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Isometric rigidity of the Wasserstein space
over the plane with the maximum metric∗
Zoltán M. Balogh, Gergely Kiss, Tamás Titkos and Dániel Virosztek

Abstract. We study 𝑝-Wasserstein spaces over the branching spaces R2 and [−1, 1]2 equipped with
the maximum normmetric. We show that these spaces are isometrically rigid for all 𝑝 ≥ 1,meaning
that all isometries of these spaces are induced by isometries of the underlying space via the push-
forward operation. This is in contrast to the case of the Euclidean metric since with that distance the
2-Wasserstein space over R2 is not rigid. Also, we highlight that the 1-Wasserstein space is not rigid
over the closed interval [−1, 1], while according to our result, its two-dimensional analog, the closed
unit ball [−1, 1]2 with the more complicated geodesic structure is rigid.

1 Introduction and the main result

Recent developments of optimal mass transport theory [1, 2, 3, 9, 16, 17] serve as main
motivation for studying theWasserstein space; that is, the space of probability measures
endowed with a metric generated by optimal mass transport. The structure of the isom-
etry group ofWasserstein spaces has been studied for the first time in a groundbreaking
paper by Kloeckner [13] in the case when the underlying space is the Euclidean space
R𝑛. This research has been followed up by Bertrand and Kloeckner [6, 7], Gehér, Titkos,
Virosztek [10, 11], Santos-Rodriguez [15]. These authors considered various underly-
ing metric spaces with different properties. The general feature of these spaces was, that
they were non-branching geodesic metric spaces. This non-branching property of the
underlying space was inherited by the Wasserstein space as well [1, 15] and it was used
in an essential way (e.g. in [15]) to show that isometries of Wasserstein spaces preserve
the class of Dirac masses.

In this paper, we consider the situation of branching spaces, namely R2 and 𝑄 =

[−1, 1]2 endowed with the maximum metric. Since the above-mentioned technique
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2 Z.M. Balogh, G. Kiss, T. Titkos and D. Virosztek

does not work in our case, we shall use a different method in order to determine the
structure of the isometry group of the Wasserstein space over these spaces.

Before defining the necessary notions and introducing the notation we will use
throughout this paper, we highlight a very recent result of Che, Galaz-García, Kerin,
and Santos-Rodríguez [8] which provided interesting examples of non-rigid Wasser-
stein spaces over certain classes of normed spaces.

To state our main result we start by introducing some notation. Let 𝑋 ⊆ R2 be a
closed subset equipped with the maximummetric 𝑑m : 𝑋 × 𝑋 → [0,∞)

𝑑m
(
(𝑥1, 𝑥2), (𝑦1, 𝑦2)

)
= max

{
|𝑥1 − 𝑦1 |, |𝑥2 − 𝑦2 |

}
,

which is a complete and separable metric space. For 𝑝 ≥ 1 we consider the 𝑝-
Wasserstein space

(
P𝑝 (𝑋, 𝑑m), 𝑑𝑊𝑝

)
, where 𝑋 ⊆ R2 is a closed subset and P𝑝 (𝑋, 𝑑m)

is the space of Borel probability measures 𝜇 supported on 𝑋 ⊆ R2 with finite 𝑝-th
moments: ∫

𝑋

𝑑
𝑝
m (𝑥, 𝑥0) d𝜇(𝑥) < ∞

for some (and thus for all) 𝑥0 ∈ R2. This set is endowed with the Wasserstein metric
coming from optimal mass transport, i.e.

𝑑𝑊𝑝
(𝜇, 𝜈) = min

𝜋∈𝐶 (𝜇,𝜈)
©­«
∬
𝑋×𝑋

𝑑
𝑝
m (𝑥, 𝑦) d𝜋(𝑥, 𝑦)

ª®¬
1
𝑝

,

where𝐶 (𝜇, 𝜈) is in the set of couplings between 𝜇 and 𝜈. That is, 𝜋 ∈ P(𝑋 × 𝑋) and its
marginals are equal to 𝜇 and 𝜈: 𝜋(𝐴 × 𝑋) = 𝜇(𝐴), and 𝜋(𝑋 × 𝐴) = 𝜈(𝐴) for any Borel
set 𝐴 ⊆ 𝑋 . Recall that if 0 < 𝑝 < 1, then the definition of the 𝑝-Wasserstein distance is
slightly different. In that case, 𝑑𝑊𝑝

(𝜇, 𝜈) = min𝜋∈𝐶 (𝜇,𝜈)
∬

𝑋×𝑋
𝑑
𝑝
m (𝑥, 𝑦) d𝜋(𝑥, 𝑦).

For the sake of brevity, we will denote the Wasserstein space
(
P𝑝 (𝑋, 𝑑m), 𝑑𝑊𝑝

)
by

W𝑝 (𝑋, 𝑑m).
The support of a measure 𝜇 will be denoted by supp(𝜇). For some distinguished

collection of lines 𝐿 ⊂ R2 the set

W𝑝 (𝐿, 𝑑m) = {𝜇 ∈ W𝑝 (R2, 𝑑m) | supp(𝜇) ⊆ 𝐿}

will play an important role. Recall that a geodesic segment (or shortly: geodesic) is a
curve 𝛾 : [𝑎, 𝑏] → W𝑝 (𝑋, 𝑑m) such that

𝑑𝑊𝑝
(𝛾(𝑡), 𝛾(𝑠)) = 𝐶 |𝑡 − 𝑠 |

for all 𝑡, 𝑠 ∈ R. Note, that by reparametrising the curve 𝛾 we can always achieve that
𝐶 = 1. Geodesics with𝐶 = 1 will be called unit-speed geodesics.

This paper aims to connect isometries of the underlying space 𝑋 , and theWasserstein
spaceW𝑝 (𝑋, 𝑑m). Recall that given a metric space (𝑀, 𝜚) a map 𝑓 : 𝑀 → 𝑀 is called
an isometry if it is bijective and distance preserving, i.e. 𝜚( 𝑓 (𝑚), 𝑓 (𝑚′)) = 𝜚(𝑚, 𝑚′)
for all 𝑚, 𝑚′ ∈ 𝑀 .
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Recall that any isometry of (𝑋, 𝑑m) induces an isometry of W𝑝 (𝑋, 𝑑m) by push-
forward. Indeed, if 𝑇 : 𝑋 → 𝑋 is an isometry, then the map 𝑇# is an isometry of
W𝑝 (𝑋, 𝑑m), where 𝑇#𝜇 stands for the push-forward measure of 𝜇 by 𝑇

𝑇#𝜇(𝐴) = 𝜇(𝑇−1 (𝐴) for all Borel sets 𝐴 ⊆ 𝑋.

In what follows we shall call isometries of the type 𝑇# trivial isometries. We call the
Wasserstein spaceW𝑝 (𝑋, 𝑑m) isometrically rigid if all of its isometries are trivial.

Let us recall that by the results of Kloeckner [13] the quadratic Wasserstein space
W2 (R𝑛, 𝑑∥ · ∥2 ) is not rigid as it has non-trivial shape-preserving isometries. Moreover,
in the case 𝑛 = 1 there is a flow of exotic (non-shape-preserving) isometries. Further-
more, the structure of the isometry group of Wasserstein spaces could depend both
on the choice of 𝑋 and the value of 𝑝. Indeed, the results of [10] show in the one-
dimensional case 𝑋 = R that the isometry group of W2 (R, 𝑑 | · | ) is much larger than
the isometry group of W𝑝 (R, 𝑑 | · | ) for all 𝑝 ≠ 2, while if 𝑋 = [0, 1] , then the isome-
try group ofW1 ( [0, 1], 𝑑 | · | ) is richer than the isometry group ofW𝑝 ( [0, 1], 𝑑 | · | ) for
all 𝑝 > 1 (see [10]). As it was already pointed out in [10], the same conclusion holds for
every compact interval [𝑎, 𝑏]. For our considerations, the relevant conclusion is that
W𝑝 ( [−1, 1], | · |) is rigid if and only if 𝑝 ≠ 1.

In this paper, we distinguish the cases 𝑝 = 1 and 𝑝 > 1. We note that the case 𝑝 < 1
has already been covered by the general result [11, Corollary 4.7.] which says that the
Wasserstein space W𝑝 (𝑋, 𝑑) is isometrically rigid for every Polish underlying space
(𝑋, 𝑑) and for every parameter 𝑝 < 1. Furthermore, the underlying space 𝑋 will be
either R2 or the closed unit ball 𝑄 = [−1, 1]2. Our main result shows, that in contrast
to the above non-rigidity results in the one-dimensional case, (and also in the higher
dimensional R𝑛 with the Euclidean metric) in our situation the Wasserstein spaces are
isometrically rigid when the underlying spaceR2 or𝑄 is considered with the maximum
metric.

Theorem 1.1 Let 𝑋 = R2 or 𝑋 = 𝑄 = [−1, 1]2 equipped with the maximum metric.
Then for any 𝑝 ≥ 1 the Wasserstein spaceW𝑝 (𝑋, 𝑑m) is isometrically rigid. That is, for any
isometry Φ : W𝑝 (𝑋, 𝑑m) → W𝑝 (𝑋, 𝑑m) there exists a unique isometry 𝑇 : (𝑋, 𝑑m) →
(𝑋, 𝑑m) such that

Φ(𝜇) = 𝑇#𝜇, for any 𝜇 ∈ W𝑝 (𝑋, 𝑑m).

The proof will be a combination of Proposition 2.1 with Theorem 3.3, Theorem 3.6,
Theorem 3.9, and Theorem 3.10.

Due to the difficulty caused by the branching nature of the underlying space, instead
of Dirac masses, we shall consider measures supported on diagonal lines and prove that
this class ofmeasures is preserved by isometries. This seems to be a similar phenomenon
to the one in the recent work of Balogh, Titkos, and Virosztek [5] about rigidity in the
setting of the Heisenberg group. In that paper, the authors proved that measures sup-
ported on vertical lines in the Heisenberg group are preserved. In our setting vertical
lines will be replaced by diagonals that are suitable to our geometry. In the sequel, we
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shall consider two special lines (briefly: diagonals)

𝐿+ = {(𝑡, 𝑡) | 𝑡 ∈ R} and 𝐿− = {(𝑡,−𝑡) | 𝑡 ∈ R},

and their translates:

𝐿 = 𝐿𝜀,𝑎 =
{
(𝑥1, 𝑥2) ∈ R2

�� 𝑥2 = 𝜀𝑥1 + 𝑎} for some 𝜀 ∈ {−1, 1} and 𝑎 ∈ R. (1.1)

When we are working in 𝑄 = [−1, 1]2, (with a slight abuse of notation) these symbols
denote the line segment contained in𝑄.

The consideration of diagonal lines in our arguments is based on the observation that
there is a unique geodesic (with respect to the maximummetric) connecting two points
in the plane if and only if the two points are on the same diagonal 𝐿𝜀,𝑎 . We think that
understanding rigidity in this special branching space will give us important clues to
tackle the same question in general normed spaces.

Definition 1.1 Let 𝑋 be either R2 or𝑄 equipped by the maximum metric. We call the
Wasserstein space W𝑝 (𝑋, 𝑑m) diagonally rigid, if for every Wasserstein isometry Φ :
W𝑝 (𝑋, 𝑑m) → W𝑝 (𝑋, 𝑑m) there exists an isometry𝑇 : (𝑋, 𝑑m) → (𝑋, 𝑑m) such that
Φ(𝜇) = 𝑇# (𝜇) whenever the support of 𝜇 is a subset of 𝐿+ or 𝐿− .

Our aim in Section 2 is to prove that diagonal rigidity implies rigidity. This step is
quite general in the sense that its proof works the same way for any 𝑝 ≥ 1 and 𝑋 ∈
{R2, 𝑄}. To prove that W𝑝 (𝑋, 𝑑m) is indeed diagonally rigid is more tricky and uses
very different arguments for different underlying spaces 𝑋 = R2 and 𝑋 = [−1, 1]2 and
for different values of 𝑝. These results are proven in Section 3.

2 Diagonal rigidity implies rigidity

The main result of this section is the following:

Proposition 2.1 Let 𝑝 ≥ 1 and 𝑋 ∈ {R2, 𝑄}. Assume that the space W𝑝 (𝑋, 𝑑m) is
diagonally rigid. Then theW𝑝 (𝑋, 𝑑m) is rigid.

For the sake of brevity, we only prove the case 𝑋 = R2. The same argument works in
the case 𝑋 = 𝑄, replacing lines by line segments contained in𝑄.

The proof of the statement will be a combination of lemmas. The first lemma is about
the minimal distance projection onto lines.

Lemma 2.2 Let 𝐿 ⊂ R2 be a line that is not parallel to the 𝑥-axis and the 𝑦-axis, and let
𝑥 ∈ R2. Then there exists unique 𝑥̂ ∈ 𝐿 such that 𝑑m (𝑥, 𝑥̂) ≤ 𝑑m (𝑥, 𝑦) for all 𝑦 ∈ 𝐿.

Proof If 𝑥 ∈ 𝐿, then we take 𝑥̂ := 𝑥 and the claim is obvious. If 𝑥 ∉ 𝐿, then 𝑥̂ is the
first point of contact of metric balls centered at 𝑥 with 𝐿. Since metric balls are squares
aligned with the 𝑥 and 𝑦-axes, and by assumption 𝐿 is not parallel to any of these axes,
𝑥̂ is uniquely defined.

■
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Denoting by 𝑃𝐿 (𝑥) = 𝑥̂, we obtain a well-defined projection map 𝑃𝐿 : R2 → 𝐿.
Our second statement is about the projection of measures defined by the push forward
under this projection map.

Lemma 2.3 Let 𝜇 ∈ W𝑝 (R2, 𝑑m). Then, the measure 𝜇̂ = 𝑃𝐿# (𝜇) is the metric projection
W𝑝 (R2, 𝑑m) → W𝑝 (𝐿, 𝑑m) i.e. the unique measure inW𝑝 (𝐿, 𝑑m) such that

𝑑𝑊𝑝
(𝜇, 𝜇̂) ≤ 𝑑𝑊𝑝

(𝜇, 𝜈)

for all 𝜈 ∈ W𝑝 (𝐿, 𝑑m).

Proof To prove the inequality in the statement, let 𝜈 ∈ W𝑝 (𝐿, 𝑑m) be an arbitrary
measure and 𝜋 be an optimal coupling between 𝜇 and 𝜈. Then

𝑑
𝑝

𝑊𝑝
(𝜇, 𝜈) =

∫
R2×𝐿

𝑑
𝑝
m (𝑥, 𝑦) d𝜋(𝑥, 𝑦).

