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Abstract

We show that the dynamical system associated by Putnam to a pair of graph embeddings is identical to
the shift map on the limit space of a self-similar groupoid action on a graph. Moreover, performing a
certain out-split on said graph gives rise to a Katsura—Exel-Pardo groupoid action on the out-split graph
whose associated limit space dynamical system is conjugate to the previous one. We characterise the
self-similar properties of these groupoids in terms of properties of their defining data, two matrices A, B.
We prove a large class of the associated limit spaces are bundles of circles and points that fibre over a
totally disconnected space, and the dynamics restricted to each circle are of the form z — z". Moreover,
we find a planar embedding of these spaces, thereby answering a question Putnam posed in his paper.
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1. Introduction

One of the most beautiful aspects of self-similar group theory is its connections,
discovered by Nekrashevych [11], to the theory of dynamical systems. To any
contracting self-similar group, one can construct its limit dynamical system, which is
a self-map of a compact metric space whose dynamical properties are governed by the
properties of the self-similar group, and vice versa. Many natural dynamical systems
arise as examples, for instance, hyperbolic post-critically finite rational maps acting
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2 J. B. Hume and M. F. Whittaker 2]

on their Julia sets. This description was used, for instance, to solve the twisted rabbit
problem [1].

We prove that Putnam’s binary factors of subshifts of finite type [13] arise as limit
dynamical systems of self-similar groupoids.

An embedding pair consists of two directed graphs H and E, along with a pair of
embeddings £°, &' : H < E satisfying certain conditions. Putnam’s factor is obtained
by identifying two (one-sided) infinite paths in E that arise from the same path in H
embedded along two binary sequences of embeddings that are related through carry
over in binary addition. He then proves that the natural extension of these dynamical
systems are Smale spaces, computes their homology, as well as the K-theory of the
associated C*-algebras. As a corollary, Putnam proves that these C*-algebras exhaust
all possible Ruelle algebras arising from irreducible Smale spaces [13, Theorem 6.5].

We show that Putnam’s construction naturally defines a self-similar groupoid action
on a graph. Moreover, we prove, in Theorem 4.3, that the limit dynamical system of
the self-similar groupoid action is identical (not just conjugate) to Putnam’s dynamical
system. Through our approach to studying these systems, we are able to remove one
of Putnam’s standing hypotheses and weaken his requirement of the graph E being
primitive to having no sources, see Section 4.

An interesting corollary of our construction that follows from [13, Theorem 6.5] and
[3, Corollary 8.5] is that the class of (stabilised) C*-algebras associated to contracting
and regular self-similar groupoids acting on strongly connected finite graphs is equal
to the class of Ruelle algebras associated to irreducible Smale spaces.

This result should be compared with Katsura’s seminal paper [8], where he proved
that all Kirchberg algebras can be realised, up to strong Morita equivalence, as certain
C*-algebras associated with two integer matrices A, B. While studying these algebras,
Exel and Pardo [4] realised that they arise from self-similar group actions, with the
finite alphabet replaced by a (possibly infinite) graph.

Using Kitchens’ out-split construction for graphs [9], which we extend to
self-similar groupoid actions, we prove that every self-similar groupoid action coming
from an embedding pair can be out-split to a Katsura—Exel-Pardo action. Therefore,
Putnam’s dynamical systems are topologically conjugate to the limit dynamical system
of a Katsura—Exel-Pardo action. This explains the similarity in the K-theory results
[13, Theorems 6.1 and 6.2] and Theorem 3.1 due to Katsura and Exel-Pardo.

The matrices A, B arising from this out-split satisfy some relations between them
that ensure the associated self-similar groupoid is contracting and regular. These
conditions are dynamically important, as contracting guarantees the limit space is
Hausdorff and, assuming contracting, regular is equivalent to the limit dynamical
system being an expanding local homeomorphism (see [3, Proposition 4.8]). Moreover,
the KK-duality results of [3] may be applied in this setting. We characterise these
properties in terms of properties of the matrices A and B.

Given a self-similar groupoid action on a graph, we show the connected component
space of the limit space can be identified with the quotient of the infinite path space
of the graph by a natural equivalence relation. We use this description to prove,
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for a large class of Katsura—Exel-Pardo actions, the connected components in their
limit spaces are circles and points, analogous to Putnam’s result [13, Corollary 7.7].
We identify the dynamics on the circle components as z — 7", where n € N can
vary, dependent on the value of z under a natural factor map to a subshift of finite
type. Thus, ‘Katsura—Exel-Pardo systems’ exhibit interesting interplay of zero- and
one-dimensional dynamics.

This description provided the impetus to look for a planar embedding of the limit
space for such Katsura—Exel-Pardo actions, to better understand how the circles and
points are configured. The embedding is reminiscent of a solar system trajectory, with
planets orbiting a star and moons orbiting the planet, but ad infinitum. As a corollary,
we prove that Putnam’s dynamical systems embed into the plane, answering Putnam’s
question (see [13, Question 7.10]).

The paper is organised as follows. In Section 2, we provide background
on self-similar groupoid actions and their limit dynamical systems. Section 3
introduces Katsura’s construction and Exel and Pardo’s realisation of these
as Katsura—Exel-Pardo groupoid actions on graphs, and contains our matrix
characterisation of when they are contracting and regular. Section 4 introduces
Putnam’s binary factors of subshifts of finite type, and we prove that they are limit
dynamical systems of certain self-similar groupoid actions on graphs. Section 5
defines out-splits and uses them, along with the previous result, to show that Putnam’s
dynamical systems are topologically conjugate to the limit space dynamical systems
of Katsura—Exel-Pardo actions over certain out-split graphs. Section 6 contains our
results on the connected components of limit spaces. The final section proves that
regular Katsura—Exel-Pardo systems with B € My ({0, 1}) embed into the plane and,
hence, so do Putnam’s dynamical systems.

2. Self-similar groupoid actions on graphs

In this section, we describe self-similar groupoid actions on finite directed graphs
and their properties. These generalise the notion of a self-similar group introduced by
Bartholdi, Grigorchuk, Nekrashevych and others.

2.1. Directed graphs and their path spaces. We quickly introduce directed graphs;
for a detailed treatment, see Raeburn’s seminal book [14].

A directed graph E is a quadruple E = (E°, E', r, s) consisting of two sets E and E!
along with two functions r, s : E' — E° called the range and source maps, respectively.
Elements in E° are vertices and elements in E' are edges. We think of an edge e as a
directed arrow from its source vertex s(e) to its range r(e).

Perhaps the most important aspect of a directed graph is its path space. A finite
path p in a directed graph E is either a vertex p = v, or a finite sequence of edges
u=eq---e,such that s(e;) = r(e;y;) for all i < n — 1. Let the paths of length n in E be
denoted by E" ={e;---e, : ¢; € E',s(e;) = r(eis1)}. We then let E* := Ueo E" denote
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the set of all finite paths in E. For a path g =y ---u, in E", let r(u) = r(u;) and
s(u) = s(u,). For y € E* and X C E*, we define

uX ={uv:veX,s(u)=r(v)} and Xu={vu:veX,r(u =s)

We then have uXv = uX N Xv.

A graph is finite if both E° and E' are finite. A graph is strongly connected if, for
all v,w € E°, the set vE*w is nonempty. Notice that if E is strongly connected, then
vE! and E'v are nonempty for all v € E°, unless E is the graph with one vertex and no
edges. We say a vertex v in a graph E is a source if vE' = () and a sink if E'v = 0.

In this paper, we need to work with both left-, right- and bi-infinite paths in a graph
E. Thus, we define:

o E*® :=lejeres---: e € E', s(e;) = r(eiy) for all i};
o E®:={--e_zese_;:e €E' s(e) =r(ey) for all i}; and
o EZ:={-.e_se_jepeier---:e; € E',s(e;) = r(ei) for all i}.

