatives in the (re)construction of the perturbed C3-function
L. Indeed, as a difference the variation represents the perturbation / " —> / which is
again caused by a small perturbation L —> L:

L := L + 8L, where

(SL)(s, t,x, u) := -Dx(Sf)(s, x)^-<t>"(s, x, 0) + —!—($/)(*, 4>"(s, x,b- t)).
~ — at b — a —

A small calculation actually shows: Ja L(s,t,x(t),u(s,t))dt = f (s,x(a)) +

(Sf)(s, x{a)) = f(s, x(a)). As the second item we remark that the reconstruction of

the other data, namely of H, G, H , G , can be obtained by taking the corresponding
perturbed data of the optimization problem along the flow.
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Now, we focus our attention on those mixed variations which are chosen by demands
of transversality [20, 30], that is, which guarantee the trajectories belonging to type
1-8 and, hence, cause the desired (0$, Cj)-density, up to our two assumptions.

Hence we have realized the following result.

THEOREM 2 (Genericity Theorem B). There exists a (C\, C*s)-open and -dense subset
F^j, of the space (Ci(W+p+2, K))| / |+1 x Ci{W+p+q+2, K) x (C3(K2(n+p)+3, K))1'*1 x
(C\R2(n+p)+"+3, 0J))1-7*1 x CU5CLB such that we have for all

( L , . . . , / , , , . . . , G , . . . , (/»*),-, . . . , G"a, h), ..., h], ..., g),..., gj,...,

fk, . . . , u t , . . . ) 6 Fyj?,

each element of the generalized critical trajectory set Sgc. is of one of the types 1—8.

REMARK 4. In Section 1 we indicated some directions in which our problem model
can be extended such that the corresponding versions of the Theorems 1 and 2 remain
true. We emphasize, in particular, that both genericity theorems remain true in the
nondifferentiable case of objective functionals being of maximum type.

A comparison of Theorems 1,2 shows the qualitative difference between optimiz-
ation and optimal control, consisting in Assumption 2 which guarantees integrability
(controllability). In further research the author will analyze this "gap" by means of
describing the part played by the topology of the flow, that is, of the homological
structure [27, 61] of its phase portrait.

In Figure 1 the sets S.?r(/)> ^±KT(t) are illustrated locally in the neighbourhood of a
point of type 1-5, respectively (c/. [20, 30]). We note that the figures due to the types
2-5 do also give an imagination of the critical sets due to the problems of the lower
stage, of minimizing the inequality constraint on its index manifold, corresponding to
the types 6-8, respectively.

This illustration refers to a given parameter t. For two different parameter values
t\t2 € [a, b] the sets JLgc(t

x) (or JiKT(tx)) and S.^.02) (or EKT(t2), respectively)
are C4-diffeomorphic under the family of corresponding flows Q>"(s, •) (s e [a, /?])
which pointwise preserve the analytical information of our generalized critical (and
Kuhn-Tucker) trajectories.

For example, it may be that there is a whole trajectory of generalized critical points
of type 2 over all t e [a,b] which is caused by a single boundary effect belonging to
the state constraint at one particular time t0 or to a constraint of (time-)boundary value
form.

Whenever we discuss the equivalent optimization problems at a parameter s, we
may in the sequel refer to a fixed time 7, for example, to 7 = a or to any time 7 e [a, b],
with its corresponding problems being P_"yj?(s, 7) (s e [a, f}]). We may sometimes
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FIGURE 1. The optimization problem and the corresponding problem of the lower stage:
X (.(0, XK T (t) locally around a generalized critical or a Kuhn-Tucker point of a generic type (t e [a, b]),
and the embedding leaves.

for simplicity also suppress the notation of the r-dependence. Because of the flows
<P"(s, •) our analytical and numerical expositions can be regarded as simultaneous
(independent) with respect to t e [a, b\. Correspondingly, the local critical curves
and half curves in K"+l which we shall look at for one time t, are embedded in local
critical planes or half planes in K"+2 being due to all times /. The latter sets may
be called leaves which can also be creased or pieced (see Figure 1). We emphasize
that such a leaf BS = BS\C in particular depends on u, and that it in a pointwise sense
represents the set £„<• containing the subset HKT as one or several "pieces".