Since 𝑑 𝑝
m (𝑥, 𝑦) ≥ 𝑑

𝑝
m (𝑥, 𝑃𝐿 (𝑥)) for all 𝑥 ∈ R2, 𝑦 ∈ 𝐿 and supp(𝜋) ⊆ R2 × 𝐿, we have

that

𝑑
𝑝

𝑊𝑝
(𝜇, 𝜈) =

∫
R2×𝐿

𝑑
𝑝
m (𝑥, 𝑦) d𝜋(𝑥, 𝑦) ≥

∫
R2×R2

𝑑
𝑝
m (𝑥, 𝑃𝐿 (𝑥)) d𝜋(𝑥, 𝑦)

=

∫
R2

𝑑
𝑝
m (𝑥, 𝑃𝐿 (𝑥)) d𝜇(𝑥) = 𝑑 𝑝

𝑊𝑝
(𝜇, 𝜇̂).

This shows that 𝜇̂ is a minimizer for the problem inf{𝑑 𝑝

𝑊𝑝
(𝜇, 𝜈) : 𝜈 ∈ W𝑝 (𝐿, 𝑑m)}.

To show that 𝜇̂ is the uniqueminimizer, note that in the case equalitywe have that 𝑦 =
𝑃𝐿 (𝑥) for 𝜋 almost every (𝑥, 𝑦) showing that 𝜋 = (𝐼𝑑 ×𝑃𝐿)#𝜇 and thus 𝜈 = 𝑃𝐿#𝜇. ■

The next lemma shows that the action of the isometry and the push-forward by
projection commute.

Lemma 2.4 IfΦ : W𝑝 (R2, 𝑑m) → W𝑝 (R2, 𝑑m) is an isometry such thatΦ(𝜇) = 𝜇 for
all 𝜇 ∈ W𝑝 (𝐿+, 𝑑m) ∪W𝑝 (𝐿− , 𝑑m) then we have the commutation relations

Φ(𝑃𝐿+# (𝜇)) = 𝑃𝐿+# (Φ(𝜇)) and Φ(𝑃𝐿− # (𝜇)) = 𝑃𝐿− # (Φ(𝜇))

for all 𝜇 ∈ W𝑝 (R2, 𝑑m).

Proof The proof is based on the previous lemma, and we prove only the first commu-
tation relation regarding 𝐿+ as the case of 𝐿− is very similar.

Let 𝜇 ∈ W𝑝 (R2, 𝑑m) and 𝜇̂ = 𝑃𝐿+# (𝜇). We have to show thatΦ( 𝜇̂) = 𝑃𝐿+# (Φ(𝜇)).
Since 𝜇̂ ∈ W𝑝 (𝐿+, 𝑑m), we note thatΦ( 𝜇̂) = 𝜇̂ by assumption. AsΦ is an isometry,

𝐷 := 𝑑𝑊𝑝
(𝜇, 𝜇̂) = 𝑑𝑊𝑝

(Φ(𝜇),Φ( 𝜇̂)) = 𝑑𝑊𝑝
(Φ(𝜇), 𝜇̂).

Let 𝜈 ∈ W𝑝 (𝐿+, 𝑑m). Thus 𝜈 = Φ−1 (𝜈) ∈ W𝑝 (𝐿+, 𝑑m), and therefore

𝑑𝑊𝑝
(Φ(𝜇), 𝜈) = 𝑑𝑊𝑝

(𝜇,Φ−1 (𝜈)) = 𝑑𝑊𝑝
(𝜇, 𝜈) ≥ 𝐷 for all 𝜈 ∈ W𝑝 (𝐿+, 𝑑m).
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Since 𝑑𝑊𝑝
(Φ(𝜇),Φ( 𝜇̂)) = 𝐷 and 𝜇̂ = Φ( 𝜇̂) ∈ W𝑝 (𝐿+, 𝑑m) is the minimizer of the

distance, from the uniqueness part of Lemma 2.3, we have 𝜇̂ = Φ( 𝜇̂) = 𝑃𝐿+# (Φ(𝜇)) as
required. ■

After this preparation we can turn to the proof of Proposition 2.1. The proof is
inspired by Bertrand and Kloeckner [6] and it is based on the method of Radon trans-
form. In our case the Radon transform will be a mapping R : W𝑝 (R2, 𝑑m) →
W𝑝 (𝐿+, 𝑑m) ×W𝑝 (𝐿− , 𝑑m) defined by

R(𝜇) :=
(
𝑃𝐿+# (𝜇), 𝑃𝐿− # (𝜇)

)
. (2.1)

Proof Without loss of generality we can assume that Φ(𝜇) = 𝜇 for all 𝜇 ∈
W𝑝 (𝐿+, 𝑑m) ∪ W𝑝 (𝐿− , 𝑑m). Now we want to extend this property to the whole
W𝑝 (R2, 𝑑m). The main idea is to consider a subset F ⊂ W𝑝 (R2, 𝑑m) such that

• F is dense inW𝑝 (R2, 𝑑m),
• for any 𝜇1, 𝜇2 ∈ F the following holds:

𝑃𝐿+# (𝜇1) = 𝑃𝐿+# (𝜇2) and 𝑃𝐿− # (𝜇1) = 𝑃𝐿− # (𝜇2) =⇒ 𝜇1 = 𝜇2,

• Φ(F ) ⊆ F .

The second condition is the injectivity of the Radon transform on the set F . Suppose
that we have such an F . Then, applying Lemma 2.4 we get that for any 𝜇 ∈ F

𝑃𝐿+# (Φ(𝜇)) = Φ(𝑃𝐿+# (𝜇)) = 𝑃𝐿+# (𝜇)

and

𝑃𝐿− # (Φ(𝜇)) = Φ(𝑃𝐿− # (𝜇)) = 𝑃𝐿− # (𝜇).
By the third condition we haveΦ(𝜇) ∈ F and so we can apply the second condition for
the two measures 𝜇1 = 𝜇 and 𝜇2 = Φ(𝜇). This implies that Φ(𝜇) = 𝜇 for all 𝜇 ∈ F .
Using the density of F inW𝑝 (R2, 𝑑m) (the first condition) we get that Φ(𝜇) = 𝜇 for
all 𝜇 ∈ W𝑝 (R2, 𝑑m).

Therefore it is enough to find a set F that satisfies the conditions above. We define
F by the following:

F :=

{
𝑁∑︁
𝑖=1

𝑎𝑖𝛿𝑥𝑖

�����𝑁 ≥ 1,
𝑁∑︁
𝑖=1

𝑎𝑖 = 1,

for 𝑖 ≠ 𝑗 we require 𝑎𝑖 ≠ 𝑎 𝑗 , and 𝑃𝐿+𝑥𝑖 ≠ 𝑃𝐿+𝑥 𝑗 and 𝑃𝐿−𝑥𝑖 ≠ 𝑃𝐿−𝑥 𝑗

}
.

Let us check the required conditions for this choice of F . For the first condition we
use the fact that the set of finitely supported measures is dense inW𝑝 (R2, 𝑑m). Since a
finitely supported measure can be clearly approximated inW𝑝 (R2, 𝑑m) by elements of
F , the first property follows.

In order to show the second property let 𝜇1, 𝜇2 ∈ F such that 𝑃𝐿+# (𝜇1) = 𝑃𝐿+# (𝜇2)
and 𝑃𝐿− # (𝜇1) = 𝑃𝐿− # (𝜇2). We have to conclude that 𝜇1 = 𝜇2.
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To check this, let us assume that

𝜇1 =

𝑁1∑︁
𝑖=1

𝑎
(1)
𝑖
𝛿
𝑥
(1)
𝑖

, and 𝜇2 =
𝑁2∑︁
𝑖=1

𝑎
(2)
𝑖
𝛿
𝑥
(2)
𝑖

.

By the condition that 𝑃𝐿+# (𝜇1) = 𝑃𝐿+# (𝜇2) and 𝑃𝐿− # (𝜇1) = 𝑃𝐿− # (𝜇2) we obtain the
equations

𝑁1∑︁
𝑖=1

𝑎
(1)
𝑖
𝛿
𝑃𝐿+ (𝑥

(1)
𝑖

) =
𝑁2∑︁
𝑖=1

𝑎
(2)
𝑖
𝛿
𝑃𝐿+ (𝑥

(2)
𝑖

)

and
𝑁1∑︁
𝑖=1

𝑎
(1)
𝑖
𝛿
𝑃𝐿− (𝑥 (1)

𝑖
) =

𝑁2∑︁
𝑖=1

𝑎
(2)
𝑖
𝛿
𝑃𝐿− (𝑥 (2)

𝑖
) .

Fromherewe conclude, that𝑁1 = 𝑁2 = 𝑁 , 𝑎 (1)𝑖
= 𝑎

(2)
𝑖

and 𝑥 (1)
𝑖

= 𝑥
(2)
𝑖

for 𝑖 = 1, . . . , 𝑁
which gives that 𝜇1 = 𝜇2.

To verify the third property, i.e. that Φ(F ) ⊆ F , let us take an element 𝜇 =∑𝑁
𝑖=1 𝑎𝑖𝛿𝑥𝑖 ∈ F . Recalling thatΦ fixes all measures supported on the diagonals 𝐿+ and

𝐿− , we get by Lemma 2.4 that

𝑃𝐿# (𝜇) = Φ(𝑃𝐿# (𝜇)) = 𝑃𝐿# (Φ(𝜇))

for 𝐿 ∈ {𝐿+, 𝐿−}, and therefore we have

𝑃𝐿+# (Φ(𝜇)) = 𝑃𝐿+# (𝜇) =
𝑁∑︁
𝑖=1

𝑎𝑖𝛿𝑃𝐿+ (𝑥𝑖 ) ,

where 𝑃𝐿+ (𝑥𝑖) ∈ 𝐿+ and

𝑃𝐿− # (Φ(𝜇)) = 𝑃𝐿− # (𝜇) =
𝑁∑︁
𝑖=1

𝑎𝑖𝛿𝑃𝐿− (𝑥𝑖 ) ,

where 𝑃𝐿− (𝑥𝑖) ∈ 𝐿− . In conclusion we obtain that the Radon transform of 𝜇 andΦ(𝜇)
are equal

R := R(𝜇) = R(Φ(𝜇)) =
(

𝑁∑︁
𝑖=1

𝑎𝑖𝛿𝑃𝐿+ (𝑥𝑖 ) ,
𝑁∑︁
𝑖=1

𝑎𝑖𝛿𝑃𝐿− (𝑥𝑖 )

)
.

Now observe that Φ(𝜇) is a finitely supported measure with support contained in
the intersection of the two pre-images:

(𝑃𝐿+ )−1 ({𝑃𝐿+ (𝑥1), . . . , 𝑃𝐿+ (𝑥𝑁 )}) ∩ (𝑃𝐿− )−1 ({𝑃𝐿− (𝑥1), . . . , 𝑃𝐿− (𝑥𝑁 )}).

This intersection is an 𝑁-by-𝑁 grid, and we refer to its points by 𝑧𝑖, 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑁),
where 𝑧𝑖, 𝑗 satisfies that 𝑃𝐿+ (𝑧𝑖, 𝑗 ) = 𝑃𝐿+ (𝑥𝑖) and 𝑃𝐿− (𝑧𝑖, 𝑗 ) = 𝑃𝐿− (𝑥 𝑗 ). Hence Φ(𝜇)
can be written as

Φ(𝜇) =
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑎𝑖, 𝑗𝛿𝑧𝑖, 𝑗 ,
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where 𝑎𝑖, 𝑗 ≥ 0,
∑𝑁

𝑖=1
∑𝑁

𝑗=1 𝑎𝑖, 𝑗 = 1 and
∑𝑁

𝑖=1 𝑎𝑖, 𝑗 = 𝑎 𝑗 and
∑𝑁

𝑗=1 𝑎𝑖, 𝑗 = 𝑎𝑖 . Since the
grid is finite, there is a positive minimal distance between its points

𝑐 := min
(𝑖, 𝑗 )≠(𝑖′ , 𝑗′ )

𝑑𝑚 (𝑧𝑖, 𝑗 , 𝑧𝑖′ , 𝑗′ ) > 0.

From here, we assume by contradiction that Φ(𝜇) ∉ F . Since Φ(𝜇) ∉ F , then there
exist at least two points 𝑧, 𝑧′ ∈ supp(Φ(𝜇)) such that their projection onto either 𝐿+ or
𝐿− coincide.

µ Φ(µ)

Figure 1: Illustration of a finitely supported measure 𝜇 with a possible image Φ(𝜇) and the grid
determined by the pre-images of 𝑃𝐿+ and 𝑃𝐿− ..

We briefly sketch how to obtain the desired contradiction and we give the details
later:

First, by slightly perturbing the measure 𝜇 we will construct a measure 𝜇′ such that

argmin
{
𝑑𝑊𝑝

(𝜇, 𝜉)
�� 𝜉 ∈ W𝑝 (R2, 𝑑m),R(𝜉) = R(𝜇′)

}
= {𝜇′}. (2.2)

µ µ
′

Figure 2: Illustration of 𝜇′ , the measure that we obtain by a sufficiently small perturbation of 𝜇..

Next, using the existence of 𝑧 and 𝑧′ as above; by small perturbations ofΦ(𝜇) wewill
construct two measures 𝜈′1 and 𝜈

′
2 such that R(𝜈′1) = R(𝜈′2) = R(𝜇′) and

argmin
{
𝑑𝑊𝑝

(Φ(𝜇), 𝜉)
�� 𝜉 ∈ W𝑝 (R2, 𝑑m),R(𝜉) = R(𝜇′)

}
⊇ {𝜈′1, 𝜈′2}. (2.3)

2025/04/29 10:27

https://doi.org/10.4153/S0008414X25101053 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101053


Isometric rigidity ofW𝑝 (R2, 𝑑m) andW𝑝 (𝑄, 𝑑m) for 𝑝 ≥ 1 9

ν
′

2ν
′

1

Figure 3: Illustration for 𝜈′1 and 𝜈
′
2 - the two measures that we obtained by sufficiently small per-

turbations ofΦ(𝜇)..

Finally, 𝑑𝑊𝑝
(𝜇,Φ−1 (𝜈′1)) = 𝑑𝑊𝑝

(𝜇, 𝜇′) = 𝑑𝑊𝑝
(𝜇,Φ−1 (𝜈′2)) contradicts the fact

that 𝜇′ is the unique minimizer. This contradiction guarantees thatΦ(𝜇) ∈ F .

µ
Φ(µ)

ν′1

Φ
−1(ν′1)

µ
′

Φ
−1(ν′2)

ν′2

{ξ |R(ξ) = R(µ)} {ξ |R(ξ) = R(µ′)}

Figure 4: Illustration of the final step leading to a contradiction. Dashed lines represent equal dis-
tances..