As usual, we endow these spaces with the product topology, with a basis of cylinder
sets. These are indexed by finite paths in each of the three spaces, so we distinguish
them as follows. For

o E**:whenueE" letZ[u) ={x€ E*™ :x;---x, = u}; for
o E™:whenueFE" letZ(u]l ={xe€ E~ :x_,---x_1 = u}; and for
o FZ: whenn>0andueE™! letZ(u) :={x € EX 1 x_, -+ X, = u}.

If x is an element in any of the spaces above and m < n € Z appropriately chosen for
the space in question, we define

ulm, n] = wupln+1 -+ -

2.2. Self-similar actions of groupoids on graphs. Katsura—Exel-Pardo actions are
a type of self-similar groupoid action on a graph, so we take a few paragraphs to
introduce them. For further details, see [10].

Suppose E is a directed graph. Given v, w € E°, a partial isomorphism of E* is a
bijection g : vE* — wE" that is length and path preserving in the sense that |g(u)| = |y
and g(ue) € g(u)E' forallu € E* and e € E! satisfying s(u) = r(e). We use the notation
g - 1 = g(w) to reduce the number of parentheses. These two conditions are equivalent
to the following property: g is length preserving, and for every u € vE*, there is a
partial isomorphism 4 : s(u)E* — s(g - u)E* such that

g-w)=(g-wh-v) forallves(uE". 2-1)

We write h = gl,, as it is uniquely defined by the above property, and call it the
restriction of g to u.

Let PIso(E*) denote the set of all partial isomorphisms of E*, which is itself
a groupoid with units id, : vE* — vE* defined by id,(u) = u for all u € vE* and
multiplication given by composition of maps. Since units are associated with vertices,
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we go ahead and identify the unit space of PIso(E*) with E°. The isotropy group of a
unit v € E¥ is the set of partial isomorphisms from vE* to vE*.

Given a partial isomorphism g : vE* — wE*, define its domain to be d(g) = v and
its codomain to be c(g) = w. That is, we are renaming the range and source maps in
the groupoid PIso(E*) by the terms codomain and domain since the symbols s and r
are already in use.

Restriction and multiplication of elements satisfy several relations, which we record
in the following lemma.

LEMMA 2.1 [10, Lemma 3.4 and Proposition 3.6]. Let E be a finite directed graph. For
(g, h) € PIso(E")?, u € d()E*, v € s(u)E* and n € c(g)E*, we have:

(1) r(g-p) =c(g) and s(g - ) = gl - s(u);
(2 g|ﬂv = (gl,u)|v;

Q) idy |y = idygys

@ (hgly = (hlgw)(gly); and

(5) g_llﬂ = (g|g*1‘7])_1-

A groupoid G with unit space E° acts on E* if there is a groupoid homomorphism
¢ : G — PIso(E*) that restricts to the identity map on E°. Define Ker(¢) = ¢~'(E?),
which is a normal sub-groupoid of G. We say G acts faithfully on E* if ¢ is injective
or, in other words, Ker(¢) = E°. We write g - u in place of ¢(g)(u).

DEFINITION 2.2. Suppose E = (E°, E', r,s) is a directed graph, and G is a groupoid
with unit space E° and a faithful action ¢ : G — Plso(E*). We say (G,E) is a
self-similar groupoid action if for every g € G and e € d(g)E™, there is i € G such that
d(2)le = d(h). We write g, := h and call it the restriction of g to e. Using Lemma 2.1,
gly € G for u € d(g)E" is well defined and satisfies

g () =(g-w(gl,-v) forallyes@weE". (2-2)

Moreover, all the conclusions in Lemma 2.1 hold for the restriction and multiplication
when PIso(£™) is replaced with G.

If the action of G on E* is range preserving, then G, :={ge G :d(g) =v} is a
group and, hence, G is a group bundle. In that case, we say (G, E) is a self-similar
group bundle on E. As we see later, this holds for all Katsura—Exel-Pardo actions by
definition.

It is useful in this paper to work with nonfaithful actions of groupoids by partial
isomorphisms whose faithful quotient is self-similar. These should be considered as
nonfaithful self-similar groupoids. However, such a term is an oxymoron, so we name
them as below.

DEFINITION 2.3. Let E be a directed graph and G a groupoid with unit space E°. An
action-restriction pair for (G, E) is a map

G X E'>(g.e) > (g-e,8l.) €E' X G (2-3)
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such that:

(AO) r(g-e)=c(g)andd(gl) = s(e) for every (g,e) € G X, E';
(A1) r(e)-e = eand r(e)|, = s(e) for every e € vE';

(A2) gh-e=g-(h-e)forevery (g,h) € G and e € d(g)E';
(A3) g7'e =(gly1..)”" forevery g € G and e € c(9)E".

We usually denote an action-restriction pair by (G, E) when there is no ambiguity.

If we replace G in the definition above with a finite set A with E° C A and retracts
c,d 1 A — EY, then this is the notion of an automaton defined in [10], and one checks
that such a pair extends to an action-restriction pair of the free groupoid associated to
(A, ¢, d). Katsura—Exel-Pardo actions are, in general, not generated from an automaton
but an action-restriction pair as defined above.

If we consider a group G, a finite directed graph E, an action o : G X E! — E!
and a one-cocycle ¢:GxE' — E' satistying Exel and Pardo’s conditions in
[4, Section 2.3], then such a pair defines an action-restriction pair on the group bundle
GxE'={g,:g€G,ve E%by

(gv, e) - (O-(g7 6), (‘p(g’ e)s(e)))-

An action-restriction pair for (G, E) defines a (not-necessarily faithful) action
¢ : G — Plso(E*): for g € G and u = ev € d(g)E", we inductively define

g-u=(g-e)gle-v). (2-4)

Note that if g € Ker(¢) and e € d(g)E', then for all v € d(g|.)E* = s(e)E*, we have
egle - v =g (ev) = evand, hence, g|. - v = v. Therefore, g|. € Ker(¢).

It follows that if g : G — G, := G/ ker(¢) is the quotient map, then g(gl.) = g(g)l.
forall g € Gand e € d(g)E' = d(q(g))E". Hence, the induced action G4 — PIso(E*) is
self-similar.

The case that the self-similar action comes from an action-restriction pair induced
by an Exel-Pardo action as above is covered in more detail in [10, Appendix A].

Every self-similar groupoid is an example of an action-restriction pair. Moreover,
self-similar groupoids are in one—one correspondence with action-restriction pairs
whose induced actions as partial isomorphisms are faithful.

2.3. Properties and limit spaces of self-similar groupoid actions on graphs.

In this section, we recall standard properties and constructions associated to
action-restriction pairs and self-similar groupoids acting on the path space of a graph.

DEFINITION 2.4. Let G be a groupoid and E a finite directed graph. An
action-restriction pair (G, E) is contracting if there exists a finite subset F' C G so that,

https://doi.org/10.1017/51446788725101122 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788725101122

[7] Katsura—Exel-Pardo actions and their limit spaces 7

for every g € G, there is an n > 0 such that g|,, € F for every path u € E*, k > n. Such
a subset F is called a contracting core of (G, E). The nucleus of (G, E) is the set

N = ﬂ{F C G : F is a contracting core for (G, E)}.

DEFINITION 2.5 [12, Definition 6.1]. Let (G, E) be an action restriction pair. Then,
(G, E) is regular if, for every g € G, there is K € N such that if g-u = u and |u| > K,
then gl, = s(u).

Let us see that this notion of regularity is equivalent to that of [3, Definition 4.1] for
self-similar groupoids.