Let us now study easy examples of normal forms of optimal control problems in the
neighbourhood of our typical generalized critical points. Hereby we refer to integral
functionals whose integrands do also depend on the derivative x. Of course, x can
formally be eliminated by substituting it with the right hand side of the differential
equation. The power functions of the integrands will up to the factor — 1 turn out to
be "normal forms" jV'& (at time t) of objective functions in optimization. Now, as
the differential equation is suitably chosen, the integral functional can be expressed
as half the normal form in the sense of optimization, \J{ & evaluated at x := x(a).

NOTE 2. Any other differential equation which fulfills Assumption 2, in particular all
linear(ized) differential equations, could be chosen, too. As an example, we might
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consider
x = A(s, t)x + B(s,t)u(s,t).

For a suitable qualitative theory of nonlinear differential equations, their normal forms,
which can be used in the x-space I" or in the (t, x)-space K"+l and for their structural
frontiers, we refer to the different approaches in [2, 25].

Until now, we have used the notion of a normal form in the meaning of an easy
example of the objective function(al) or of the whole problems, parametrized by
5. In the case of several types the objective functions and the constraints of the
optimization problem at time a, which is equivalent with the given optimal control
problem, constitute a "normal form" in the sense of the following proper meaning.

The underlying optimization data /" , if, g", /?", g", to be evaluated for t = 7, are
of class C°° and we ask, locally around (s, T), where I is a g.c point for P^^is, 1)
(or P_^'" (s, 1) if the Reduction-Ansatz could be used), for a smooth coordinate trans-
formation cp. of the following type

CCT1. <p_(s, x) := ((p[(s), <Pj(s,x)) e l x i "
CCT2. ^ (s) > 0
CCT3. ^1(1, x) = (0, 0)(:= (0,, QJ).

This coordinate transformation preserves the special role of the parameter s . More-
over, it is canonical for each fixed value sl of s. We call <p_ a canonical coordinate
transformation (see [36]).

Type 1. Let x = 0 (zero-function) be a generalized critical trajectory of ^ ^ (0)
((s, J) = (0, 0)). Then in some neighbourhood %s.x) of (J, x), with respect to the
product-topology of both the natural topology and C4

S, we have the following normal
form:

oh / Pf

"(5, x) := / - 2 J2 ±x' • *>'-
J a \ <=\ j

Xi(a) = 0 (i = pf + pa + l,...,n),

Xj(a) > 0 (j = pf + 1, . . . , pf + pa).

Here IPf+Pa, 6 may denote the (pf + pa) x {pf + pa)-unit matrix and different zero-
matrices of suitable sizes, respectively. The integers Pf, pa stand for the number of
free or bound (active) variables of x_, that is, for the number of free or active inequality
constraints which are free or active at x. We remember pa — K = Kt+K2, pa+Pf < «•
These constraints and the equality constraints, too, have become linearized under <p_.
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We note the next relations

1 v ^ 7 ^r-
f(s, a, x) = -JY£?(S, X) with jY &(s, x) = ^ ±jcf + y . ^xj +

/=i j=pf+\

• I = 5Zr=i ^ ^ + ]Cj=^/'+i AV + P( 5 ) ' if A-is a Kuhn-Tucker trajectory

I = YHiU xf + X!f=t'+i 'vy + P(S)J if v is a local minimum trajectory,

p(s) = 2l r){s,t)dt (rj : depending on M).
Jo

In particular, we see from (6) that the characteristic corresponding with the specific ±-
distribution (local minimum, saddlepoint, local maximum) of a nondegenerate critical
trajectory remains constant for small perturbations of the parameter. For a motivation
and a proof of (6) (parametric Morse Lemma) by means of a suitable canonical
coordinate transformation we refer to [36] (see also [55] and, for example, [6]). In
that survey article, [36], a singularity theoretical approach to parametric optimization
is also given.

We note that the part of Figure 1 which is due to type 1 is essentially based on the
implicit function theorem.