After this brief sketch of the proof, we turn to the details.
IfΦ(𝜇) ∉ F , then there exist two points 𝑧, 𝑧′ ∈ supp(Φ(𝜇)) such that their projec-

tions onto either 𝐿+ or 𝐿− coincide. Indeed, if there are no such points, then all points
of the support ofΦ(𝜇) project to different points of 𝐿+ and 𝐿− . Since

𝑃𝐿− # (Φ(𝜇)) =
𝑁∑︁
𝑖=1

𝑎𝑖𝛿𝑃𝐿− (𝑥𝑖 ) , 𝑃𝐿+# (Φ(𝜇)) =
𝑁∑︁
𝑖=1

𝑎𝑖𝛿𝑃𝐿+ (𝑥𝑖 )

and 𝑎𝑖 ≠ 𝑎 𝑗 (1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑁 ), this implies thatΦ(𝜇) = ∑𝑁
𝑖=1 𝑎𝑖𝛿𝑥𝑖 = 𝜇, which leads to

a contradiction. Without loss of generality, we can assume that this common projection
is 𝑃𝐿+ (𝑥1) ∈ 𝐿+, i.e., 𝑃𝐿+ (𝑧) = 𝑃𝐿+ (𝑧′) = 𝑃𝐿+ (𝑥1), and for some 1 ≤ 𝑗1 ≠ 𝑗2 ≤ 𝑁

we have 𝑧 = 𝑧1, 𝑗1 , 𝑧
′ = 𝑧1, 𝑗2 and 𝑎1, 𝑗1 > 0, 𝑎1, 𝑗2 > 0. Using this observation, we
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10 Z.M. Balogh, G. Kiss, T. Titkos and D. Virosztek

construct the measures 𝜇′, 𝜈′1, 𝜈
′
2 as follows. We take a point 𝑥′ ∈ 𝐿+ such that 𝑐0 :=

𝑑𝑚 (𝑃𝐿+ (𝑥1), 𝑥′) < 𝑐/2. Let us denote the elements of(
(𝑃𝐿+ )−1 ({𝑃𝐿+ (𝑥′)})

)
∩

(
(𝑃𝐿− )−1 ({𝑃𝐿− (𝑥1), . . . , 𝑃𝐿− (𝑥𝑁 )})

)
by 𝑧0, 𝑗 (1 ≤ 𝑗 ≤ 𝑁 ) so that 𝑃𝐿+ (𝑧0, 𝑗 ) = 𝑥′ and 𝑃𝐿− (𝑧0, 𝑗 ) = 𝑃𝐿− (𝑥 𝑗 ). We will also use
the notation 𝑥0 = 𝑧0,1. For every 0 ≤ 𝑖′ ≤ 𝑁, 1 ≤ 𝑗 , 𝑗 ′ ≤ 𝑁

𝑑𝑚 (𝑧0, 𝑗 , 𝑧1, 𝑗 ) < 𝑑𝑚 (𝑧𝑖′ , 𝑗′ , 𝑧1, 𝑗 )

if (𝑖′, 𝑗 ′) ∉ {(0, 𝑗), (1, 𝑗)}. To see this, observe that by construction, 𝑑𝑚 (𝑧0, 𝑗 , 𝑧1, 𝑗 ) =

𝑐0. If 𝑖′ ≠ 0 and (𝑖′, 𝑗 ′) ≠ (1, 𝑗), then we have 𝑑𝑚 (𝑧𝑖′ , 𝑗′ , 𝑧1, 𝑗 ) > 𝑐 by definition. If
𝑖′ = 0 and 𝑗 ′ ≠ 𝑗 , then using the reverse triangle inequality, we have 𝑑𝑚 (𝑧0, 𝑗′ , 𝑧1, 𝑗 ) ≥
𝑑𝑚 (𝑧1, 𝑗′ , 𝑧1, 𝑗 ) − 𝑑𝑚 (𝑧0, 𝑗′ , 𝑧1, 𝑗′ ) ≥ 𝑐− 𝑐0 > 𝑐0. Let us fix a weight 𝑎 satisfying 0 < 𝑎 <
min{𝑎1, 𝑗1 , 𝑎1, 𝑗2 } < 𝑎1. Now, we consider the following measures

𝜇′ = 𝑎𝛿𝑥0 + (𝑎1 − 𝑎)𝛿𝑥1 +
𝑁∑︁
𝑖=2

𝑎𝑖𝛿𝑥𝑖 ,

𝜈′1 = 𝑎𝛿𝑧0, 𝑗1 + (𝑎1, 𝑗1 − 𝑎)𝛿𝑧1, 𝑗1 + 𝑎1, 𝑗2𝛿𝑧1, 𝑗2 +
𝑁∑︁

𝑗=1, 𝑗≠ 𝑗1 , 𝑗2

𝑎1, 𝑗𝛿𝑧1, 𝑗 +
𝑁∑︁
𝑖=2

𝑁∑︁
𝑗=1
𝑎𝑖, 𝑗𝛿𝑧𝑖, 𝑗 ,

𝜈′2 = 𝑎𝛿𝑧0, 𝑗2 + 𝑎1, 𝑗1𝛿𝑧1, 𝑗1 + (𝑎1, 𝑗2 − 𝑎)𝛿𝑧1, 𝑗2 +
𝑁∑︁

𝑗=1, 𝑗≠ 𝑗1 , 𝑗2

𝑎1, 𝑗𝛿𝑧1, 𝑗 +
𝑁∑︁
𝑖=2

𝑁∑︁
𝑗=1
𝑎𝑖, 𝑗𝛿𝑧𝑖, 𝑗 .

Obviously, 𝜇′, 𝜈′1, and 𝜈
′
2 are probability measures satisfying R(𝜇′) = R(𝜈′1) =

R(𝜈′2) =: R′, namely

R′ =

(
𝑎𝛿𝑥′ + (𝑎1 − 𝑎)𝛿𝑃𝐿+ (𝑥1 ) +

𝑁∑︁
𝑖=2

𝑎𝑖𝛿𝑃𝐿+ (𝑥𝑖 ) ,
𝑁∑︁
𝑖=1

𝑎𝑖𝛿𝑃𝐿− (𝑥𝑖 )

)
.

Our next step is to prove that:

𝑑𝑊𝑝
(𝜇, 𝜇′) = 𝑑𝑊𝑝

(Φ(𝜇), 𝜈′1) = 𝑑𝑊𝑝
(Φ(𝜇), 𝜈′2) = 𝑎

1
𝑝 𝑐0, (2.4)

moreover, 𝜇′ satisfies the following uniqueness property:

if 𝑑𝑊𝑝
(𝜇, 𝜉) = 𝑎

1
𝑝 𝑐0, and R(𝜉) = R′ then 𝜉 = 𝜇′. (2.5)

Equations (2.4) and (2.5) together will justify relations (2.2) and (2.3).
In order to show (2.4) note that if 𝜉1, 𝜉2 are finitely supported probability measures

with supports in a discrete set 𝑃, then

𝑑𝑊𝑝
(𝜉1, 𝜉2) = min

Π∈𝐶 ( 𝜉1 , 𝜉2 )

( ∑︁
(𝑢,𝑣) ∈𝑃×𝑃

𝑑
𝑝
𝑚 (𝑢, 𝑣) · Π(𝑢, 𝑣)

) 1
𝑝 .

The proof of each of the equations in (2.4) is similar, therefore we will only prove the
equality 𝑑𝑊𝑝

(𝜇, 𝜇′) = 𝑎
1
𝑝 𝑐0. Notice first, that since every transport plan must move a

2025/04/29 10:27

https://doi.org/10.4153/S0008414X25101053 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101053


Isometric rigidity ofW𝑝 (R2, 𝑑m) andW𝑝 (𝑄, 𝑑m) for 𝑝 ≥ 1 11

total weight of at least 𝑎 to 𝑥1 from the support points of 𝜇′, we have that

𝑑𝑊𝑝
(𝜇, 𝜇′) ≥

( 𝑁∑︁
𝑖=0

𝑑
𝑝
𝑚 (𝑥𝑖 , 𝑥1)Π(𝑥𝑖 , 𝑥1)

) 1
𝑝 ≥ (𝑑 𝑝

𝑚 (𝑥0, 𝑥1)𝑎)
1
𝑝 = 𝑎

1
𝑝 𝑐0,

since 𝑑 𝑝
𝑚 (𝑥𝑖 , 𝑥1) ≥ 𝑑

𝑝
𝑚 (𝑥0, 𝑥1) and

∑𝑁
𝑖=0 Π(𝑥𝑖 , 𝑥1) ≥ 𝑎. On the other hand, if we move

weight 𝑎 directly from 𝑥0 to 𝑥1, we exactly get that the cost of this transport plan is 𝑎
1
𝑝 𝑐0.

Now we turn to the proof of (2.5). Let us suppose that we have a probability measure 𝜉
with R(𝜉) = R′. Then 𝜉 can be written in the form

𝜉 =

𝑁∑︁
𝑖=0

𝑁∑︁
𝑗=1
𝑏𝑖, 𝑗𝛿𝑧𝑖, 𝑗 ,

such that

𝑁∑︁
𝑗=1
𝑏0, 𝑗 = 𝑎,

𝑁∑︁
𝑗=1
𝑏1, 𝑗 = 𝑎1 − 𝑎,

𝑁∑︁
𝑗=1
𝑏𝑖, 𝑗 = 𝑎𝑖 (2 ≤ 𝑖 ≤ 𝑁),

𝑁∑︁
𝑖=0

𝑏𝑖, 𝑗 = 𝑎 𝑗 .

Again, every transport planmust move a total weight of at least 𝑎 to 𝑥1 from the support
points of 𝜉 . Hence, we get that again

𝑑𝑊𝑝
(𝜉, 𝜇) ≥

( 𝑁∑︁
𝑖=0

𝑁∑︁
𝑗=1
𝑑
𝑝
𝑚 (𝑧𝑖, 𝑗 , 𝑥1)Π(𝑧𝑖, 𝑗 , 𝑥1)

) 1
𝑝 ≥ (𝑑 𝑝

𝑚 (𝑥0, 𝑥1)𝑎)
1
𝑝 = 𝑎

1
𝑝 𝑐0. (2.6)

Let us recall that 𝑑𝑚 (𝑥0, 𝑥1) < 𝑑𝑚 (𝑧𝑖, 𝑗 , 𝑥1), if (𝑖, 𝑗) ∉ {(0, 1), (1, 1)}. (Note that 𝑧0,1 =
𝑥0, 𝑧1,1 = 𝑥1.) Therefore, equality holds in (2.6) if and only if all transport occurs between
𝑥0 and 𝑥1 with weight 𝑎. This implies that 𝜉 − 𝑎𝛿𝑥0 = 𝜇 − 𝑎𝛿𝑥1 and hence 𝜉 = 𝜇′.

In the last step, we show that the existence of 𝜈′1 ≠ 𝜈
′
2 implies that 𝜇′ is not a unique

minimizer in relation (2.2). Indeed, sinceΦ−1 is an isometry preserving measures sup-
ported on 𝐿+ and 𝐿− we have by Lemma 2.4 that R(Φ−1 (𝜈′1)) = R(Φ−1 (𝜈′2)) = R′.
Furthermore, according to (2.4), we have

𝑑𝑊𝑝
(𝜇,Φ−1 (𝜈′1)) = 𝑑𝑊𝑝

(Φ(𝜇), 𝜈′1) = 𝑎
1
𝑝 𝑐0 = 𝑑𝑊𝑝

(𝜇, 𝜇′),

and similarly,

𝑑𝑊𝑝
(𝜇,Φ−1 (𝜈′2)) = 𝑑𝑊𝑝

(Φ(𝜇), 𝜈′2) = 𝑎
1
𝑝 𝑐0 = 𝑑𝑊𝑝

(𝜇, 𝜇′).

SinceΦ−1 (𝜈′1) ≠ Φ−1 (𝜈′2), this is a contradiction. ■

3 Proof of the main result

According to Proposition 2.1, it is enough to show that the Wasserstein space
W𝑝 (𝑋, 𝑑m) is diagonally rigid. The proof of this fact is divided into four parts according
to the choice of 𝑋 = R2 or 𝑋 = 𝑄 and 𝑝 = 1 or 𝑝 > 1.
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3.1 Diagonal rigidity of W1 (R2, 𝑑m)

In this subsection, we deal with the case 𝑝 = 1 and show thatW1 (R2, 𝑑m) is diagonally
rigid. That is, we show that if Φ : W1 (R2, 𝑑m) → W1 (R2, 𝑑m) is an isometry, then
Φ(𝜇) = 𝜇 for all 𝜇 ∈ W1 (𝐿+) ∪ W1 (𝐿−) — up to a trivial isometry induced by an
isometry of the underlying space R2.

We recall the slightlymore general notion than 𝐿+ and 𝐿− of diagonal lines by calling
𝐿 ⊂ R2 a diagonal line if

𝐿 = 𝐿𝜀,𝑎 =
{
(𝑥1, 𝑥2) ∈ R2

�� 𝑥2 = 𝜀𝑥1 + 𝑎} for some 𝜀 ∈ {−1, 1} and 𝑎 ∈ R. (3.1)

Observe that these lines coincide with the set of images of 𝐿+ by the isometry group of
(R2, 𝑑𝑚). The following proposition is a metric characterization of those elements of
W1 (R2, 𝑑m) that are supported on a diagonal line. Let us note that this statement plays
the same role as Lemma 3.5 in [11], where Dirac masses were characterized in a similar
way inWasserstein spaces over a Hilbert space. In this sense, diagonally supported mea-
sures in our space have the same metric property as Dirac masses in the case of Hilbert
spaces.

Proposition 3.1 Let 𝜇 ∈ W1 (R2, 𝑑m). The following statements are equivalent.

(i) 𝜇 is supported on a diagonal line 𝐿𝜀,𝑎 ⊂ R2.
(ii) For every 𝜈 ∈ W1 (R2, 𝑑m) there exists an 𝜂 ∈ W1 (R2, 𝑑m) such that

𝑑𝑊1 (𝜇, 𝜈) = 𝑑𝑊1 (𝜈, 𝜂) =
1
2
𝑑𝑊1 (𝜇, 𝜂). (3.2)

In words, this item means that 𝜇 admits a symmetrical with respect to every other measure.