PROPOSITION 2.6. Let (G, E) be a self-similar groupoid such that E has no sources.
Then, (G, E) is regular if and only if for every y € E** such that g - y =y, there exists
win E* such thaty € Z[u), g - u = p and g, = s(u).

PROOF. The ‘only if” direction is immediate, and the ‘if’ direction follows from
[3, Lemma 4.4]. O

We recall from [3, Section 3] (see [11, Ch. 3]) the construction of the limit space
from a self-similar groupoid. Let (G, E) be a self-similar groupoid. For u,v € E™,
we say u is asymptotically equivalent to v if there is a finite set F' C G and a sequence
(gn)n<o C F such that d(g,) = r(u,) and g, -, ---p—y = v, ---v_y for all n < 0. We
write (4 ~4 v. It is shown in [3, Section 3] that ~,, is an equivalence relation and
U ~q0 v implies o(u) ~4. o(v). The quotient space E~/ ~,, is called the limit space
of (G,E) and is denoted J¢g. The induced continuous mapping from (o, E=*) is
called the shift on J¢ g and is denoted &-.

It is shown in [3, Theorem 4.3] that if (G, E) is a contracting and regular self-similar
groupoid such that E has no sources, then (¢, Jsg) 1S an open, surjective and
positively expansive local homeomorphism.

In many ways, the remainder of this paper is dedicated to understanding, in various
contexts, this limit space dynamical system (&, J¢ ) and the conditions above on
(G, E) that give rise to its regularity properties.

3. Katsura-Exel-Pardo groupoid actions on directed graphs

The main examples of self-similar groupoid actions on graphs that we are interested
in are the Katsura—Exel-Pardo groupoid actions [8]. Katsura developed a family of
Cuntz—Pimsner algebras using two matrices as models for Kirchberg algebras. Exel
and Pardo [4, Section 18] realised these as self-similar groupoids acting on a graph
[10, Example 7.7]. For Katsura—Exel-Pardo actions, we completely characterise when
these are contracting and regular, which turns out to be rather subtle.

Let N € N. A Katsura pair is a matrix A = (A;) in My(N) and a matrix B = (Bj)
such that A; = 0 implies B;; = 0. Then, A is the adjacency matrix of the graph E4 with

ES={1,2,...,N}, E\={eijm:0<m<Ay}, reijm)=1i, seijm)=]j.
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Exel and Pardo [4, pages 1048—1049] realised that a Katsura pair gives a self-similar
action on a graph in the following way. Define a group action o : Z X E4 — E4 and a
one-cocycle ¢ : Z X E4 — Z as follows: write g € Z multiplicatively as g = a*, k € Z.
Then, o(d", e; jm) = e and o(d~, e; Jm) = af‘, where

kBj+m=kAj+m and 0<ih<Aj. (3-1)

We then obtain an action-restriction pair for (Z X E° E,), defined by

(@, i) = (eijm ad), (3-2)

and we call these Katsura—Exel-Pardo groupoid actions (KEP-actions). See [10,
Appendix A] for a more careful treatment of these actions and [10, Example 7.7]
for a description of the faithful quotient. We reserve the notation (Gg, E4) for the
corresponding faithful KEP-action associated with a Katsura pair of matrices A and B.
These actions realise their importance within C*-algebras due to the following.

THEOREM 3.1 [8, Propositions 2.6, 2.9 and 2.10, Remark 2.8], [4, Remark 18.3]. Let
N € N and let A = (Aj) be a matrix in My(N), and B = (By) a matrix in My(Z) such
that A has no zero rows and A; = 0 implies B = 0. Then, the Cuntz—Pimsner algebra
of the associated self-similar groupoid action O(Gg, E,) is separable, nuclear and in
the UCT class. The K-theory groups of O(Gg, E4) are given by

Ko(O(Gg, E,)) = coker(I — A) @ ker(I — B) and
Ki(O(Gg, Ey)) = coker(I — B) @ ker(I — A).

Moreover, if A and B also satisfy:

e Aisirreducible and Ay = 0 = B;j = 0; and
o A;>2andB;; =1foreveryl <i<N,

then O(Gg, Ey) is a unital Kirchberg algebra.

Theorem 3.1 outlines several restrictions that can be put on a KEP-action whose
associated Cuntz—Pimsner algebra is a unital Kirchberg algebra. We now consider
restrictions that arise on the self-similar groupoid side. It is helpful to first understand
the kernel of a KEP-action ¢4 5 : Z X Eg — PIso(E}).

Following Exel and Pardo [4, page 1124], for u € E}, write u = €, r €, iy, " *
€i,_inr,- Define

—_

n—

n—1
Aﬂ = Alﬁm and Bﬂ = l_lBi’i’*]. (3-3)
=0

T
o

Thatis, A, and B, are the products of the number of edges through the set of vertices
specified by pu.

PROPOSITION 3.2. Let (A, B) be a Katsura pair. Then, af? € ker(¢a p) if and only if
kB,/A, € Z for all u € iE}.
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PROOF. One sees by induction on n € N that for k € Z and u € iE", af.‘ cpu=p if
and only if k(By1,i1/Au,i) € Z for all i < n. Therefore, ai.‘ € ker(¢4 p) if and only if
k(B,/A,) € Z for all u € iE}. O

Note that for u € E" such that B, # 0, k(B,/A,) € Z if and only if A, /gcd(A, |B,|)
divides k. So, by Proposition 3.2, the group (Gp); is finite if and only if
maxyeig-:B,#0 Au/ (gcd(Ay, |BLl)) < oo and its cyclic order o; is the smallest k € Z such
that A, /gcd(A, |B,|) divides k for all B, # 0. Thus,

o; = lem({A,/gcd(A,, |Bul) : u € iE) : B, # 0}).
We have the following corollary.

COROLLARY 3.3. Suppose (Gg, E4) is a KEP-action and define
ES ., =i € EY : (Gp); is finite}.

A,<oo

Then, EX - is invariant in the sense that if e € E' satisfies B, # 0 and r(e) € E
then s(e) € Eg

,<c0’

,<o00"

PROOF. Let ve E* and e € E' be such that s(e) = r(v) and B,, # 0. We have
A, =AA,, |Bey| = |B.||B,| and therefore gcd(A,, |B.|)gcd(A,,|B,|) divides A,, and B,,
so that gcd(A,, |B.|)gcd(A,, |B,|) divides gcd(A,y, |B,,|). If we let A;, = A, /gcd(A,, |B,|)
and B; = B, /gcd(A,, |B,]), then

m = ng(AEV’ |B€V|)
ged(A,, [Bel)ged(Ay, |By)

Since gcd(A), B,) = 1, the factors in m that divide B;, must divide A, and the factors
that divide A], must divide B,. From this, we see that m divides A.B, and, therefore,

ged(Ae, |Bel)ged(Ay, [By]) < ged((Aey, [Beyl)) < AelBelged(A,, |Bel)ged(Ay, |Byl).
So, if we let C = max, g Ae/gcd(A,, |Be|) and D = max,cg1 |B.|gcd(Ae, |B.|), then
Ay Aoy 1 A,

= gcd(ALA, |BL|IBS).

C > > — . (3-4)
ged(Ay, |By) — ged(Aey, IBeyl) — D ged(A,y, [By))
In particular, if max,ege)£+:8,20(A,/gcd(A,, |B,|)) = oo, then
Aev A/l
o= max ——— < max ————.
ves()E":B,#0 ECA(A,y, [Beyl) — per(e)E*:B,#0 ng(A,u’ |B/1|)
This proves that for B, # 0, if s(e) ¢ E} ___, then r(e) ¢ Ej __. O

Now, define
E}, ={i€E}:(Gp)=1)
and note that E} = E} \ Ej ___. Similarly, define

E\, ={e€E} :s(e) € E,  and B, # O}.
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10 J. B. Hume and M. F. Whittaker [10]
By Corollary 3.3, (E} ,.) C E, , 50 Exco = (E§ ,E} .
the actionof G = {g € G : 5(g) € Eg,w} on E;;’ restricts to an action @a e : Gpoo —
PIso(E*’OQ).