Type 2. Let x = 0 be a corresponding generalized critical trajectory of &"yj,{0)
((s, J) = (0, 0)). Here, maybe after a suitable transformation, we have the following
normal form in a neighbourhood <̂o.o) of (I, J):

/

h / PI

I -2 £
\ '• = •

/

PI Pf+Pu

I - 2 £ ±x, • * ± 2(xPf+] ± s)xPf+l - J2 ±XJ
\ j=P/+2

Xj(a)>0 (j = pf+ 1 , . . . , pf + pa).

Then, we also have

/"(s , a, £) = - ^ K ^ ( 5 , x), where

1=1

for example, r\ = 0, hence, p = 0.
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In the case of a local minimum of type 2 such a normal form has been suggested by
Alina Ruiz (see [38]). It leads to the following objective functional

/

h I Pf

s)xp/+i - r)(s,t)\ dt.

Let us give a description of a characteristic problems' behaviour around (s, x). As
s increases, on the one hand a local minimum proceeds from the (maybe relative)
interior, hits the (maybe relative) boundary, and remains on it (see Figure 2). Such
a branch of the critical set can be reflected as being due to that problem where the
inequality constraint with vanishing Lagrange multiplier is deleted {cf. [30, 38]).

On the other hand, with increasing values of ^ a local minimum on the boundary,
being also due to treating the "critical" inequality with vanishing Lagrange multiplier
as an equality constraint, disappears when it arrives at the point (s, T) = (0, 0) (see
Figure 3). For the fixed time 7 we start minimizing / " (•, 7, •) over M£ T at J by means
of a descent procedure. If Mo ? is compact this guarantees that we reach another branch
of S.?(.(7), since the disappearing local minimum cannot be a global one (cf. Figure 4).
The descent at J is possible since a cone of directions of descent is available.

FIGURE 2. x of type 2: wandering local minimum (due to type 1 else) coming from the (relative)
interior and entering the (relative) boundary at (s, J) .

Type 3. From singularity theory ([8], cf. also [36,41,68]) we learn that in suitable
canonical coordinates here we have for the parametrized optimization problem the
following normal form, locally in a neighbourhood (̂o.o) of (J, ~x) = (0, 0):

-(3*?±. - ]T ±2x,
1 = 2
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FIGURE 3. x of type 2: local minimum (due to type 1 else) wandering on the (relative) boundary and
disappearing at (J, T)-

1
X = (• \x+(f(i)\u(s,,) (cf.Note2),

t+a-2b\C(t) D(t)

Xi(a) = 0 (/ = pf + pa + 1, . . . , n),

JCj(a)>0 (j = pf + l,...,pf + pa).

We state the normal form of the objective function being a universal unfolding with
normalized parameters (up to the factor \):

f'(s, a, x) = -JYF{S, X), where

, x)=x\± sx,
Pf+Pa

±xf
(8)

p(s).
;=2

This normal form which is correspondingly illustrated in Figure 5, gives rise to call
.Y a quadratic turning trajectory or a fold trajectory (codimension 1). When passing
the point (s, T) (or the curve / H-> (S, J J ( 0 ) along a path of local minima (or local
minimum trajectories, respectively), the local minimum J^in (= JS(J)) switches into
a nondegenerate Kuhn-Tucker point Js

} of quadratic index one. That is, by definition,
at such a point precisely one eigenvalue of the restricted Hessian of the Lagrange
function is negative. For pf > 1 such a point is a saddlepoint. Hence the path of
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FIGURE 4. x of type 2: jump at (s, x) from one branch of local minima to another branch of local
minima.

local minima stops at (s, J), and for 5 near 1 the local minimum J^in for f"(s,7, OUr"-
cannot be a global one. Now, as we have

v :=
—I — min

with v_ being a direction of cubic descent, there is the possibility to jump to another
branch of local minima. This can be done in the case of compactness of the feasible
set MJJ 7 by means of a descent procedure for s = I, starting at the point (s, ~x) (see
Figure 5; cf. [38]).