Proof We prove the direction (i) =⇒ (ii) first. Let 𝜀 ∈ {−1, 1} and 𝑎 ∈ R be fixed, let
𝜇 ∈ W1 (R2, 𝑑m) such that

supp(𝜇) ⊂ 𝐿 = 𝐿𝜀,𝑎 =
{
(𝑥1, 𝑥2) ∈ R2

�� 𝑥2 = 𝜀𝑥1 + 𝑎} .
Let us construct the following map, which we will call the allocation of directions in the
sequel:

𝑒 : R2 → R2; (𝑦1, 𝑦2) ↦→ 𝑒((𝑦1, 𝑦2)) :=
{
(−𝜀, 1) if 𝑦2 ≥ 𝜀𝑦1 + 𝑎
(𝜀,−1) if 𝑦2 < 𝜀𝑦1 + 𝑎

(3.3)

See Figure 5 for an illustration the map given above.
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ε = 1, a < 0 ε = −1, a > 0

y1 y1

y2 y2

e(y) = (−1, 1)

L

L

e(y) = (1, 1)

e(y) = (1,−1) e(y) = (−1,−1)

Figure 5: The allocation of directions in R2 according to (3.3).

The above allocation of directions has the crucial property that for all 𝑥 = (𝑥1, 𝑥2) ∈
𝐿, for all 𝑦 = (𝑦1, 𝑦2) ∈ R2, and for all 𝑡 ≥ 0 we have

𝑑m (𝑥, 𝑦 + 𝑡𝑒(𝑦)) = 𝑑m (𝑥, 𝑦) + 𝑑m (𝑦, 𝑦 + 𝑡𝑒(𝑦)) = 𝑑m (𝑥, 𝑦) + 𝑡. (3.4)

Let us justify (3.4) only in the sub-case 𝜀 = 1 and 𝑦2 ≥ 𝜀𝑦1 + 𝑎 as the other three sub-
cases are very similar. We know that 𝑥2 = 𝑥1 + 𝑎 and 𝑦2 ≥ 𝑦1 + 𝑎 which implies that
𝑦2 − 𝑥2 ≥ 𝑦1 − 𝑥1, or equivalently, 𝑥1 − 𝑦1 ≥ 𝑥2 − 𝑦2. Therefore,

𝑑m (𝑥, 𝑦) = 𝑑m ((𝑥1, 𝑥2), (𝑦1, 𝑦2))
= max{𝑥1 − 𝑦1, 𝑦1 − 𝑥1, 𝑥2 − 𝑦2, 𝑦2 − 𝑥2}
= max{𝑥1 − 𝑦1, 𝑦2 − 𝑥2}.

(3.5)

Moreover,

𝑑m (𝑥, 𝑦 + 𝑡𝑒(𝑦)) = 𝑑m ((𝑥1, 𝑥2), (𝑦1, 𝑦2) + 𝑡 (−1, 1))
= 𝑑m ((𝑥1, 𝑥2), (𝑦1 − 𝑡, 𝑦2 + 𝑡))
= max{𝑥1 − 𝑦1 + 𝑡, 𝑦1 − 𝑥1 − 𝑡, 𝑦2 − 𝑥2 + 𝑡, 𝑥2 − 𝑦2 − 𝑡}
= max{𝑥1 − 𝑦1 + 𝑡, 𝑦2 − 𝑥2 + 𝑡}
= max{𝑥1 − 𝑦1, 𝑦2 − 𝑥2} + 𝑡.

(3.6)

That is, (3.5) and (3.6) shows that 𝑑m (𝑥, 𝑦 + 𝑡𝑒(𝑦)) = 𝑑m (𝑥, 𝑦) + 𝑡 indeed, and it is clear
by the definition (3.3) that 𝑑m (𝑦, 𝑦 + 𝑡𝑒(𝑦)) = 𝑡 for every non-negative 𝑡.

It is a straightforward consequence of the definition of 𝑒(𝑦) — see eq. (3.3) — that
for every 𝑡 ≥ 0 the map 𝑦 ↦→ 𝑦 + 𝑡𝑒(𝑦) is an injection of R2 and hence invertible on its
range.

Let 𝜈 ∈ W1 (R2, 𝑑m) and let 𝑡0 := 𝑑𝑊1 (𝜇, 𝜈). Let us define

𝜂𝑡 := (𝑦 ↦→ 𝑦 + 𝑡𝑒(𝑦))# 𝜈 (3.7)

for 𝑡 ≥ 0. As the map 𝑦 ↦→ 𝑦 + 𝑡𝑒(𝑦) is invertible, the couplings of 𝜇 and 𝜈 are in a
one-by-one correspondence with the couplings of 𝜇 and 𝜂𝑡 (for every 𝑡 ≥ 0), and this
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correspondence is given by

𝜋 (𝜇,𝜂𝑡 ) = (idR2 × (𝑦 ↦→ 𝑦 + 𝑡𝑒(𝑦)))# 𝜋 (𝜇,𝜈) (𝜋 (𝜇,𝜈) ∈ 𝐶 (𝜇, 𝜈), 𝜋 (𝜇,𝜂𝑡 ) ∈ 𝐶 (𝜇, 𝜂𝑡 )).
(3.8)

Therefore,

𝑑𝑊1 (𝜇, 𝜂𝑡 ) = inf
{∬
R2×R2

𝑑m (𝑥, 𝑧) d𝜋 (𝜇,𝜂𝑡 ) (𝑥, 𝑧)
���� 𝜋 (𝜇,𝜂𝑡 ) ∈ 𝐶 (𝜇, 𝜂𝑡 )}

= inf
{∬
R2×R2

𝑑m (𝑥, 𝑦 + 𝑡𝑒(𝑦)) d𝜋 (𝜇,𝜈) (𝑥, 𝑦)
���� 𝜋 (𝜇,𝜈) ∈ 𝐶 (𝜇, 𝜈)}

= inf
{∬
R2×R2

(𝑑m (𝑥, 𝑦) + 𝑡) d𝜋 (𝜇,𝜈) (𝑥, 𝑦)
���� 𝜋 (𝜇,𝜈) ∈ 𝐶 (𝜇, 𝜈)}

= inf
{∬
R2×R2

𝑑m (𝑥, 𝑦) d𝜋 (𝜇,𝜈) (𝑥, 𝑦)
���� 𝜋 (𝜇,𝜈) ∈ 𝐶 (𝜇, 𝜈)} + 𝑡

= 𝑑𝑊1 (𝜇, 𝜈) + 𝑡 = 𝑡0 + 𝑡

(3.9)

for every 𝑡 ≥ 0.
Note, that in the above computation, we heavily relied on the identity (3.4). The

reversed triangle inequality implies that

𝑑𝑊1 (𝜈, 𝜂𝑡 ) ≥
��𝑑𝑊1 (𝜇, 𝜂𝑡 ) − 𝑑𝑊1 (𝜇, 𝜈)

�� = (𝑡0 + 𝑡) − 𝑡0 = 𝑡.

On the other hand, the cost of the coupling (𝑦 ↦→ (𝑦, 𝑦 + 𝑡𝑒(𝑦)))# 𝜈 ∈ 𝐶 (𝜈, 𝜂𝑡 ) is simply
𝑡, and hence 𝑑𝑊1 (𝜈, 𝜂𝑡 ) = 𝑡. Therefore, with the particular choice 𝑡 := 𝑡0 = 𝑑𝑊1 (𝜇, 𝜈)
the triple (𝜇, 𝜈, 𝜂𝑡0 ) satisfies the requirement

𝑑𝑊1 (𝜇, 𝜈) = 𝑑𝑊1 (𝜈, 𝜂𝑡0 ) =
1
2
𝑑𝑊1 (𝜇, 𝜂𝑡0 ) (3.10)

as every expression in (3.10) is equal to 𝑡0.
We turn to the proof of the direction (ii) =⇒ (i). The assumption (ii) implies in

particular that for every 𝑦 ∈ R2 there exists an 𝜂 ∈ W1 (R2, 𝑑m) such that

𝑑𝑊1 (𝜇, 𝛿𝑦) = 𝑑𝑊1 (𝛿𝑦 , 𝜂) =
1
2
𝑑𝑊1 (𝜇, 𝜂). (3.11)

Note that

𝑑𝑊1 (𝜇, 𝛿𝑦) =
∫
R2

𝑑m (𝑥, 𝑦) d𝜇(𝑥) and 𝑑𝑊1 (𝛿𝑦 , 𝜂) =
∫
R2

𝑑m (𝑦, 𝑧) d𝜂(𝑧).
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Moreover, let 𝜋∗(𝜇,𝜂) denote an optimal coupling of 𝜇 and 𝜂, and let us note that we have
the following chain of inequalities:

𝑑𝑊1 (𝜇, 𝜂) =
∬
R2×R2

𝑑m (𝑥, 𝑧) d𝜋∗(𝜇,𝜂) (𝑥, 𝑧)

≤
∬
R2×R2

𝑑m (𝑥, 𝑧) d(𝜇 ⊗ 𝜂) (𝑥, 𝑧)

≤
∬
R2×R2

(𝑑m (𝑥, 𝑦) + 𝑑m (𝑦, 𝑧)) d𝜇(𝑥) d𝜂(𝑧)

= 𝑑𝑊1 (𝜇, 𝛿𝑦) + 𝑑𝑊1 (𝛿𝑦 , 𝜂).

(3.12)

Therefore, (3.11) implies that both inequalities of (3.12) are saturated. The saturation of
the first inequalitymeans that 𝜇⊗𝜂 is an optimal coupling of 𝜇 and 𝜈with respect to the
transport cost 𝑐(𝑥, 𝑦) = 𝑑m (𝑥, 𝑦), while the saturation of the second inequality means
that

𝑑m (𝑥, 𝑧) = 𝑑m (𝑥, 𝑦) + 𝑑m (𝑦, 𝑧) for 𝜇 ⊗ 𝜂-almost every (𝑥, 𝑧) ∈ R2 × R2. (3.13)

In order to get a contradiction, assume that 𝜇 is not supported on a diagonal line, and let
𝑥 and 𝑥′ be points of the support of 𝜇 that do not lie on a common diagonal line. Now
let us choose 𝑦 to be 𝑦 := 1

2 (𝑥 + 𝑥
′).With this choice we get

𝑑m (𝑥, 𝑧) < 𝑑m (𝑥, 𝑦)+𝑑m (𝑦, 𝑧) or 𝑑m (𝑥′, 𝑧) < 𝑑m (𝑥′, 𝑦)+𝑑m (𝑦, 𝑧) for all 𝑧 ∈ R2\{𝑦}.
(3.14)

Indeed, it is easy to check— see also Figure 6— that if both triangle inequalities in (3.14)
are saturated, then 𝑧 = 𝑦 by necessity.

y = (x+ x )

{z ∈ R
2 | dm(x

′, z) = dm(x
′, y) + dm(y, z)}

{z ∈ R
2 | dm(x, z) = dm(x, y) + dm(y, z)}

Figure 6: Illustration for eq. (3.14).
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Consequently, (3.13) forces 𝜂 to be 𝜂 = 𝛿𝑦 . But then 𝑑𝑊1 (𝛿𝑦 , 𝜂) = 0, which contra-
dicts to (3.11), because 𝑑𝑊1 (𝜇, 𝛿𝑦) > 0 as 𝜇 is not diagonally supported and hence not
a Dirac. This contradiction completes the proof of the implication (ii) =⇒ (i). ■

Now we give a metric characterization of the property that two measures 𝜇1 and 𝜇2
are supported on the same diagonal line.

Proposition 3.2 Let 𝜇1, 𝜇2 ∈ W1 (R2, 𝑑m). The following statements are equivalent.

(i) 𝜇1 and 𝜇2 are supported on the same diagonal line.
(ii) For every 𝜈 ∈ W1 (R2, 𝑑m) there exists an 𝜂 ∈ W1 (R2, 𝑑m) such that

𝑑𝑊1 (𝜇𝑖 , 𝜂) = 𝑑𝑊1 (𝜇𝑖 , 𝜈) + 𝑑𝑊1 (𝜈, 𝜂) for 𝑖 = 1, 2 and 𝑑𝑊1 (𝜈, 𝜂) = 1. (3.15)

In words, this item means that there is a measure 𝜂 aligned with both (𝜇1, 𝜈) and (𝜇2, 𝜈).

Proof Let us start with the proof of the direction (i) =⇒ (ii). Assume that 𝜇1 and 𝜇2
are supported on the diagonal line 𝐿 =

{
(𝑥1, 𝑥2) ∈ R2

�� 𝑥2 = 𝜀𝑥1 + 𝑎} . Let us recall the
allocation of directions (3.3) and its crucial property (3.4). Let 𝜂 be defined by

𝜂 := (𝑦 ↦→ 𝑦 + 𝑒(𝑦))# 𝜈. (3.16)

Note that (3.16) is a special case of (3.7) with 𝑡 = 1, and hence 𝑑𝑊1 (𝜇𝑖 , 𝜂) = 𝑑𝑊1 (𝜇𝑖 , 𝜈)+
1 for 𝑖 = 1, 2.

Similarly as in the previous proposition, the reverse triangle inequality
ensures that 𝑑𝑊1 (𝜈, 𝜂) ≥

��𝑑𝑊1 (𝜇𝑖 , 𝜂) − 𝑑𝑊1 (𝜇𝑖 , 𝜈)
�� = 1, and the transport map

(𝑦 ↦→ (𝑦, 𝑦 + 𝑒(𝑦)))#𝜈 between 𝜈 and 𝜂 shows that 𝑑𝑊1 (𝜈, 𝜂) = 1 which completes the
proof of this direction.

To prove the direction (ii) =⇒ (i), note that by the previous statement, both of the
measures 𝜇1 and 𝜇2 are supported on some diagonal line. Assume by contradiction that
𝜇1 and 𝜇2 are not supported on the same diagonal line, and hence in particular there
exist points 𝑥1 ∈ supp(𝜇1) and 𝑥2 ∈ supp(𝜇2) that do not lie on a common diagonal
line. As in the proof of Proposition 3.1 let us choose 𝜈 := 𝛿𝑦 where 𝑦 = 1

2 (𝑥1 +𝑥2).With
this choice, (3.15) implies that

𝑑m (𝑥, 𝑧) = 𝑑m (𝑥, 𝑦) +𝑑m (𝑦, 𝑧) for 𝜇𝑖 ⊗𝜂-almost every (𝑥, 𝑧) ∈ R2×R2 (𝑖 = 1, 2).

In particular, 𝑑m (𝑥𝑖 , 𝑧) = 𝑑m (𝑥𝑖 , 𝑦) + 𝑑m (𝑦, 𝑧) for 𝑖 = 1, 2 which implies 𝑧 = 𝑦 for 𝜂-
almost every 𝑧, and hence forces 𝜂 to be 𝛿𝑦 . However, this contradicts the requirement
𝑑𝑊1 (𝜈, 𝜂) = 1, so we got the desired contradiction. ■

Now we are in the position to prove the main result of this section.