By re-ordering the vertices if necessary, we may assume Eg’m ={1,...,k} for some
k < N. Then, letting A, be the adjacency matrix of E j‘ we see that

)
,00

A;; ifB;; #0,
(Aoo)iJz{ / /

r,s)is a sub-graph of E4, and

>
,00

0 otherwise.

Since (Gp); is infinite for i < k, we must have (by Corollary 3.3) (i) N E}Lm 0.
Hence, A, has no zero rows. Letting B, = (B;);j<t, We have ¢4 g, = a5 . Note
that, in general, Gp_, is a quotient of Gp o = Z X Eg’w.
Similarly, let
El

A, <0

={e€E):r(e)cE]_, and B, # 0},

so that £y <o = (E/I"@O,Eg’@o,r, s) is, by Corollary 3.3, a sub-graph of E4 and set
Gp<o ={g€Gp:r(g) e Eg‘@o}. Then, ¢4 p restricts to an action @4 p<e : Gp<co —
PIso(EjL <) and letting Ao, be the adjacency matrix of E4 <o and B.o = (Bj))ijs«-
we have ¢a_ p.. = Pap<o and Gp_ = Gp . Note however that E,4__ may have
sources even if E4 has none.

DEFINITION 3.4. Let (A, B) be a Katsura pair. We call (A, Bw) the infinite part of
(A, B) and (A<, B<) the finite part of (A, B), as defined immediately above.

For the following proposition, recall the notion of contracting from Section 2.3.

PROPOSITION 3.5. Let (A, B) be a Katsura pair. Then, the KEP-action (Gg, E,) is
contracting if and only if (Gp«, Ea_) is contracting.

PROOF. The ‘only if’ direction is immediate, so we prove the ‘if” direction by proving
its contrapositive. If (Gp, E4) is not contracting, then for every finite set F' such that
Gp.<co UE® C F C Gp, there is g € Gy such that 8ly, ¢ F for infinitely many paths
(n)nen. For u € E)} such that B, = 0, we have g|, = s(u) € F and, hence, B, # 0. If
u € E} satisfies B, # 0 and r(y;) € Eg’@o for some i < n, then by Corollary 3.3, we
have s(u) € Eg’@o and, therefore, h|, € Gp <o C F for any h € r(u)Gp. Since gl,, ¢ F
and B,,, # 0, it follows that y,, € Ej;,oo foralln € Nand g € Gp . Therefore, (Gp_, Ea,,)
is not contracting. i

Now, we determine a necessary and sufficient condition for the infinite part of

a KEP-action to be contracting. Suppose G is a finitely generated groupoid with
generating set S = S~!, with associated length function £5: G — N, and suppose
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(G, E) is an action-restriction pair. Following Nekrashevych [11, Definition 2.11.9],
the contraction coefficient of (G, E) is the quantity:

£ 1/n
p =lim sup( limsup max S(glﬂ)) . (3-5)

n—oo g€G,ls(g)—o0 HEd(QE" gS(g)

Nekrashevych proved the following result in the case of a self-similar group action.
However, his proof goes through line-for-line with the obvious extension from words
to paths in the action-restriction pair setting.

PROPOSITION 3.6 [11, Lemma 2.11.10 and Proposition 2.11.11]. Let G be a finitely gen-
erated groupoid and E a finite graph with no sources. If (G, E) is an action-restriction
pair, then the contraction coefficient p is finite and does not depend on the generating
set. Furthermore, (G, E) is contracting if and only if p < 1.

Now suppose that (Z x E?, E,) is the action-restriction pair associated to a Katsura
pair (A, B). Then, Equation (3-5) becomes

fs(“’r"@'ﬂ))”", (3-6)

p = limsup ( lim sup max
n—00 m—sco  HEE, m
PROPOSITION 3.7. Let (A, B) be a Katsura pair such that A has no zero rows and let
(Z x Eg, E4) be the associated action-restriction pair. Then, the contraction coefficient
is given by
y ( Byl )1/"
=limsup| max —| .
p n—>oop /‘EEX Ay
PROOF. We first prove by induction on m € N that, for fixed 1 <i,j<N and
0<r<N,

B r—r,
_+—

al'-ejj,v = eij, (all. -v) wherel=m for all v € JE". (3-7)

For m = 1, using Equation (3-1), we have B;; + r = [1A;; + r; so that

B r-r

! j 1
a-eii,v=e;i.( -v) wherel=1[ = — ,
i i, iy, 1( 'j ) 1 Az] Al]
as desired. Using Equation (3-7) for m — 1, we have
m 4 ’ BU = Tm-1
a’-ejj,v=a- e,",-,,m_l(aj -v) wherel' =(m-1)— + ———. (3-8)
Ajj Ajj

From Equation (3-1), we have Bj + 1,1 = [,,A;; + r,,, so that Equation (3-8) gives

] 4 U+l
@' - eijyv = eijr, (@ - (d; V) = eijp, (@, V),
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12 J. B. Hume and M. F. Whittaker [12]

where

=t at, =monPi Tt Bi reoi o By ron

Thus, Equation (3-7) holds.

—- T P e O . =P s P s g e P ., m., =
Suppose H = Ciginri Cirvinrs ™" Cipsinrns V= Cligsin g Cinsiary " iyt and a, U=V
We prove by induction on |u| = n that
B, B
m 1 ult+1,n]
Qpipls = diyyy Where I =m=" + Z(r, . (3-9)
U pult,n]

For |u| = 1, Equation (3-9) holds by Equation (3-7). Using Equation (3-9) for n — 1 and
Equation (3-7), we compute for |u| = n:

-1
/- (mBﬂll,n—lJ . "Z(r _ oy Batetn )Bi,,fli,, s
- t

Au[l,n—l] = Y A A

In-1in Ai;t—l in
;1[[+1 n]
m— + E (r,—

ult.n]

so Equation (3-9) holds by induction.
We now use Equation (3-9) to compute the contraction coefficient

Es(@” ) \Un
= lim sup ( lim sup max —(‘u)#)

n—oo m—oo HEE} m
ult+1 n]
Zm

;t[t n]

)l/n

= lim sup ( lim sup max

n—oo m—oo MEE}

O

|B | I/n
= lim sup ( max —)
n—oo HEE Ay
COROLLARY 3.8. Let (A,B) be a Katsura pair. Then, the associated KEP-action

(G, E) is contracting if and only if lim sup,_,_ (max,egr |Bul/A)!" < 1.
For the following proposition, recall the notion of regular from Section 2.3.

PROPOSITION 3.9. Let (A, B) be a Katsura pair. Then, the KEP-action (Gg, E,) is
regular if and only if (Gp., Ea,) and (Gp__, Ea__) are regular.

PROOF. The ‘only if* direction is immediate, so we prove the ‘if” direction. Suppose
g € G. We show there is M € N such that g - u = y, g, # s(u) implies |u| < M.
Since Gg_, is finite, there is an M” € N such that for every h € G, and v € E} __|
satisfying - v = v and g|, # s(v), we have |[v| < M’.
Note that g|,, # s(u) implies B,, # 0, so by Corollary 3.3, we can write u = ueu, for

some ) € Ey  andp, € Ey _ (1n this decomposition, we allow y; = @ or u, = 0).
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If uy =0, then [yl <M’ + 1.

If 41 # 0, then g € Gp.o. Let M be such that for v € E; _, g-v = v and g|, # s(v)
implies |v| < M”. Then, |u| < M” + M’ + 1.