Type 4. By means of a canonical coordinate transformation this case could essen-
tially be reduced to the case of one (in)equality constraint. In this sense we have as
a first easy example, in dimension n = 2 with one equality constraint, the following
normal form. It actually fulfills the transversality conditions which characterize type 4
{cf. [38]). Namely,

'"(s,x):= /
J a

1
X = x (remember Note 2),

t + a - 2b
x]{a)-x2

2{a) = -s.

For the case of general n > 2, for a local minimum trajectory J = 0 at the parameter
1 = 0, and of one inequality constraint, we state the two possible cases 4.1 and 4.II. We
note that the structure of problems in dimension n is already implied in problems of
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FIGURE 5. x of type 3: jump at (s, x) from one branch of local minima to another branch of local
minima.

low dimensions. This possibility of reducing the dimension is known in the research
of structural stability (cf. [37, 64]). Namely, we have

Su(s,x):= f l-Axi-J^ij

1
x = t + a - 2b

and precisely one of the two conditions

x (remember Note 2)

4.1.

Case 4.1. Here we are in the situation as illustrated in Figure 6.
Provided that M£7 is compact, starting for s < 0 close to 0, at the point J ^ (=

x~s
max(i)) with a descent procedure we shall end up in a local minimum which is different

from J^in. So, by means of a jump we have arrived at another branch of local minima.

Case 4.II. Figure 7 shows us that in this case a jump to another branch of local
minima cannot be expected (see also [38]).
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<&*£**>

FIGURE 6. x of type 4: case 4.1.

Type 5. By means of a careful study of the detailed introduction of type 5 in [30],
with a suitable choice of the multipliers in the following characteristic equations (with
renumbered inequalities):

Pu

Y] kiDJ£(s, 7, x) + ^JT njD±g'*-u(s, 7, x) = 0 (not all A.,-, fij vanishing),
/e/. y=i

Pa

a, D^fg (s, 1, x) + -" (s, 11) = D^f' (I, 7, J)
j=\

by A, = JU.; = 1, a, = 0, ft = ±y ( / € / . , y e {1, . . . , po}), we get the following
easy example. Namely, the following model, denned in a neighbourhood ^ J . J , of
(I, x) = (0, 0), is suitable for a generalized critical trajectory x being of type 5 for

»(s,x):=J t-f^
1

x =
Pl+Pc

t+a-2b\C{t) D(t)

0 (/ = p

( c f -N o t e 2 ) '

xj(a)>0 (y = l , . . . , / ? f l ) .

For a generalized critical point J, of type 5 and due to the parameter value s =s, we
know in general that ^_gc(J) locally around (I, x) consists of exactly pa (half) curves,
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FIGURE 7. x of type 4: case 4.II.

each of them emanating at (s, x) or ending at (s, x) for increasing s (see [30, 38]).

Case 5.1. The Mangasarian-Fromovitz constraint qualification is satisfied at x.
Then precisely one of the emanating (half) curves consists of local minima. Hence

we can proceed with tracing local minima (pathfollowing).

Case 5.II. The Mangasarian-Fromovitz constraint qualification is violated at x_.
Then the actual component of the feasible set becomes empty. Whenever a branch

of local minima stops at (I, T), a simple jump to another branch of local minima
cannot be performed.

The cases 5.1 and 5.II are illustrated in Figure 8.

Types 6-8. Here, the degeneracy is always caused at a problem of the lower stage.
Hence, easy examples can be given, at first referring there to problems from finite
optimization which are in "normal form". Then we refer to problems of the upper stage
which transversally fit to these. However, let us only give an example of a generalized
critical trajectory 1 = 0 of type 6 at ? = 0. Here we evaluate the corresponding
example in semi-infinite optimization from [20] (n = 2). In a neighbourhood ^n.o)
of (I, x) we have

*"(s,x):= [
J a

1
X = x (cf. Note 2),

t + a - 2b

-x\{a) -x2(a) + (y - JC, (a) + s)2 > 0 for ally e K with (y - s) • (1 - y) > 0.
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Wo (half) curves
of local

5.1

FIGURE 8. x of type 5: case 5.1 and case 5.II.