Theorem 3.3 The Wasserstein spaceW1 (R2, 𝑑m) is diagonally rigid. That is, for any isom-
etry Φ : W1 (R2, 𝑑m) → W1 (R2, 𝑑m) there exists an isometry 𝑇 : R2 → R2 such that
Φ ◦ 𝑇# fixes all measures supported on 𝐿+ and 𝐿− .
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Proof LetΦ : W1 (R2, 𝑑m) → W1 (R2, 𝑑m) be an isometry, and let 𝜇, 𝜇′ ∈ W1 (𝐿+)
be two measures, 𝜇 ≠ 𝜇′. According to Proposition 3.2, their images Φ(𝜇) and Φ(𝜇′)
are supported on a diagonal line 𝐿𝜀,𝑎 for a suitable 𝜀 ∈ {−1, 1} and 𝑎 ∈ R. Since for
every 𝜀 ∈ {−1, 1} and 𝑎 ∈ R there is an isometry 𝑇 : R2 → R2 that maps 𝐿𝜀,𝑎 onto
𝐿+, we can assume that supp

(
Φ(𝜇)

)
⊆ 𝐿+ and supp

(
Φ(𝜇′)

)
⊆ 𝐿+. In fact, for every 𝜈

with supp(𝜈) ⊆ 𝐿+ we conclude that supp
(
Φ(𝜈)

)
⊆ 𝐿+. Indeed, let us repeat the above

argument for 𝜇 and 𝜈. Since they are both supported on 𝐿+ their images are supported
on the same diagonal line. We already know that supp

(
Φ(𝜇)

)
⊆ 𝐿+, and therefore if

Φ(𝜇) is not a Dirac mass, then Proposition 3.2 guarantees that supp
(
Φ(𝜈)

)
⊆ 𝐿+. If

Φ(𝜇) is a Dirac mass, say Φ(𝜇) = 𝛿 (𝑥,𝑥 ) then we have to exclude the possibility of
supp

(
Φ(𝜈)

)
⊆ 𝐿−1,2𝑥 . To this aim, consider 𝜈 and 𝜇′, and again, apply Proposition

3.2 to conclude that supp
(
Φ(𝜇′)

)
⊆ 𝐿−1,2𝑥 . But this is a contradiction, as we already

know that supp
(
Φ(𝜇′)

)
⊆ 𝐿+ and therefore supp

(
Φ(𝜇′)

)
= {(𝑥, 𝑥)}, or equivalently

Φ(𝜇′) = 𝛿 (𝑥,𝑥 ) = Φ(𝜇).
We obtain in this way, that Φ restricted to W1 (𝐿+) is a (bijective) isometry of

W1 (𝐿+), which is isomorphic to𝑊1 (R, | · |) which is known to be isometrically rigid
— see [10]. Therefore measures inW1 (𝐿+) are left invariant byΦ.

Finally we need to show that measures in W1 (𝐿−) are also left invariant by Φ. To
see this note that (0, 0) ∈ 𝐿+ ∩ 𝐿− and considering the measure 𝜇 = 𝛿 (0,0) together
with another measure 𝜈 supported on 𝐿− we conclude by applying Proposition 3.2 that
both Φ(𝜇) and Φ(𝜈) are supported on the same diagonal line. Since we know already
thatΦ(𝜇) = 𝜇 = 𝛿 (0,0) we can conclude that the support ofΦ(𝜈) is in 𝐿+ or it is in 𝐿− .
Since the first option cannot hold as the pre-images of measures supported on 𝐿+ are
supported on 𝐿+ by the previous paragraph, we are left with the second one. This shows
that if 𝜈 ∈ W1 (𝐿−) then so is Φ(𝜈). By possibly applying another isometry of R2 we
obtain thatΦ fixes the elements of 𝜈 ∈ W1 (𝐿−) as well. ■

3.2 Diagonal rigidity of W𝑝 (R2, 𝑑m) for 𝑝 > 1

In this subsection, we show that the Wasserstein space W𝑝 (R2, 𝑑m) for 𝑝 > 1 is
diagonally rigid. First, we give a metric characterization of Dirac measures. Such a
characterization will guarantee that if 𝜇 is a Dirac mass, then Φ(𝜇) is a Dirac mass as
well.

Proposition 3.4 Let 𝑝 > 1 and 𝜇 ∈ W𝑝 (R2, 𝑑m). The following statements are equivalent.

(i’) 𝜇 is a Dirac mass, that is, 𝜇 = 𝛿𝑥 for some 𝑥 ∈ R2.
(ii’) For every 𝜈 ∈ W𝑝 (R2, 𝑑m) there exists an 𝜂 ∈ W𝑝 (R2, 𝑑m) such that

𝑑𝑊𝑝
(𝜇, 𝜈) = 𝑑𝑊𝑝

(𝜈, 𝜂) = 1
2
𝑑𝑊𝑝

(𝜇, 𝜂). (3.17)

In words, item (ii’) means that 𝜇 admits a symmetrical with respect to every other
measure.

Note that the above Proposition 3.4 characterizing Dirac masses inW𝑝 (R2, 𝑑m) for
𝑝 > 1 highlights the difference between the cases 𝑝 = 1 and 𝑝 > 1. This statement
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is very similar in spirit to Proposition 3.1 characterizing measures supported on diagonal
lines in W1 (R2, 𝑑m). In fact, condition (ii) of Proposition 3.1 is the same as condition
(ii’) of Proposition 3.4, up to a modification in the parameter value of the Wasserstein
distance that we consider. This means that diagonally supported measures play the role
of Dirac masses in the case 𝑝 = 1, and in particular, there are plenty of examples of non-
Dirac measures satisfying condition (ii), which is the 1-Wasserstein version of condition
(ii’) above. These examples are explicitly constructed in the proof of the (i) =⇒ (ii) part
of Proposition 3.1.

Proof Let us prove the direction (i’) =⇒ (ii’) first. Let 𝑥 ∈ R, let 𝜇 = 𝛿𝑥 , and let us
define the following dilation with center 𝑥 on R2:

𝐷𝑥 : R2 → R2; 𝑦 ↦→ 𝐷𝑥 (𝑦) := 𝑥 + 2(𝑦 − 𝑥). (3.18)

Now, for any 𝜈 ∈ W𝑝 (R2, 𝑑m), let us define the corresponding 𝜂𝜈 by

𝜂𝜈 := (𝐷𝑥)# 𝜈. (3.19)

It is clear that 𝑑𝑊𝑝
(𝜇, 𝜂𝜈) = 2𝑑𝑊𝑝

(𝜇, 𝜈). Indeed,

𝑑𝑊𝑝
(𝛿𝑥 , 𝜂𝜈) =

©­«
∫
R2

𝑑
𝑝
m (𝑥, 𝑧) d(𝐷𝑥)#𝜈(𝑧)

ª®¬
1
𝑝

=
©­«
∫
R2

𝑑
𝑝
m (𝑥, 𝑥 + 2(𝑦 − 𝑥)) d𝜈(𝑦)ª®¬

1
𝑝

=
©­«
∫
R2

2𝑝𝑑 𝑝
m (𝑥, 𝑦)) d𝜈(𝑦)

ª®¬
1
𝑝

= 2𝑑𝑊𝑝
(𝛿𝑥 , 𝜈).

Moreover, by the reversed triangle inequality, 𝑑𝑊𝑝
(𝜈, 𝜂𝜈) ≥ 𝑑𝑊𝑝

(𝜇, 𝜂𝜈) −
𝑑𝑊𝑝

(𝜇, 𝜈) = 𝑑𝑊𝑝
(𝜇, 𝜈), while the obvious coupling of 𝜈 and 𝜂𝜈 given by the dilation

𝐷𝑥 guarantees that 𝑑𝑊𝑝
(𝜈, 𝜂𝜈) ≤ 𝑑𝑊𝑝

(𝜇, 𝜈), and hence the direction (i’) =⇒ (ii’) is
proved.

To prove the other direction (ii’) =⇒ (i’), let 𝜈 be a Dirac mass, 𝜈 = 𝛿𝑦 , and let 𝜂 be as
in condition (ii’). Then
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𝑑𝑊𝑝
(𝜇, 𝜂) =

(∬
R2×R2

𝑑
𝑝
m (𝑥, 𝑧) d𝜋∗(𝜇,𝜂) (𝑥, 𝑧)

) 1
𝑝

≤
(∬
R2×R2

𝑑
𝑝
m (𝑥, 𝑧) d(𝜇 ⊗ 𝜂) (𝑥, 𝑧)

) 1
𝑝

≤
(∬
R2×R2

(𝑑m (𝑥, 𝑦) + 𝑑m (𝑦, 𝑧)) 𝑝 d(𝜇 ⊗ 𝜂) (𝑥, 𝑧)
) 1

𝑝

≤
(∬
R2×R2

𝑑m (𝑥, 𝑦) 𝑝 d(𝜇 ⊗ 𝜂) (𝑥, 𝑧)
) 1

𝑝

+
(∬
R2×R2

𝑑
𝑝
m (𝑦, 𝑧) d(𝜇 ⊗ 𝜂) (𝑥, 𝑧)

) 1
𝑝

=
©­«
∫
R2

𝑑m (𝑥, 𝑦) 𝑝 d𝜇(𝑥)ª®¬
1
𝑝

+ ©­«
∫
R2

𝑑
𝑝
m (𝑦, 𝑧) d𝜂(𝑧)

ª®¬
1
𝑝

=

(∬
R2×R2

𝑑m (𝑥, 𝑧) 𝑝 d(𝜇 ⊗ 𝛿𝑦) (𝑥, 𝑧)
) 1

𝑝

+
(∬
R2×R2

𝑑
𝑝
m (𝑥, 𝑧) d(𝛿𝑦 ⊗ 𝜂) (𝑥, 𝑧)

) 1
𝑝

= 𝑑𝑊𝑝
(𝜇, 𝜈) + 𝑑𝑊𝑝

(𝜈, 𝜂).

Since we assumed that 𝑑𝑊𝑝
(𝜇, 𝜈) = 𝑑𝑊𝑝

(𝜈, 𝜂) = 1
2𝑑𝑊𝑝

(𝜇, 𝜂), all the inequalities in the
above chain are saturated. In particular, by the saturation of the 𝐿𝑝-Minkowski inequal-
ity for 𝑝 > 1 (strictly convex norm), we get that there is a nonnegative constant 𝛼 ≥ 0
such that

𝑑m (𝑦, 𝑧) = 𝛼𝑑m (𝑥, 𝑦) for 𝜇-a.e. 𝑥 ∈ R2 and for 𝜂-a.e. 𝑧 ∈ R2. (3.20)

If 𝜇 is not a Dirac mass, then let 𝑥1 and 𝑥2 be two different points in its support, and let
𝑦 := 2

3𝑥1 +
1
3𝑥2. Then the left hand side of (3.20) is independent of 𝑥, while the right

hand side is not – a contradiction.
■

The next step is to find ametric characterization of the property that the support of a
measure 𝜇 is diagonally alignedwith a point 𝑥 in the underlying space, that is, supp(𝜇) ⊂
(𝑥 + 𝐿+) ∪ (𝑥 + 𝐿−). This metric characterisation turns out to be the property that there
is only one 𝑝-Wasserstein geodesic between 𝛿𝑥 measure and 𝜇.

Proposition 3.5 Let 𝑝 > 1 and 𝑥 ∈ R2 be fixed. For a measure 𝜇 ∈ W𝑝 (R2, 𝑑m) the
following statements are equivalent:

(a) There exists a unique unit-speed geodesic segment 𝛾 such that 𝛾(0) = 𝛿𝑥 and 𝛾(𝑇) = 𝜇,
where 𝑑𝑊𝑝

(𝛿𝑥 , 𝜇) = 𝑇 .
(b) We have the inclusion supp𝜇 ⊆ 𝐷𝑥 , where 𝐷𝑥 = (𝑥 + 𝐿+) ∪ (𝑥 + 𝐿−).

Proof To prove the statement let us note that Corollary 7.22 in Villani’s book [17]
says that if 𝑝 > 1, and the underlying metric space is a complete, separable, and
locally compact length space, then constant-speed geodesics connecting two measures
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are all displacement interpolations, i.e., geodesics are always constructed from optimal
transport plans.

Therefore (see Corollary 7.23 in [17]), if we want to guarantee that there is only one
geodesic between two measures 𝜇, 𝜈, we need two properties:

• we need a unique optimal transport plan 𝜋̃
• and for 𝜋̃-almost every (𝑥, 𝑦), 𝑥 and 𝑦 must be joined by a unique geodesic.

Let us note that the first property is automatically satisfied since one of the masses that
we consider is a Dirac mass. Furthermore, note that in (R2, 𝑑m), the second property
means exactly that 𝑥 and 𝑦 are diagonally aligned, i.e. both points lie on the samediagonal
line. For a fixed 𝑥 ∈ R2 let us denote by 𝐷𝑥 the set of those points that are diagonally
aligned with 𝑥. Of course, 𝐷𝑥 is the union of the two diagonal lines 𝐿+ + 𝑥 and 𝐿− + 𝑥
passing through 𝑥 concluding the proof. ■

Now we are in position to prove thatW𝑝 (R2, 𝑑m) is diagonally rigid for 𝑝 > 1.

Theorem 3.6 For all 𝑝 > 1 the Wasserstein spaceW𝑝 (R2, 𝑑m) is diagonally rigid.

Proof Let Φ be an isometry. Since Proposition 3.4 is a metric characterization of
Dirac masses, we know that Φ maps the set of Dirac masses onto itself. That is, there
exists a bijection 𝑇 : R2 → R2 such that Φ(𝛿𝑥) = 𝛿𝑇 (𝑥 ) . In fact, 𝑇 is an isome-
try, as 𝑑𝑊𝑝

(𝛿𝑥 , 𝛿𝑦) = 𝑑m (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ R2. Without loss of generality, we can
assume that 𝑇 (𝑥) = 𝑥, and thus Φ(𝛿𝑥) = 𝛿𝑥 for all 𝑥 ∈ R2. Next, consider the diag-
onal line 𝐿+. (The case of 𝐿− is completely analogous.) Fix an arbitrary 𝑥 ∈ 𝐿+, and
observe that according to Proposition 3.5, for any 𝜇 such that supp(𝜇) ⊆ 𝐿, there is
only one geodesic connecting 𝛿𝑥 and 𝜇. Therefore, there must be only one geodesic
between Φ(𝛿𝑥) = 𝛿𝑥 and Φ(𝜇). Again, according to Proposition 3.5 this means that
supp

(
Φ(𝜇)

)
⊆ 𝐷𝑥 . Now choose a 𝑦 ∈ 𝐿+ (𝑦 ≠ 𝑥) and repeat the argument. The con-

clusion is that supp
(
Φ(𝜇)

)
⊆ 𝐷𝑦 . But𝐷𝑥∩𝐷𝑦 = 𝐿+, and therefore supp

(
Φ(𝜇)

)
⊆ 𝐿+.