In either case, we have |u| <M =M"+ M" + 1. O

PROPOSITION 3.10. Let (A, B) be a Katsura pair such that A has no zero rows. If the
associated action-restriction pair (Z X Eg, Ey,) is contracting, then it is regular.

PROOF. Suppose (Z x E°, E,) is contracting. Write g = af. By Propositions 3.6 and
3.7, there is M € N such that |B,|/A, < 1/k for all |u| > M and, hence, k(B,/A,) ¢ Z.
It follows that g - u # p for |u| > M. Hence, (Z x E°, E,) is regular. O

COROLLARY 3.11. Let (A, B) be a Katsura pair such that the KEP-action (Gg, E,) is
contracting. Then, (Gp, E4) is regular if and only if (Gp__, Ea_) is regular.

PROOF. Follows immediately from Propositions 3.9 and 3.10. ]

We now determine a necessary and sufficient condition for when the finite part of a
KEP-action is regular.

PROPOSITION 3.12. Let (A, B), satisfying sup,cp..p 40(Au/gcd(Ay, |Byl)) < co be a
Katsura pair. Then, the KEP-action (Gg, E4) is regular if and only if there is K € N
such that for all u € Ef and w € s(WE}, A, divides (B, /gcd(Ay, |Bu)Be.

PROOF. We first prove the ‘only if° direction. Now Gp is finite since
supﬂeE*:Bpio(Aﬂ/gcd(Aﬂ,|B,1|)) < 00; so by regularity, there is K € N such that for
every g € Gg and u € EX, if g-p = p, then g|, = s(u). In particular, for 4 € EX and
k=A,/gcd(Ay, |B,l), we have a’r‘(y) - u = pu and, therefore, a];('u)lﬂ = s(u), which implies
(Bu/gcd(A,, |1BuD) - By /Ay = (Ay/ged(A,, IBuD) - Buw/Auw € Z for all w € s(uE;.
Therefore, A, divides (B,/gcd(Ay, |B,ul)B,, for all u € s(uE,.

We prove the ‘if” direction now. Suppose g = ai.‘ satisfies af -y = u for some
w € iEX. This implies kB, /A, € Z, which is equivalent to A,/gcd(A,, |B,|) divides k.
Letm € Z be such thatk = m - A, /gcd(A,, |B,]). By the hypothesis, if w € s(u)E}, then
(Au/ged(Ay, 1Bul)) - Buw/Auw = Bu/ged(Ay, IByl) - B, /A, € Z. Hence, k-B,,/A,w =
m - (Au/gcd(Ay, IBuD) - Buw/Auw € Z. Then, letting [ = kB,,/A,,, by Proposition 3.2, we
have afl,, = ai(ﬂ) = s(u). O

We summarise the results of this section into a theorem.

THEOREM 3.13. Let (A,B) be a Katsura pair. Then, the KEP-action (Gg,Ey) is
contracting and regular if and only if lim Supn_wo(max,,e,g;po |B'L,|/A'u)1/” <1, and
there is K € N such that A, divides (B,/gcd(Ay,|Bu)B,, for all u € E§<m and
w € s(WE)

,<00®

Later in this paper, we restrict to considering Katsura pairs with B taking values of
either 0 or 1. The above theorem has a nice reformulation in this setting.
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NS

€120

e @ 1 2 @ €21

FIGURE 1. The graph E4 specified by the adjacency matrix A from Examples 3.15 and 3.16.

COROLLARY 3.14. Let (A,B) be a Katsura pair such that B € My({0,1}). If the
KEP-action (Gg, Ey) is regular, then (Gg, E,) is contracting. Moreover, (GB,EA) is
regular if and only if there is K € N such that:

° EZW,A =1 = |yl <£K;and

. #E h<oor Wl 2 K = Ay = 1.

PROOF. By Proposition 3.5, it suffices to show (Gp,Es ) is contracting. By
Proposition 3.9, (G, Ea ) 1s regular. For p € E/’_; o We have a,(, - ¢ = p if and only
if A, = 1, in which case a,,l, = as. By regularity, there is K € N such that A, =1
implies |u| < K. Hence, for u € E} , we have A, > 2¥/K 5o that the contracting
coefficient (by Proposition 3.7) is p < (3)"/K < 1. By Proposition 3.6, (Gp.co, Eao) is
contracting.

The second point is equivalent (by Proposition 3.12) to regularity of (Gp__, Ea__).

To prove that the two bullet points imply (Gg, E,) is regular, it therefore suffices
to show (by Propositions 3.9 and 3.10) that (G, E4.«) 1S contracting, but this is the
same argument as above. i

We use our characterisations of contracting and regular to provide four examples of
Katsura pairs that exhibit all the possible combinations of the two properties holding
(or not holding).

EXAMPLE 3.15 (Contracting and regular). Let (Gp, E4) be the KEP-action defined by

A:(% ;) and B:((l) }) (3-10)

Then, A is the adjacency matrix for the graph E4 depicted in Figure 1.
Using the relations in Equation (3-1), for u € 1E7} and v € 2E7, we obtain the
self-similar action defined by the partial isomorphisms

aj e oM = e, da - ez o0 = €210M;
ay - eiM = 81,1,0(611 ) €220V = €221V,

ap-eipov =epolay-v); ax-exn1v=expola-v).

We have Ao, = (3 1) and A<, = 0. Therefore, being contracting and regular depends
only on the first bullet point in Corollary 3.14 holding. For y € E,_, we have
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|ul > 1 implies A, > 1. Hence, (Gp, E4) is contracting and regular. Note also that
maxyep: |B.l/A, =1/ 2"-1_ Therefore, the contracting coefficient
1Byl

: . 1\ 1
p=timsup (s 37) = tmwe() =3

EXAMPLE 3.16 (Not contracting and not regular). Let (Gp, E4) be the KEP-action

defined by
2 1 11
A= (1 2) and B= (1 1). (3-11)

Since A is the same as in Example 3.15, A is again the adjacency matrix for the graph
E, in Figure 1. The action is also the same other than a; - e; 20V = €1 20V.

However, we have A, = A and observe that max,eg: |B,|/A, = 1. Therefore, the
contracting coefficient is p = 1 so that (G, E4) is not contracting. It follows from
Corollary 3.14 that (Gg, E4) is not regular.

EXAMPLE 3.17 (Contracting and not regular). Let (Gp,E4) be the KEP-action
defined by

A:(; ?) and B:((l) i) (3-12)

We have A, = (}?) and A = 0. Therefore, Gp is finite, making (G, E4) auto-

matically contracting. However, for every k € N, we have B, =1 and A, =2 for
| P :

Hi = €] | 4€12,0- Corollary 3.14 implies that Gp is not regular.

The three examples above have B € My ({0, 1}). For an example to be not contracting
and regular, by Corollary 3.14, we must have B ¢ My ({0, 1}).

EXAMPLE 3.18 (Not contracting but regular). Let (Gg,E4) be the KEP-action
defined by

A=(2) and B=(3). (3-13)

We have A, = (2) with contracting coefficient p = % > 1. Hence, (Gg, E4) is not
contracting. Moreover, for every u € E}, we have B, /A, = (3)¥. Therefore, for every
k € Z, |ul > |k| implies kB, /A, ¢ Z and, hence, a* - u # . It follows that (Gp, Es) is
regular.

4. Binary factors of shifts of finite type and self-similar groupoids

In this section, we show a certain class of topological dynamical systems introduced
by Putnam in [13] can be realised as shifts on the limit spaces of contracting and
regular self-similar groupoids. We would like to note that a generalisation of the spaces
on which Putnam’s systems are defined appears in the PhD thesis of Haslehurst, see
[5, Ch. 3]. We first recall Putnam’s construction.
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Our notation differs slightly from [13]. First, Putnam uses G to denote a directed
graph, whereas we have reserved G for groupoids and E, H for graphs. He also calls
the source map s the initial map and denotes it i, and calls the range map r the terminal
map, denoting it #. The last important distinction is his notation for infinite paths. We
write an infinite path x = (- - - x_»,x_1) € E~%, whereas Putnam writes (x1,x2,...) € X}
for the same path.