Here, our inequality constraint on x may by means of the flow be induced from an
inequality constraint of boundary value form.

The description of M£7 and £.gc(J) near J = 0 given in Figure 9 can be realized
by deleting the inequality constraint of the lower stage (see J^), or by treating this
constraint as an equality (see x£; cf. also type 2 and see [20]), respectively.

We note that in this example the branch of local minima, say of local minimum
trajectories, consists of a single element.

Detailed information on the types 7, 8 is given in [35].
For all stated problems in normal form we remark that one can turn from the

state constraints at time t = a to any time / e [a, b] by means of the flow. Here
for example, in the case of our special differential equations, we substitute Xj{a) =
—2(b - d)Xj(t)/{t + a — 2b), for all the coordinates j which are involved in the
integrand.

3. Concluding remark

In Section 1 we also indicated the concept of structural stability of our optimal
control problem. Whenever the latter problem is equivalent to a finite optimiza-
tion problem with compact feasible set, maybe after applying the Reduction-Ansatz,
we can characterize the structural stability essentially by means of the (extended)
Mangasarian-Fromovitz constraint qualification and of strong stability, meaning the
continuous dependence of the Kuhn-Tucker points on the functional data. This fact
underlines the importance of the extended Mangasarian-Fromovitz constraint qualific-
ation condition which also plays a part in our classification by means of eight generic
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local
^minima.

FIGURE 9. J of type 6: an example; Af"7 and a component of 5^,.(7).

types. In particular we see that the extremal set of the original problem (or at the
lower stage, respectively) may become empty at a generalized critical trajectory of
type 5 (or 8, respectively). From Figure 1 we also conclude that generalized critical
points and trajectories of types 2-5 do not need to be strongly stable. However,
at a strongly stable generalized critical point or trajectory, more than one Lagrange
multiplier /z, or more than one eigenvalue ae of the Hessian matrix of the Lagrangian
on the tangent space may vanish. We note that strong stability is a weaker condition
than nondegeneracy.

The condition of structural stability is numerically reasonable, for example, descent
is preserved under perturbation. But the study of structural stability does moreover
give geometrical insights into the problems' behaviour (c/. [37, 64]). Its characteriz-
ation can be extended to max-type functions, but it becomes more difficult in the case
of semi-infinite models and in the case of noncompact feasible sets. The same can be
stated for our generic classification.

In [66] and in this article we had to look at subsets of the entire space of the problems'
defining functions, for example, by means of an integrability assumption. From
physicists who are concerned with structural stability we learn that such restrictions
of the whole space can be very natural and practical. For an interesting exposition
of this fact in the context of structural formation and renormalization techniques we
refer to [9, 10]. In our context, maybe nonstandard analysis [24] will in future turn
out to give helpful explanations [63]. From the viewpoint of both optimization and
structural formation, the articles [13, 14, 16] give more information and motivation.
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Some directions of further research have already been pointed out in the last
sections. Additionally, we recognize the interest in a comparison of this research with
the classical conditions and numerical (for example, "shooting") methods in optimal
control theory as studied in, for example, [4, 5, 42, 46, 48, 50, 51, 52, 53, 54, 56, 71].
Moreover, besides our approach with generalized critical points and their branches,
the Newton flows stand for another concept from optimization (see [11, 12, 28, 31];
cf. also [3, 15, 26] for related research). These flows may more and more become a
helpful tool ([45]), also in optimal control theory.

We conclude referring to further different investigations on Newton's method by
Smale, Yomdin and others, for example, [58, 59, 60, 70]; and with the following
reflection on the relation between optimal control theory and optimization.

In this article we traced back an optimal control problem to an optimization problem.
The reverse direction could also be very interesting, namely to decouple the constraints
of an optimiztion problem close to a maybe degenerate (generalized) critical point, by
means of distributing these constraints together with the objective function to different
times / with the help of a suitable flow. This could lead to a "desingularized" family of
optimization problems which constitute an optimal control problem, or a discretization
of such a problem, to be studied.
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