Nowwe know thatΦ sends measures supported on 𝐿+ into measures supported on 𝐿+.
Since 𝐿+ endowed with the restriction of 𝑑m : R2 × R2 → R+ onto 𝐿+ × 𝐿+ is nothing
else but (R, | · |), the set

W𝑝 (𝐿+, 𝑑m) := {𝜇 ∈ W𝑝 (R2, 𝑑m) | supp𝜇 ⊆ 𝐿+}

endowed with the Wasserstein distance is isometrically isomorphic to the Wasserstein
space W𝑝 (R, 𝑑 | · | ) investigated in [10, 13], which is isometrically rigid if 𝑝 ≠ 2. Since
we assumed that Φ(𝛿𝑥) = 𝛿𝑥 , isometric rigidity forces the restriction Φ|W𝑝 (𝐿+ ,𝑑m ) to
be the identity, i.e. Φ(𝜇) = 𝜇 for all 𝜇 supported on 𝐿+. The same argument with 𝐿−
completes the proof in the 𝑝 ≠ 2 case.

If 𝑝 = 2 we need to use a more involved argument, sinceW2 (R, 𝑑 | · | ) is not isomet-
rically rigid. In fact, ifΨ : W2 (R, 𝑑 | · | ) → W2 (R, 𝑑 | · | ) is an isometry, thenΨ(𝛿𝑥) = 𝛿𝑥
for all 𝑥 ∈ R itself does not imply Ψ(𝜇) = 𝜇 for all 𝜇 ∈ W2 (R, 𝑑 | · | ), as W2 (R, 𝑑 | · | )
admits exotic isometries and a nontrivial shape-preserving isometry.

Therefore, even if we know that Φ(𝛿 (𝑥,𝑥 ) ) = 𝛿 (𝑥,𝑥 ) for all (𝑥, 𝑥) ∈ 𝐿+ we cannot
guarantee yet thatΦ(𝜇) = 𝜇 for all 𝜇 with supp(𝜇) ⊆ 𝐿+. We have to rule out that the
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restriction of Φ onto W𝑝 (𝐿+, 𝑑m) does not act like a non-trivial isometry. This boils
down to investigating the action onmeasureswhose support consists of twopoints of 𝐿+
as follows: using the isometric identification 𝑡 ↦→ (𝑡, 𝑡) between the real line and 𝐿+, we
will use Kloeckner’s result which tells us how the image of a 𝜇 = 𝛼𝛿 (𝑥,𝑥 ) + (1−𝛼)𝛿 (𝑦,𝑦)
would look like if Φ would act on 𝐿+ like non-trivial isometry. Then we will choose a
special 𝜇 and a special Dirac measure 𝛿 (𝑢,𝑣) (not supported on 𝐿+) with the property
that 𝑑𝑊2 (𝜇, 𝛿 (𝑢,𝑣) ) ≠ 𝑑𝑊2 (Φ(𝜇), 𝛿 (𝑢,𝑣) ) = 𝑑𝑊2 (Φ(𝜇),Φ(𝛿 (𝑢,𝑣) )), a contradiction.

Let us introduce some notations. For the diagonal line 𝐿+ the set of measures
supported on two points of 𝐿+ will be denoted by Δ2

Δ2 = {𝛼𝛿 (𝑥,𝑥 ) + (1 − 𝛼)𝛿 (𝑦,𝑦) | 𝛼 ∈ (0, 1), 𝑥, 𝑦 ∈ R}. (3.21)

Following the notations in Kloeckner’s paper [13], elements of Δ2 will be parametrized
by three parameters 𝑚 ∈ R, 𝜎 ≥ 0, and 𝑟 ∈ R as follows:

𝜇(𝑚, 𝜎, 𝑟) = 𝑒−𝑟

𝑒𝑟 + 𝑒−𝑟 𝛿 (𝑚−𝜎𝑒𝑟 ,𝑚−𝜎𝑒𝑟 ) +
𝑒𝑟

𝑒𝑟 + 𝑒−𝑟 𝛿 (𝑚+𝜎𝑒−𝑟 ,𝑚+𝜎𝑒−𝑟 ) . (3.22)

According to Lemma 5.2 in [13], if an isometryΦ fixes all Dirac masses, then its action
on Δ2 is

Φ
(
𝜇(𝑚, 𝜎, 𝑟)

)
:= 𝜇(𝑚, 𝜎, 𝜑(𝑟))

where 𝜑 : R → R is an isometry. In other words, Φ is equal to the shape-preserving
isometry

Φ∗ : W2 (𝐿+) → W2 (𝐿+), Φ∗ (𝜇(𝑚, 𝜎, 𝑟)) := 𝜇(𝑚, 𝜎,−𝑟), (3.23)

orΦ is equal to an exotic isometry

Φ𝑡 : W2 (𝐿+) → W2 (𝐿+), Φ𝑡
(
𝜇(𝑚, 𝜎, 𝑟)

)
:= 𝜇(𝑚, 𝜎, 𝑟 + 𝑡) (3.24)

for some 𝑡 ≠ 0, orΦ is the compositionΦ𝑡 ◦Φ∗ for some 𝑡 ≠ 0. Note, that if 𝑡 = 0, then
Φ𝑡 is the identity, soΦ0 is not an exotic isometry.

To handle the caseΦ∗, choose 𝜇 = 𝜇(0, 1, ln 2) = 1
5𝛿 (−2,−2) +

4
5𝛿 ( 12 ,

1
2 )
. Then

Φ∗ (𝜇) = 𝜇(0, 1,− ln 2) = 4
5
𝛿 (− 1

2 ,−
1
2 )
+ 1
5
𝛿 (2,2) .

Calculating the Wasserstein distance of 𝜇 andΦ(𝜇) from 𝛿 (2,0) , we obtain that

𝑑𝑊2

(
𝛿 (2,0) , 𝜇(0, 1, ln 2)

)
=
√
5 and 𝑑𝑊2

(
𝛿 (2,0) , 𝜇(0, 1,− ln 2)

)
=

√︂
5 + 4

5
,

So ifΦ is an isometry, it cannot act on 𝐿+ likeΦ∗.

To handle the case Φ𝑡 for 𝑡 > 0, choose 𝜇 = 𝜇(0, 1, 0) = 1
2𝛿 (−1,−1) +

1
2𝛿 (1,1) .

Then Φ(𝜇(0, 1, 0)) = 𝜇(0, 1, 𝑡). Now fix the Dirac measure 𝛿 (−1,0) and calculate
𝑑𝑊2 (𝛿 (−1,0) , 𝜇(0, 1, 0) and 𝑑𝑊2 (𝛿 (−1,0) , 𝜇(0, 1, 𝑡). Again, if Φ would act like Φ𝑡 on
𝐿+, we should get the same result, since Φ is an isometry. The calculation shows that
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𝑑𝑊2

(
𝛿 (−1,0) , 𝜇(0, 1, 0)

)
=

√︃
5
2 and

𝑑𝑊2

(
𝛿 (−1,0) , 𝜇(0, 1, 𝑡)

)
=

√︂
2 + 2 − 𝑒−𝑡

𝑒𝑡 + 𝑒−𝑡 .

These two numbers are equal if and only if 𝑡 = 0 or 𝑡 = ln 3. We assumed that 𝑡 > 0,
so one single Dirac 𝛿 (−1,0) excluded all Φ𝑡 except 𝑡 = ln 3. Choosing a different Dirac
measure, say 𝛿 (− 1

2 ,0)
, a simple calculation shows that√︂

13
8

= 𝑑𝑊2

(
𝛿 (− 1

2 ,0)
, 𝜇(0, 1, 0)

)
= 𝑑𝑊2

(
𝛿 (− 1

2 ,0)
, 𝜇(0, 1, ln 3)

)
=

√︂
12
8

+ 1
40
,

a contradiction. Similar calculations forΦ𝑡 with negative 𝑡 and forΦ∗◦Φ𝑡 show that the
only case when we don’t get a contradiction is whenΦ acts asΦ0, which is the identity.

■

3.3 Diagonal rigidity of W1 (𝑄, 𝑑m)

In this subsection, we consider the case when 𝑋 = 𝑄 = [−1, 1]2 and 𝑝 = 1. Diagonal
rigidity is achieved as a result of the following statements about measures that are sup-
ported on the sides, at the corners, and finally on the diagonals of𝑄. The first statement
concerns measures supported on the opposite sides of the boundary of𝑄 and it is valid
for all 𝑝 ≥ 1.

Lemma 3.7 Let 𝑝 ≥ 1 and Φ : W𝑝 (𝑄, 𝑑m) → W𝑝 (𝑄, 𝑑m) be an isometry. If 𝜇, 𝜈 ∈
W𝑝 (𝑄, 𝑑m) are two probability measures whose supports lie on opposite sides of the closed
unit ball𝑄 = [−1, 1]2, then their isometric imagesΦ(𝜇) andΦ(𝜈) have the same property.

Proof Let us note that if 𝑥, 𝑦 ∈ 𝑄 are any two points then 𝑑m (𝑥, 𝑦) ≤ 2 with equality
if and only if 𝑥 and 𝑦 lie on two opposite sides of𝑄.

This implies that if 𝜇, 𝜈 ∈ W𝑝 (𝑄, 𝑑m), then

𝑑𝑊𝑝
(𝜇, 𝜈) ≤ 2, (3.25)

with equality if and only if the supports supp(𝜇) and supp(𝜈) are contained in two
opposite sides of𝑄. To see this, note that inequality (3.25) follows immediately from the
definition of theWasserstein metric 𝑑𝑊𝑝

and the fact that 𝑑m (𝑥, 𝑦) ≤ 2 for all 𝑥, 𝑦 ∈ 𝑄.
Furthermore, if supp(𝜇) and supp(𝜈) are contained in two opposite sides of 𝑄, then
𝑑m (𝑥, 𝑦) = 2 for all 𝑥 ∈ supp(𝜇) and 𝑦 ∈ supp(𝜈).

Let 𝜋0 be an optimal coupling of 𝜇 and 𝜈. Since supp(𝜋0) ⊆ supp(𝜇) × supp(𝜈) we
have that 𝑑m (𝑥, 𝑦) = 2 for any (𝑥, 𝑦) ∈ supp(𝜋0) and therefore

𝑑
𝑝

𝑊𝑝
(𝜇, 𝜈) =

∫
𝑄×𝑄

𝑑
𝑝
m (𝑥, 𝑦) d𝜋0 (𝑥, 𝑦) = 2𝑝 .
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To show the converse, let us assume that 𝑑 𝑝

𝑊𝑝
(𝜇, 𝜈) = 2𝑝 . Then for all couplings 𝜋 ∈

𝐶 (𝜇, 𝜈) we have

2𝑝 = 𝑑
𝑝

𝑊𝑝
(𝜇, 𝜈) =

∫
𝑄×𝑄

𝑑
𝑝
m (𝑥, 𝑦) d𝜋(𝑥, 𝑦) ≤

∫
𝑄×𝑄

2𝑝 d𝜋(𝑥, 𝑦) = 2𝑝 ,

thus 𝑑m (𝑥, 𝑦) = 2 for 𝜋 almost all (𝑥, 𝑦). This applies for 𝜋 = 𝜇 ⊗ 𝜈, and so 𝜇 and 𝜈
must be concentrated on the opposite sides of𝑄.

The statement of the lemma is now an immediate consequence of this claim. Indeed,
assume that supp(𝜇) and supp(𝜈) are contained in two opposite sides of 𝑄. Then we
have 𝑑 𝑝

𝑊𝑝
(𝜇, 𝜈) = 2𝑝 . Since Φ : W𝑝 (𝑄, 𝑑m) → W𝑝 (𝑄, 𝑑m) is an isometry, we have

𝑑
𝑝

𝑊𝑝
(Φ(𝜇),Φ(𝜈)) = 2𝑝 . But, then the supports of the two measures Φ(𝜇) and Φ(𝜈)

must be contained in two opposite sides of𝑄. ■

Corollary 3.8 Let us fix a 𝑝 ≥ 1 and denote by 𝐷 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} the set of vertices of
𝑄 and let𝑉 be the set of Dirac measures supported on the points of 𝐷 , i.e.,

𝑉 = {𝛿𝑥1 = 𝛿 (−1,−1) , 𝛿𝑥2 = 𝛿 (1,−1) , 𝛿𝑥3 = 𝛿 (1,1) , 𝛿𝑥4 = 𝛿 (−1,1) }.

Given any isometry Φ : W𝑝 (𝑄, 𝑑m) → W𝑝 (𝑄, 𝑑m), there exists an isometry Ψ :
(𝑄, 𝑑m) → (𝑄, 𝑑m) such thatΦ ◦ Ψ# (𝛿𝑥) = 𝛿𝑥 for all 𝑥 ∈ 𝐷.

Proof Let us denote by 𝑆1, 𝑆3 the two vertical and by 𝑆2, 𝑆4 the two horizontal sides
of𝑄 such that 𝑆1 is the left vertical and 𝑆4 is the top horizontal side.

We apply Lemma 3.7 to every pair of elements of 𝑉, and we conclude that for every
𝑗 ∈ {1, 2, 3, 4}, the measureΦ(𝛿𝑥 𝑗

) is supported on a certain side 𝑆𝑖 of𝑄.
We claim that eachΦ(𝛿𝑥 𝑗

) must be in fact supported on some vertex. To see this we
argue by contradiction. Let us assume that for example Φ(𝛿𝑥1 ) is supported on one of
the sides, say 𝑆1 but not on any of the vertices of 𝑆1.

It is clear by Lemma 3.7 that all other measures Φ(𝛿𝑥𝑖 ) for 𝑖 = 2, 3, 4 must be sup-
ported on the opposite side of 𝑆1, that is 𝑆3. But the mutual distance of any pair of these
measures must be equal to 2 which shows that any two of these three measures must be
lying on opposite sides again, which is 𝑆2 and 𝑆4. But there are only two possibilities
for measures with support in 𝑆2 ∩ 𝑆3 and 𝑆4 ∩ 𝑆3, namely the two Dirac masses on the
vertices of 𝑆3 which gives a contradiction.