4.1. Putnam’s construction. Let £ and H be finite directed graphs, and let
£=8%¢" 1 H— E be two injective graph homomorphisms (embeddings) satisfying
o = EVpo and E2(H') N E'(H') = 0. We refer to £ satisfying the properties above as
an embedding pair.

For p,v € E™* with pp=---p_ou_yand v="---v_ov_y, we say u ~z vif u=v, or
thereis n < 0, i € {0, 1} and (yp)r<n € H' such that i = & (yx) and v = €' (yy) for all
k < n, and one of the following holds:

() n=-1;

(2) n< 1,y =v;forallj>n+ 1, and there is y,,1 € H' such that 41 = &7 (ys1)
and V41 = &' (yps1); OF

(3) n<l,uj=vjforallj>n+1,and ty41 = Vys1 € H;.

By [13, Proposition 3.7], ~¢ is an equivalence relation and p ~¢ v for p,v € E=%
implies o-(u) ~¢ o(v). Therefore, if we denote by J¢ the quotient space E™/ ~¢, the
shift o descends to a continuous mapping o¢ : J¢ — Je.

Putnam shows in [13, Section 3] that if E is assumed primitive and ¢ satisfies
an extra hypothesis (H3), then o is an expanding surjective local homeomorphism.
In addition, he describes the expanding metric in great detail. We show the same, but
with hypothesis (H3) removed and primitive weakened to no sources by proving that
(0¢, J¢) is isomorphic to the limit space dynamical system of a contracting and regular
self-similar groupoid acting on E. We then apply the recent work on these dynamical
systems in [3]. We do not, however, extend Putnam’s metric results.

4.2. Putnam’s binary factor maps as self-similar groupoid actions on graphs. In
this section, we show that Putnam’s construction gives rise to a self-similar groupoid
on a graph.

Let £ = £%,¢' : H — E be an embedding pair. Denote Hg = &(H") = ¢'(H%) and
Hg = OH"Y U EH"). Let G = Z x E°, with groupoid structure determined by the
projection « : Gg — EO. This means that (m, v), (n, w) € Gsc are composable if and only
if v = w, in which case, (m, v)(n,v) = (m + n,v). Hence, d(m, v) = c(m,v) = n(m, v), so
that Gg is a group bundle in the sense that 77'(v) = Z for all v € E°.

For v € HY, let £(v) be the maximum length of a path y in H satisfying r(y) = v. Con-
sider the quotient bundle G = (Um0 Z/2°VZ x {£°(n)) U (10} x (E° \ H)), where
we make the convention that if £(v) = co, then Z/2/Z = Z. We aim to define a
(faithful) self-similar groupoid action of G on E.
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For (m,v) € G¢ = Zx E® and e € vE!, we define

(V) e ifeg H.,
myv)-e=13 _ $
&h) ife=¢&)forhe H'i,j,ne{0,1}suchthatm+i=2n+],

() 0,s(e)) ife¢ H.,
m,v)l. = ‘
(n,s(e)) ife=¢&h)forheH',i,j,nel{0,1}suchthatm+i=2n+j.
4-1)

This defines an action-restriction pair in the sense of Definition 2.3. To find the kernel
of the induced action ¢ : Gf — PIso(E™), let us describe the action and restriction in
terms of the binary odometer action. Let a : Z ~ {0, 1}* be the self-similar group
representation of Z by the 2-odometer action [11, Section 1.7.1]. In our language, this is
the self-similar group defined by the Katsura pair A = (2) and B = (1). More explicitly,
form € Z and i € {0, 1}, we have

n

a"-i=j and d"|;=d" wherem+i=2n+j.

For example, we have a- 1¥ = 0%, a|;x =a and a-0 =1, aly = id. This completely
describes a as an automorphism of {0, 1}*.
Forn>0,i=1iyip---i, €{0,1}"and h = hihy---h, € H", let

E(h) = E"(h)ER(hy) - - - £ (hy). (4-2)
Notice that the embedding ¢ : H! — E' extends to an embedding & : H" — E" via

Equation (4-2). If u € E" satisfies u = &(h) for some i € {0, 1}" and h € vH", then for
any v € s(u)E*, we have

(m, r(w)) - v = D (h) (@i, s(w)) - v. (4-3)

If e¢ H!, then for any v € s(e)H*, we have (m,r(e))-ev = ev. Thus, the action

o: Gf — PIso(E™) is completely described by the 2-odometer action and the trivial
action.

Since the kernel of @ : Z ~ {0, 1}" is 2"Z, the kernel of the Gf—action on E* is given
by (Uyepo 2/0Z x {£°(v))) U (Z x (E° \Hg)). Hence, the quotient of the Gg-action
is G¢. The quotient action ¢ : G¢ — PIso(E£") is then self-similar by the results in
Section 2.2.

EXAMPLE 4.1. Consider the graphs E and H in Figure 2 along with the embedding
pair £ : H — E defined by £%e) = eg, £'(e) = e;. Then, Equation (4-1) gives partial
isomorphisms generating a self-similar groupoid (Gg, E) via:
(Lv)-eo =er (1,v)le, = (0,v), (Lv)-er=ey (L), =(,v),
Awvy-f=7r Al =QO,v),

where (G, E) is not a self-similar groupoid action arising from a KEP-action. Indeed,
if (G¢, E) was isomorphic to (G, E4) for some Katsura pair, then A = (3) and B = (n)
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e €0

€]

FIGURE 2. The embedding pair ¢ : H — E for Example 4.1.

for some n € Z. The action of G =Z on E is nontrivial and contracting, so its
contracting coefficient satisfies 0 < p =|n|/3 < 1. So either |[n| =1 or |n| =2, but
neither of these cases allow for Z - f = f, Z|; = 0. Thus, (G, E) is not isomorphic
to a KEP-action.

However, we show in Section 5 that every self-similar groupoid from an embedding
pair is an out-splitting of a KEP-action.

4.3. Properties of (G¢, E). In this section, we prove that the self-similar groupoid
actions associated with a binary factor are contracting and regular. Moreover, we
prove that the shift map on the limit space of the self-similar groupoid is conjugate
to Putnam’s expanding local homeomorphism on the quotient space J: = E™/ ~¢
described in Section 4.

PROPOSITION 4.2. Let £ =&, &' H — E be an embedding pair. Then, (G, E) is
contracting and regular.

PROOF. We first show (G, E) is contracting. We show the nucleus is contained in
N =({-1,0,1} ng) U {0} x (E° \Hg). Let g = (m,w) € Gg. If w ¢ Hg, then m =0
and, hence, g € N. So suppose w = £2(v). First, assume £(v) < co. Then, if there is a
path i € wE” such that [u| = n > €(v) + 1, at least one of its edges 1 ¢ Hé. So, we have
by Equation (4-1) that

g|,u = (glyy"uk)lyk,,lmu,, = (09 s(ﬂk))|uk+1w,un = (O, s(ﬂn)) eN. (4'4)

If there are no paths y of length |u| > £(v) + 1in E* ending at £°(v), then the contracting
condition is satisfied for g vacuously.

Now, suppose w = &°(v) and £(v) = co. The 2-odometer action of Z is contracting,
with N ={-1,0,1}, see [11, Section 1.7.1]. So, let K € N be the number such
that a™|; € {—1,0, 1} for all |i| > K. Let u € wE™ have length |u| = n > K. If there is
k < n such that u; ¢ €°(H") U £'(H"), then Equation (4-4) implies gly = (0,s(w) € N.
Otherwise, u; - - -, = &(h) for some i € {0, 1}" and h € H". By Equation (4-3), letting

a' = a");, we have

8l = (Ls(w) eN.