It is easy to see that there exists an isometryΨ : 𝑄 → 𝑄 such thatΦ◦Ψ# fixes 𝛿𝑥𝑖 and
𝛿𝑥𝑖+1 for some 𝑖 ∈ {1, 2, 3, 4}, and therefore we can assume without loss of generality
that (Φ ◦Ψ#) (𝛿𝑥𝑖 ) = 𝛿𝑥𝑖 for 𝑖 = 1, 2. This will imply that all measures supported on 𝑆4
are fixed. We must show thatΦ ◦ Ψ# (𝛿𝑥𝑖 ) = 𝛿𝑥𝑖 for 𝑖 = 3, 4. Note, that the map

Φ ◦ Ψ# : W𝑝 (𝑄, 𝑑m) → W𝑝 (𝑄, 𝑑m)

is itself an isometry. Let us assume indirectly that Φ ◦ Ψ# (𝛿𝑥3 ) = 𝛿𝑥4 (which implies
that andΦ ◦Ψ# (𝛿𝑥4 ) = 𝛿𝑥3 ), and take a 𝜉 such that supp(𝜉) ⊆ 𝑆3, 𝜉 ∉ {𝛿𝑥2 , 𝛿𝑥3 }. Since
𝑑𝑊𝑝

(𝛿𝑥1 , 𝜉) = 2, we have

2 = 𝑑𝑊𝑝
(𝛿𝑥1 , 𝜉) = 𝑑𝑊𝑝

(Φ(𝛿𝑥1 ),Φ(𝜉)) = 𝑑𝑊𝑝
(𝛿𝑥1 ,Φ(𝜉)),
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which implies that supp(Φ(𝜉)) ⊆ 𝑆3 ∪ 𝑆4. Similarly, 𝑑𝑊𝑝
(𝛿𝑥4 , 𝜉) = 2, and thus

2 = 𝑑𝑊𝑝
(𝛿𝑥4 , 𝜉) = 𝑑𝑊𝑝

(Φ(𝛿𝑥4 ),Φ(𝜉)) = 𝑑𝑊𝑝
(𝛿𝑥3 ,Φ(𝜉)),

which implies that supp(Φ(𝜉)) ⊆ 𝑆1 ∪ 𝑆2. Combining supp(Φ(𝜉)) ⊆ 𝑆1 ∪ 𝑆2 and
supp(Φ(𝜉)) ⊆ 𝑆3 ∪ 𝑆4 with 𝜉 ∉ {𝛿𝑥2 , 𝛿𝑥3 }, we get that Φ(𝜉) = 𝛼∗𝛿𝑥2 + (1 − 𝛼∗)𝛿𝑥4
for some 𝛼∗ ∈ (0, 1). (Recall that Φ(𝛿𝑥2 ) = 𝛿𝑥2 , Φ(𝛿𝑥3 ) = 𝛿𝑥4 , and Φ is injective.) If
𝑝 > 1, then this is a contradiction. Indeed, choose 𝜉 := 𝛿𝑦 with 𝑦 ∈ 𝑆3 \ {𝑥2, 𝑥3},
and observe that the triple 𝛿𝑥2 , 𝛿𝑦 and 𝛿𝑥3 saturates the triangle inequality, but the
triple Φ(𝛿𝑥2 ) = 𝛿𝑥2 , Φ(𝛿𝑦) = 𝛼∗𝛿𝑥2 + (1 − 𝛼∗)𝛿𝑥4 and Φ(𝛿𝑥3 ) = 𝛿𝑥4 does not,
as 𝑝

√︁
2𝑝 (1 − 𝛼∗) + 𝑝

√
2𝑝𝛼∗ ≠ 2. If 𝑝 = 1, we need a different argument. The set

I := {𝜇𝛼 := 𝛼𝛿𝑥2 + (1 − 𝛼)𝛿𝑥4 | 𝛼 ∈ (0, 1)} is isometric to the set
(
(0, 1), 2| · |

)
,

since 𝑑𝑊1 (𝜇𝛼, 𝜇𝛽) = |𝛼 − 𝛽 |. Therefore for any three different elements 𝜇𝛼1 , 𝜇𝛼3 , 𝜇𝛼3

there exists a bijection 𝜎 : {1, 2, 3} → {1, 2, 3} such that 𝑑𝑊1 (𝜇𝛼𝜎 (1) , 𝜇𝛼𝜎 (3) ) =

(𝜇𝛼𝜎 (1) , 𝜇𝛼𝜎 (2) ) + (𝜇𝛼𝜎 (2) , 𝜇𝛼𝜎 (3) ). Now choose a non-degenerate triangle 𝜉1, 𝜉2, 𝜉3
supported on 𝑆3 \ {𝑥2, 𝑥3} in the sense that they do not saturate the triangle inequal-
ity in any order. The existence of such a triple is a contradiction, as an appropriate
permutation of their image in I will saturate the triangle inequality.

■

From now on we shall assume without loss of generality that our isometry

Φ : W𝑝 (𝑄, 𝑑m) → W𝑝 (𝑄, 𝑑m)

fixes the elements of 𝑉 , i.e. the Dirac masses on the corners of 𝑄. Note that this prop-
erty implies by Lemma 3.7 that any measure supported on one of the sides of𝑄 will be
mapped to a measure supported on the same side of𝑄.

In what follows we shall prove, even a stronger property for measures supported on
the main diagonals

𝐿+ = {(𝑡, 𝑡) : 𝑡 ∈ [−1, 1]}, and 𝐿− = {(𝑡,−𝑡) : 𝑡 ∈ [−1, 1]},

namely, that they are fixed under the action of the isometry. This is valid for the case
𝑝 = 1.

Theorem 3.9 The Wasserstein spaceW1 (𝑄, 𝑑m) is diagonally rigid.

Proof ByCorollary 3.8, we can assumewithout loss of generality thatΦ fixes theDirac
masses at the four corners of𝑄. It is enough to show that if 𝜇 ∈ W1 (𝑄, 𝑑m) supported
on 𝐿+, thenΦ(𝜇) = 𝜇 as the case of 𝐿− is similar. We show first that if supp(𝜇) ⊆ 𝐿+,
then supp

(
Φ(𝜇)

)
⊆ 𝐿+. This is based on the following observation: If 𝑥 ∈ 𝑄 then

𝑑m ((−1,−1), 𝑥) + 𝑑m (𝑥, (1, 1)) ≥ 𝑑m ((−1,−1), (1, 1)) = 2 (3.26)

with equality if and only if 𝑥 ∈ 𝐿+.
The above inequality follows simply by the triangle inequality applied for the metric

𝑑m. The characterization of the equality case is slightly more tricky. It is based on the
fact that the line segment 𝐿+ : 𝑡 → (𝑡, 𝑡), 𝑡 ∈ [−1, 1] is the only geodesic with respect
to themetric 𝑑m connecting the endpoints (−1,−1) and (1, 1). This observation has the
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following consequence for measures: If 𝜇 ∈ W1 (𝑄, 𝑑m), then

𝑑𝑊1 (𝛿 (−1,−1) , 𝜇) + 𝑑𝑊1 (𝜇, 𝛿 (1,1) ) ≥ 2, (3.27)

with equality if and only if supp(𝜇) ⊆ 𝐿+. To show inequality (3.27) we integrate
inequality (3.26) with respect to 𝜇. In this way we obtain

𝑑𝑊1 (𝛿 (−1,−1) , 𝜇) + 𝑑𝑊1 (𝜇, 𝛿 (1,1) ) =
∫
𝑄

𝑑m ((−1,−1), 𝑥) d𝜇(𝑥) +
∫
𝑄

𝑑m (𝑥, (1, 1)) d𝜇(𝑥)

≥
∫
𝑄

2 d𝜇(𝑥) = 2.

(3.28)

Let us assume that supp(𝜇) ⊆ 𝐿+. Then equality holds true in (3.26) for every point
𝑥 ∈ supp(𝜇) and thus by integrating, we obtain that equality holds in (3.28) as well.

Conversely, let us assume, that

𝑑𝑊1 (𝛿 (−1,−1) , 𝜇) + 𝑑𝑊1 (𝜇, 𝛿 (1,1) ) = 2

for some measure 𝜇 ∈ W1 (𝑄, 𝑑m). We have to show that supp(𝜇) ⊆ 𝐿+. We argue
by contradiction: assume that the exists a point 𝑥0 ∈ supp(𝜇) that is not contained in
𝐿+. Then there exists a small radius 𝑟 > 0 and a small 𝜀 > 0 with the property that
𝛿 = 𝜇(𝐵(𝑥0, 𝑟) > 0 and

𝑑m ((−1,−1), 𝑥) + 𝑑m (𝑥, (1, 1)) > 2 + 𝜀, for all 𝑥 ∈ 𝐵(𝑥0, 𝑟).

Using this relation we obtain

𝑑𝑊1 (𝛿 (−1,−1) , 𝜇) + 𝑑𝑊1 (𝜇, 𝛿 (1,1) ) =

=

∫
supp(𝜇)

𝑑m ((−1,−1), 𝑥) d𝜇(𝑥) +
∫

supp(𝜇)

𝑑m (𝑥, (1, 1)) d𝜇(𝑥) =

=

∫
supp(𝜇)

[𝑑m ((−1,−1), 𝑥) + 𝑑m (𝑥, (1, 1))] d𝜇(𝑥) =

=

∫
supp(𝜇)∩𝐵(𝑥0 ,𝑟 )

[𝑑m ((−1,−1), 𝑥) + 𝑑m (𝑥, (1, 1))] d𝜇(𝑥)+

+
∫

supp(𝜇)\𝐵(𝑥0 ,𝑟 )

[𝑑m ((−1,−1), 𝑥) + 𝑑m (𝑥, (1, 1))] d𝜇(𝑥)

> (2 + 𝜀)𝛿 + 2(1 − 𝛿) = 2 + 𝜀𝛿 > 2,
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which is a contradiction. Let us consider an isometry Φ : W1 (𝑄, 𝑑m) → W1 (𝑄, 𝑑m)
that fixes the elements of𝑉 , (i.e. the Dirac masses on the corners of𝑄). Then we have

𝑑𝑊1 (𝛿 (−1,−1) ,Φ(𝜇)) + 𝑑𝑊1 (Φ(𝜇), 𝛿 (1,1) ) = 𝑑𝑊1 (𝛿 (−1,−1) , 𝜇)) + 𝑑𝑊1 (𝜇, 𝛿 (1,1) ).

Assuming that supp(𝜇) ⊆ 𝐿+ we obtain that by the above that

𝑑𝑊1 (𝛿 (−1,−1) , 𝜇)) + 𝑑𝑊1 (𝜇, 𝛿 (1,1) ) = 2.

By the above equality we have, then

𝑑𝑊1 (𝛿 (−1,−1) ,Φ(𝜇)) + 𝑑𝑊1 (Φ(𝜇), 𝛿 (1,1) ) = 2,

which implies in turn that supp
(
Φ(𝜇)

)
⊆ 𝐿+.

Asmentioned at the beginning of the proof, the same argument shows that if we have
supp(𝜇) ⊆ 𝐿− , then it follows that supp

(
Φ(𝜇)

)
⊆ 𝐿− as well. Since 𝜇0 = 𝛿 (0,0) has

its support in 𝐿+ ∩ 𝐿− , and it is the unique measure with this property, we conclude,
that Φ(𝜇0) = 𝜇0. Now let us consider the Wasserstein spaceW1 (𝐿+, 𝑑m) of measures
supported on 𝐿+. By the above consideration, we have

Φ : W1 (𝐿+, 𝑑m) → W1 (𝐿+, 𝑑m),

moreover, we know that Φ(𝜇0) = 𝜇0 for the measure 𝜇0 = 𝛿 (0,0) ∈ W1 (𝐿+, 𝑑m). We
cannot apply the characterization of Wasserstein isometries on a line segment (see [10,
Theorem 2.5]) which implies that Φ(𝜇) = 𝜇 for all measures 𝜇 ∈ W1 (𝐿+, 𝑑m). In the
same way we can also conclude, thatΦ(𝜇) = 𝜇 for all measures 𝜇 ∈ W1 (𝐿− , 𝑑m).

■

The combination of Proposition 2.1 and Theorem 3.9 implies that W1 (𝑄, 𝑑m) is
isometrically rigid.

3.4 Diagonal rigidity of W𝑝 (𝑄, 𝑑m) for 𝑝 > 1

In this final subsection, we consider the case 𝑋 = 𝑄 = [−1, 1]2 and 𝑝 > 1. In this case,
we also have the statement:

Theorem 3.10 The Wasserstein spaceW𝑝 (𝑄, 𝑑m) is diagonally rigid.

Proof Let Φ be an isometry of the Wasserstein spaceW𝑝 (𝑄, 𝑑m). Since the Wasser-
stein spaceW𝑝 ( [−1, 1], 𝑑 | · | ) is isometrically rigid, Corollary 3.8 and the remark after
that, implies that we can assume without loss of generality thatΦ leaves every measure
supported either on the right vertical side [(1,−1), (1, 1)] or on the top horizontal side
[(−1, 1), (1, 1)] fixed. We are going to show thatΦ leaves every measure supported on
the line diagonal segment [(−1,−1), (1, 1)] ⊂ 𝑄 fixed. The case of the other diagonal
is analogous.

In the first step,we considermeasures supported on the upper half of the diagonal, i.e.
on the line segment [(0, 0), (1, 1)]. We prove first that these measures will be fixed. In
the second step we proceed to consider general measures supported on the full segment
[(−1,−1), (1, 1)].
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Let 𝜇 be a measure supported on the upper half of the diagonal of 𝑄 (that is, on
[(0, 0), (1, 1)]), and consider the projections 𝑝𝑟 : (𝑡, 𝑡) ↦→ (1, 2𝑡 − 1) and 𝑝𝑢 :
(𝑡, 𝑡) ↦→ (2𝑡−1, 1) that map [(0, 0), (1, 1)] onto the right vertical side [(1,−1), (1, 1)]
and the top horizontal side [(−1, 1), (1, 1)], respectively. Let us introduce the notation
𝜇𝑟 := (𝑝𝑟 )# (𝜇) and and 𝜇𝑢 := (𝑝𝑢)# (𝜇).

µ

µu = (pu)#(µ)

µr = (pr)#(µ)

pu

pr

Figure 7: Illustration for the definition of 𝑝𝑢 , 𝑝𝑟 , 𝜇𝑢 and 𝜇𝑟 ..

Our goal is to show that 𝜇 is the unique minimizer of the functional

W𝑝 (𝑄, 𝑑m) ∋ 𝜈 ↦→ 𝑑
𝑝

𝑊𝑝
(𝜇𝑟 , 𝜈) + 𝑑 𝑝

𝑊𝑝
(𝜈, 𝜇𝑢). (3.29)

Once this is proved, we are done, as in this case the equation

𝑑
𝑝

𝑊𝑝
(𝜇𝑟 ,Φ(𝜇)) + 𝑑 𝑝

𝑊𝑝
(Φ(𝜇), 𝜇𝑢) = 𝑑 𝑝

𝑊𝑝
(Φ(𝜇𝑟 ),Φ(𝜇)) + 𝑑 𝑝

𝑊𝑝
(Φ(𝜇),Φ(𝜇𝑢))

= 𝑑
𝑝

𝑊𝑝
(𝜇𝑟 , 𝜇) + 𝑑 𝑝

𝑊𝑝
(𝜇, 𝜇𝑢)

= min
𝜈∈W𝑝 (𝑄,𝑑m )

(𝑑 𝑝

𝑊𝑝
(𝜇𝑟 , 𝜈) + 𝑑 𝑝

𝑊𝑝
(𝜈, 𝜇𝑢))

(3.30)

forcesΦ(𝜇) to be 𝜇.

Let 𝜈 ∈ W𝑝 (𝑄, 𝑑m) be arbitrary, let 𝜋∗(𝜇𝑟 ,𝜈) be an optimal transport plan between
𝜇𝑟 and 𝜈 with respect to the cost 𝑐(𝑥, 𝑦) = 𝑑 𝑝

m (𝑥, 𝑦), let 𝜋∗(𝜈,𝜇𝑢 ) be an optimal transport
plan between 𝜈 and 𝜇𝑢 with respect to the same cost, and let 𝜋∗(𝜇𝑟 ,𝜈,𝜇𝑢 ) ∈ Prob(𝑄3) be
the gluing of them — see the “gluing lemma" [16, Lemma 7.6] for further details of this
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construction. Moreover, set 𝜋∗(𝜇𝑟 ,𝜇𝑢 ) :=
(
𝜋∗(𝜇𝑟 ,𝜈,𝜇𝑢 )

)
13
. Now

𝑑
𝑝

𝑊𝑝
(𝜇𝑟 , 𝜈) + 𝑑 𝑝

𝑊𝑝
(𝜈, 𝜇𝑢) =

∬
𝑄2
𝑑
𝑝
m (𝑥, 𝑦) d𝜋∗(𝜇𝑟 ,𝜈) (𝑥, 𝑦) +

∬
𝑄2
𝑑
𝑝
m (𝑦, 𝑧) d𝜋∗(𝜈,𝜇𝑢 ) (𝑦, 𝑧)

=

∭
𝑄3

(𝑑 𝑝
m (𝑥, 𝑦) + 𝑑 𝑝

m (𝑦, 𝑧)) d𝜋∗(𝜇𝑟 ,𝜈,𝜇𝑢 ) (𝑥, 𝑦, 𝑧)

≥
∭

𝑄3
min
𝑦∈𝑄

{𝑑 𝑝
m (𝑥, 𝑦) + 𝑑 𝑝

m (𝑦, 𝑧)} d𝜋∗(𝜇𝑟 ,𝜈,𝜇𝑢 ) (𝑥, 𝑦, 𝑧)

=

∬
𝑄2

min
𝑦∈𝑄

{𝑑 𝑝
m (𝑥, 𝑦) + 𝑑 𝑝

m (𝑦, 𝑧)} d𝜋∗(𝜇𝑟 ,𝜇𝑢 ) (𝑥, 𝑧).

(3.31)

Let us compute min𝑦∈𝑄{𝑑 𝑝
m (𝑥, 𝑦) + 𝑑 𝑝

m (𝑦, 𝑧)} for any (𝑥, 𝑧) ∈ 𝑄2 — the case 𝑥 = 𝑧

gives a trivial zero. By the reversed triangle inequality, we have

𝑑
𝑝
m (𝑥, 𝑦) ≥ |𝑑m (𝑥, 𝑧) − 𝑑m (𝑦, 𝑧) |𝑝 = 𝑑

𝑝
m (𝑥, 𝑧)

����1 − 𝑑m (𝑦, 𝑧)
𝑑m (𝑥, 𝑧)

����𝑝 .
Consequently,

𝑑
𝑝
m (𝑥, 𝑦) + 𝑑 𝑝

m (𝑦, 𝑧) ≥ 𝑑
𝑝
m (𝑥, 𝑧)

(����1 − 𝑑m (𝑦, 𝑧)
𝑑m (𝑥, 𝑧)

����𝑝 +
����𝑑m (𝑦, 𝑧)𝑑m (𝑥, 𝑧)

����𝑝) .
It is crucial that 𝑝 > 1 and hence the map 𝑡 ↦→ |𝑡 |𝑝 is strictly convex on R. Therefore,
the function R ∋ 𝜆 ↦→ |1 − 𝜆 |𝑝 + |𝜆 |𝑝 has a unique minimizer which is 𝜆0 = 1

2 , and the
minimum is 21−𝑝 — this can be justified by simple one-variable calculus. To sum up,

min
𝑦∈𝑄

{𝑑 𝑝
m (𝑥, 𝑦) + 𝑑 𝑝

m (𝑦, 𝑧)} = 21−𝑝𝑑
𝑝
m (𝑥, 𝑧),

and this minimum is achieved if and only if 𝑑m (𝑥, 𝑦) = 𝑑m (𝑦, 𝑧) = 1
2𝑑m (𝑥, 𝑧) — note

that this does not imply that 𝑦 = 1
2 (𝑥 + 𝑧). So we can continue (3.31) as follows:∬

𝑄2
min
𝑦∈𝑄

{𝑑 𝑝
m (𝑥, 𝑦) + 𝑑 𝑝

m (𝑦, 𝑧)} d𝜋∗(𝜇𝑟 ,𝜇𝑢 ) (𝑥, 𝑧) = 21−𝑝

∬
𝑄2
𝑑
𝑝
m (𝑥, 𝑧) d𝜋∗(𝜇𝑟 ,𝜇𝑢 ) (𝑥, 𝑧)

≥ 21−𝑝𝑑
𝑝

𝑊𝑝
(𝜇𝑟 , 𝜇𝑢).

(3.32)

The inequality in (3.32) is saturated if and only if 𝜋∗(𝜇𝑟 ,𝜇𝑢 ) is an optimal transport plan
between 𝜇𝑟 and 𝜇𝑢 with respect to the cost 𝑐(𝑥, 𝑧) = 𝑑

𝑝
m (𝑥, 𝑧). Observe, that (𝑝𝑟 ×

𝑝𝑢)# (𝜇) is the unique optimal transport plan between 𝜇𝑟 and 𝜇𝑢 for this cost. Indeed,
by the definition of the max norm we get

(1 − (2𝑡 − 1)) 𝑝 ≤ 𝑑
𝑝
m ((1, 2𝑡 − 1), (2𝑠 − 1, 1)) (3.33)

and
(1 − (2𝑠 − 1)) 𝑝 ≤ 𝑑

𝑝
m ((1, 2𝑡 − 1), (2𝑠 − 1, 1)) (3.34)

for all (𝑠, 𝑡) ∈ [0, 1] × [0, 1] . By the construction of 𝜇𝑟 and 𝜇𝑢, the couplings of these
measures are in 1 − 1 correspondence with the couplings of 𝜇 with itself — now we
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consider 𝜇 as a measure on [0, 1] . This correspondence is described as follows: if 𝜋 ∈
𝐶 (𝜇𝑟 , 𝜇𝑢), then let us define 𝜋̃ ∈ 𝐶 (𝜇, 𝜇) by 𝜋̃ := (𝑝−1𝑟 × 𝑝−1𝑢 )# (𝜋). Then∬

𝑄2
𝑑
𝑝
m (𝑥, 𝑧) d𝜋(𝑥, 𝑧) =

∬
[0,1]2

𝑑
𝑝
m ((1, 2𝑡 − 1), (2𝑠 − 1, 1)) d𝜋̃(𝑡, 𝑠).

≥
∬

[0,1]2
(1 − (2𝑡 − 1)) 𝑝 d𝜋̃(𝑡, 𝑠)

=

∫
[0,1]

(1 − (2𝑡 − 1)) 𝑝 d𝜇(𝑡)

(3.35)

and (3.35) is saturated if and only if 𝑠 ≥ 𝑡 for 𝜋̃−a.e. (𝑠, 𝑡). Using (3.34) we get∬
𝑄2
𝑑
𝑝
m (𝑥, 𝑧) d𝜋(𝑥, 𝑧) ≥

∫
[0,1]

(1 − (2𝑠 − 1)) 𝑝 d𝜇(𝑠)

which is saturated if and only if 𝑡 ≥ 𝑠 for 𝜋̃−a.e. (𝑠, 𝑡). Therefore, if 𝜋 is an optimal
coupling of 𝜇𝑟 and 𝜇𝑢, then 𝜋̃ is supported on the diagonal of [0, 1]2 which implies that
𝜋̃ = (𝑖𝑑 × 𝑖𝑑)# (𝜇). This means that 𝜋 = (𝑝𝑟 × 𝑝𝑢)# (𝜇). So (𝑝𝑟 × 𝑝𝑢)# (𝜇) is the only
optimal transport plan.

At this point we know by (3.31) and (3.32) that

𝑑
𝑝

𝑊𝑝
(𝜇𝑟 , 𝜈) + 𝑑 𝑝

𝑊𝑝
(𝜈, 𝜇𝑢) ≥ 21−𝑝𝑑

𝑝

𝑊𝑝
(𝜇𝑟 , 𝜇𝑢), (3.36)

and (3.36) is saturated if andonly if 𝜋∗(𝜇𝑟 ,𝜇𝑢 ) = (𝑝𝑟×𝑝𝑢)# (𝜇) and 𝑑m (𝑥, 𝑦) = 𝑑m (𝑦, 𝑧) =
1
2𝑑m (𝑥, 𝑧) for 𝜋

∗
(𝜇𝑟 ,𝜈,𝜇𝑢 )−a.e. (𝑥, 𝑦, 𝑧) ∈ 𝑄

3. Therefore, equality in (3.36) implies that

supp(𝜋∗(𝜇𝑟 ,𝜈,𝜇𝑢 ) ) ⊂ {((1, 2𝑡 − 1), 𝑦, (2𝑡 − 1, 1)) | 𝑡 ∈ [0, 1], 𝑦 ∈ 𝑄} .

However, the unique metric midpoint of (1, 2𝑡 − 1) and (2𝑡 − 1, 1) is (𝑡, 𝑡). Therefore,
𝑦 = 1

2 (𝑥 + 𝑧) must hold for 𝜋∗(𝜇𝑟 ,𝜈,𝜇𝑢 )-a.e. (𝑥, 𝑦, 𝑧) ∈ 𝑄
3, which forces 𝜈 to be(

(𝑥, 𝑧) ↦→ 1
2
(𝑥 + 𝑧)

)
#
𝜋∗(𝜇𝑟 ,𝜇𝑢 ) =

(
(𝑥, 𝑧) ↦→ 1

2
(𝑥 + 𝑧)

)
#
(𝑝𝑟 × 𝑝𝑢)# (𝜇) = 𝜇.

Now let us consider 𝜇, a probability measure supported on the main diagonal
[(−1,−1), (1, 1)] . The displacement interpolation given by

𝜇𝑠 := ((𝑥, 𝑥) ↦→ (1 − 𝑠) (1, 1) + 𝑠(𝑥, 𝑥))# (𝜇) (𝑠 ∈ [0, 1])

is the unique geodesic line segment between 𝜇0 = 𝛿 (1,1) and 𝜇1 = 𝜇. Note that 𝜇 1
2
is

supported on the “upper half of the diagonal" [(0, 0), (1, 1)] and hence preserved byΦ.
Moreover, (𝜇𝑠)0≤𝑠≤ 1

2
is the only geodesic line segment between 𝛿 (1,1) and 𝜇 1

2
, and the

unique extension of this geodesic segment to the parameter domain [0, 1] is (𝜇𝑠)0≤𝑠≤1 .
Therefore, the geodesic line segment (𝜙(𝜇𝑠))0≤𝑠≤1 containing Φ(𝜇0) = Φ(𝛿 (1,1) ) =

𝛿 (1,1) andΦ(𝜇 1
2
) = 𝜇 1

2
must coincide with (𝜇𝑠)0≤𝑠≤1 , in particular,Φ(𝜇) = Φ(𝜇1) =

𝜇1 = 𝜇. ■

The combination of Proposition 2.1 and the above theorem implies that the Wasser-
stein spaceW𝑝 (𝑄, 𝑑m) is isometrically rigid for 𝑝 > 1.
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4 Final remarks and open questions

We think that the ideas developed in this paper can be used to prove isometric rigid-
ity of Wasserstein spaces that are built over certain normed spaces. Recent studies of
the structure of Wasserstein isometries feature interesting examples of both rigid and
non-rigid Wasserstein spaces. Kloeckner showed in [13] that the quadratic Wasserstein
space over R𝑛 admits non-trivial isometries. As a recent result of Che, Galaz-García,
Kerin, and Santos-Rodríguez demonstrates [8], non-trivial isometries show up even if
the underlying normed space 𝑋 can be written as 𝐻 × 𝑌 , where 𝐻 is a Hilbert space
and𝑌 is a finite-dimensional normed space. Furthermore, by an application of a recent
result of Balogh, Stöher, Titkos and Virosztek (see Theorem 1.1. in [4]) it follows that
the Wasserstein space W1 (𝑄, 𝑑1), (where 𝑑1 is the ℓ1- metric on 𝑄) is non-rigid as it
contains mass-splitting isometries. This result is in sharp contrast to our main result,
Theorem 1.1. On the other hand, non-quadratic Wasserstein spaces over Hilbert spaces
[10, 11], andWasserstein spaces over spheres, tori, and Heisenberg groups [5, 12] turned
out to be rigid in the last years. Based on these recent developments, it would be an
intricate question to study the problem of rigidity of quadratic and non-quadratic
Wasserstein spaces over general normed spaces.

The question of rigidity of quadratic Wasserstein spaces have been investigated for
various underlying spaces including Hadamard spaces [6], [7] and more general metric
spaces with negative curvature in the sense of Alexandrov. The case of positive sectional
curvature has been considered by Santos-Rodriguez [15]. It would be an interesting
question to study the problem of rigidity in more general metric measure spaces sat-
isfying a curvature-dimension condition, the so-called 𝐶𝐷 (𝐾, 𝑁) (see [14] and [17])
for 𝐾 > 0 Note, that 𝐶𝐷 (𝐾, 𝑁) spaces have a generalized lower bound on the Ricci
curvature and therefore are more general objects that the spaces considered in [15].
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