Thus, (Gg, E) is contracting.
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We now show (Gg, E) is regular. Let g = (m,w) and p € wE™ satisfy g - u = p and
8ly # s(u). Then, Equation (4-4) implies u = £i(h) for some i € {0,1}* and h € H*. By
Equation (4-3), we have

) =g pu=p=Eh).

The 2-odometer action is regular, so let M € N be such that if ™ “i=1and || > M,
then a™[; = e. Hence, we have |u| = |i| < M. Therefore, (G, E) is regular. O

4.4. Equality of the dynamical systems (0, J¢) and (7, Jg,r).- In this section
we prove the following theorem.

THEOREM 4.3. Let £ =&°,&' : H — E be an embedding pair and (G¢, E) be the
associated self-similar groupoid action on E. Then, the equivalence relation ~¢ on
E™% is equal to the asymptotic equivalence relation ~, on E™. Thus, (0¢ Je) =

(6, 9G..E)
We begin by first proving a couple of lemmas.

LEMMA 4.4. Let ¢ =&°,¢' : H— E be an embedding pair and (G, E) be the
associated self-similar groupoid action on E. Suppose p € E~ has the property that
i é H‘; for infinitely many j € N. Then, u is only asymptotically equivalent to itself.

PROOF. Suppose v € E™* and u ~,. v. Let F C G¢ be a finite set and (g,,),<0 € F be
a sequence such that d(g,) = r(u,) and g, -, - -1 = v, ---v_y for all n < 0. Let
(Fndnco € {n <0 :n€Z} be a decreasing sequence such that u; ¢ Hg for all n < 0.
Then, by definition of the action, we have that g;, - 1, = g, &j,l, = (0,5(x;,)) and,
hence, v; - v_1 = gj, i, - poy =y, --p—y foralln < 0. Sou =v. |

LEMMA 4.5. Let £ =&,&': H—> E be an embedding pair and (G¢, E) be the
associated self-similar groupoid action on E. For u,v € E=, u ~4 v if and only if
w1 =vorthereisn < 0 such that Vi )i<n € H', (i)k<n, (i k<n €O, 1} with py = Ex(yp),
Vi = E%x(yy), for all k < n, -+ ip_1in) ~ge (-+- i i) relative to the 2-odometer action
of Z, and one of the following hold:

* n=-1;o0r
2)* n<lpj=vjforallj>n+1and i1 = Vpr1 ¢ Hfl.

PROOF. We prove the forward direction first. Suppose that u ~,, v and u # v. From
Lemma 4.4, we know that there is n < 0 such that for all k < n, there is i, i; € {0, 1}
and yi, y, € H' with p = &(y;) and v = £4(y}). Let n be the largest such n for which
this is true, and let (gx)r<o0 be a sequence contained in some finite set I of G satisfying
d(gr) = r(u) and g - pg -+ -y = v+ - - p—y for all k < 0.
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Let F be a finite set in Z such that (g)s<, € 7(F X Hg), where 7 : Gz — G¢ is the
quotient map. Then, there is (1)<, C F such that

é_‘ank'(ik"'in)(yk e yn) = gk . l’lk .. .#n = ViV, = é‘-‘l/’clr,z(y]/( . .y;l)'

It follows that y; = y, forall k <nand (- - iy-1in) ~ae (-~ 0 _ip).

Now, if n = —1, then we are done, so assume n < 1 and, without loss of generality,
that g, ¢ Hg- Then Vi1 = guit * Mar1 = Mar1 and gnyily,,, = (0, 5(uni1)), so that
Vsl © Vol = Gnal  Hntl M-l = Hpel M1 ~

Now, we prove the reverse direction. Let /' be a finite set in Z and (ny )<, € F a
sequence such that @™ - iy - - i, = i} -+ - iy, for all k < n. It follows from the definition
of the action of G that if we let g; = n((ng), s(ux)), then gg - py -+ -y, = vy -+ v, for
all k <n.If n=—1, then we are done, so assume n < —1. Since f, 1 = Vo1 € H),
it and its extension to the path py,,41 - -+ p—; = vp41 -+ - v—1 are fixed by any element in

G:N d~'(s(ttn+1)). Then,

Sk M pt = Vi Vu(8ly, - Hns1 - 1)
= Vi VY1 ((0, S(Ups1)) - fna - 1) = V- V1.

So, if we let gj = (0,5(y;)) for j >n+1, then (g0 is a sequence contained in
n(F x Hg) U {0} x (E°\ Hg) implementing p ~, v. O

We now prove the main theorem.

PROOF OF THEOREM 4.3. Recall from [11, Section 3.1.2] that two sequences
(-++in-1iy) and (---7/_ i) are asymptotically equivalent relative to the 2-odometer

action of Z if and only if either i, = i} for all k < n, or there is n’ <n and i € {0, 1}
such that iy = iand i = 1 —i for all k < n’, and one of the following holds:

(H** n=n";0r

@** n'<nxp=x foralln>k>n"+1,ip;=1-iandi

W+l = L.
Combining this description of asymptotic equivalence for the 2-odometer action with
the description of asymptotic equivalence for (G¢, E) in Lemma 4.5 yields equality
with ~¢. For clarity, cases (1), (2) and (3) of ~¢ correspond respectively to cases (1)* +
)" =n=-1),2)" (0" <n<-1),and (2)" + (1) (" =n < —1) of Lemma 4.5
and above. ]

5. Out-splittings and KEP-action models for embedding pairs

In this section, we determine the relationship of (G, E) with a KEP-action model.
In particular, we show there are matrices A € My({0, 1,2}) and B € My ({0, 1}) such that
(6, T 6..) 18 topologically conjugate to (7, J ,.k,). We do so by showing out-splits of
self-similar group bundles preserve limit spaces, and that a certain KEP-action arises
as an out-split of (Gg, E).
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(v2a 1)
2 i, 1)
/\ OS /\

(v3,2)
4 (v1,4) (v2.4)

FIGURE 3. An out-split of the graph on the left appears on the right.

5.1. Out-splits of self-similar group bundles. We take the approach on out-splits
found in [2]. For the ‘classical’ approach, see [9]. Let E be a directed graph and
let OS = (m,3) be a tuple, where 7: E' — Eoos and SB: E(())s — E° are maps such
that s =Bom. The out-split of E by OS is the graph Eog = (EY, E}g, ros, S0s),
where E}¢ = E) P E' and ros,sos : Ehg — EO¢ are defined for (v,e) € E}¢ as
ros(v,e) = vand sps(v, e) = n(e).

EXAMPLE 5.1. Let E be the graph on the left of Figure 3. Let EOOS = {vy,v2,v3} and
m: E' — E be defined by

a(l)=vy, n(2)=vy,, 7w(3)=v3 and n(4) =vs.
Since s = B o, the map B : E¢ — E is given by
B =pr(1) =s(1)=x, BO)=x and B(v3) =y.
Then,
Eps = Epg g%, E' = {1, 1), (1,3), (n1,4), (v2, 1), (v2,3), (v2, 4), (v3,2)},
with the out-split graph Epg depicted on the right of Figure 3.

It is routine to check that the dynamical systems (o, ™) and (0, E.3) are
topologically conjugate via the map I : E™® — E ¢ given by

I(...,en,e1) = (..., (n(e-3), e-2), (m(e-2), e-1)).
More generally, for every n € N, there is a bijection /,, : EOOS pX, E" = Ej defined for
(v,p) € Eoos 25 E'withu=e_,---e_; by

Li(v,p) = (v, e_p)(mm(e—n), e-ns1) - - (m(e-2), e1).

Now, suppose (G, E) is a self-similar group bundle; that is, the action of G on E* is
range preserving. We can define a new group bundle (Gos, Eps) with

Gos = {(g,v) € GX Ed : d(g) = c(g) = ()},
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where (g, v) and (g, V") are composable if and only if v = V', in which case
(8 v)- (8", v) = (88", v).

The action-restriction pair (Gogs, Eos) is defined for (g, v) € Gpg and (v, e) € E(l)s, as

(&Vv)-(ve)=(v,g-e) and (g, V)lpe = (7(e), gle)- (5-1)
The induced action of (g, v) on a path 1,,(v, e), for (v, e) € Eoos 25 E",is
(g7 V) : In(Va e) = Il’l(v9g : e)v (5_2)

making it clear that the homomorphism ¢ : Gos — PIso(Ey)) is faithful. Therefore,
(Gos, Eps) s a self-similar groupoid action on a graph. We call (Gos, Eos) the out-split
of (G,E) by OS.

THEOREM 5.2. Let (G, E) be a self-similar group bundle and Eos an out-split of E.
Then, for u,v € E=%, u is asymptotically equivalent to v relative to (G,E) if and
only if I(u) is asymptotically equivalent to 1(v) relative to the out-split (Gos, Eos).
Consequently, (G, J,r) is topologically conjugate to (G, J Gs.Eos)-

PROOF. If F C G is a finite set, we let Fpg = {(g,v) € F X EOOS 1 d(g) = B(v)}. Then,
p is asymptotically equivalent to v if and only if there is a sequence (g,).<o
contained in some finite set F' of G, such that d(g,) = r(u,) and g, -y, -+ -1 =
v,---vy for all n <0, if and only if there is a sequence (g,).<o € G and a finite
set F C G such that ((g,, m(t,—1)))u<o 1s contained in Fpg and satisfies (g,, 7(t,-1)) -
L (=), -+ - =) = Ly (m(vy—1), vy - - - v—q) for all n <0, if and only if I(u) is
asymptotically equivalent to /(). ]

REMARK 5.3. A number of properties are preserved by out-splitting self-similar group
bundles. For instance, using Equations (5-1) and (5-2), it is easy to see that (G, E) is
contracting (or regular) if and only if (Gos, Eps) is contracting (or regular).

5.2. KEP-action models for embedding pairs. Suppose & = ¢°,¢' : H — E is an
embedding pair and (G, E) its associated self-similar groupoid action. We show there
is a Katsura pair (A, B) such that (G4, Ep) is the out-split of (G, E).

Let Egs be the set obtained from E' by identifying the edges £°(/) and &' (k) for all
heH' Letn:E' — Eoos be the quotient map. Since the edges being identified share
the same source, there is a unique map f3 : EOOS — E° satisfying 8 o 7 = s. Therefore,
the tuple OS = (7, 8) determines an out-split (Gps, Eps) of the self-similar group
bundle (G¢, E). We show (Gos, Eps) is isomorphic to a KEP-action.

If w € 7(H}), there is a unique 7 € H' such that 7' (w) = {£°(h), &' (h)}. Otherwise,

7 '(w) = {w} C E! \H‘;.
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ﬁ (e, €0) (f>eo0)
VO @%o‘_eos DI
U U\/
o o) (e, f)
s €1

FIGURE 4. The out-split associated with Examples 4.1 and 5.5.

Therefore, for v, w € Egs, if A, = |V(E10S)W| > (0, we have
WED = (v, E%h)), (v, & (h))} forsome h e H'  ifw e 7'-((H§1), (5.3)
{(v, w)} otherwise.

In the first case, we denote e, ., == (v, " (h)) for m € {0, 1} and in the second case,
denote e, o := (v, w). Replacing the notation (k,v) € Gps with a’;, we see that when
A,,, # 0, the action and restriction (Gos), X V(E (l)s)w - v(Eg)S)w X (Gps)y 1s given by
(@}, evvm) = (evyins l,), Where

k(A — 1) +m=kA,,)+m and 0<m, m<A,,—L (5-4)

Comparing Equation (5-4) with Equations (3-1) and (3-2), we see that (Gos, Eos) 1S
canonically isomorphic to (Gg, Es), where B = (max{0,A,,, — 1})V’W€Egs. We record
this formally as a corollary to Theorem 5.2.

COROLLARY 5.4. Let £ = €%, &' : H > E be an embedding pair and let (Gg, E) be
its associated self-similar groupoid action, as described in Section 4.2. Then, the
out-split (Gos, Eos) of (G¢, E), described in Section 5.2 is canonically isomorphic
to the KEP-action (Gg, Ex) with A = (AV,W)V’WGE(())S the adjacency matrix of Eos and
B = (max{0,A,,, — 1})v’w€EgS. Moreover, the limit spaces (7, J 6,.r) and (7, I G, .k,) are
topologically conjugate.

EXAMPLE 5.5. Consider again Example 4.1. We have Eoos = {e, f} and the quotient
map 7 : E' — EO satisfies

n(eg) = m(er) = e, n(f)=f

and

Eps = (f, s (e, . (e, e, (f ) = ij € {0, 1}).

The graph E and its out-split OS is recorded in Figure 4. If we order e < f, then the
KEP-action is defined by the matrices

2 1 1 0
A—(2 1) and B_(l 0).
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6. KEP-systems as bundles of odometers

We now provide a description of the KEP-systems (6, J¢,.,) as a bundle of
dynamical systems that fibre over the shift space of the connectivity graph of E4 when
B is a matrix taking values in {0, 1}. Note that from the previous section, this class
includes the dynamical systems arising from embedding pairs.

We go even farther and first describe the connected component space of the limit
space for an arbitrary finitely generated and contracting self-similar groupoid (G, E).
This result does not appear in the literature anywhere else.

Recall that for a topological space X, its connected component space C(X) is the
quotient of X by the equivalence relation ~¢, where x ~¢ y if and only if x and y are in
the same connected component.

For a self-similar groupoid (G, E) and u,v € E=*, we say u ~, v if and only if
there is (g,)n<0 € G such that d(g,) = r(u,) and g, - -+ - pu—y = v, --- v foralln < 0.
Note that this is the same as asymptotic equivalence, except we do not require the
sequence of groupoid elements to lie in a finite set.

PROPOSITION 6.1. Let (G,E) be a finitely generated and contracting self-similar
groupoid. Then, C(Jgp) = E™/ ~..

PROOF. Let g : E* — J ¢k be the quotient map. We show g(u) ~¢ g(v) if and only
if g ~, v.

First, suppose u, v € E~* are such that u +, v. Letn < Obesuchthatg-u, ---pu_; #
v, ---v_; for all g € G such that d(g) = r(u,). Then, the set

z= ) Zg-ppal
{geG:d(g)=r(un)}

is clopen and does not contain v, which is also saturated with respect to the asymptotic
equivalence relation. Therefore, ¢(Z) € J ¢k 1s a clopen set such that g(u) € g(Z) and

q(v) ¢ q(Z). Hence, g(u) +c q(v).
Suppose now u, v € E~* are such that u ~, v. Let V = s(E™). For n < 0, let

Zy = U Z(g  fp - 1]
{§€Gud(g)=r(x,). c(g)€V)

Then, Z,-; €Z, and u,veZ, for all n<0. Denote Z_o = (),<0Z,- We show
J - = q(Z_s) is connected.

Suppose S = Jo U J1, where Jy, I are nonempty, pairwise disjoint and clopen
in the relative topology induced from J_.,. Since Z_, is closed and saturated with
respect to the asymptotic equivalence relation, o and ; are also closed in J¢ £. Let
Xo = ¢ '(Jo) and X; = ¢~ '(J}). Let d be an ultrametric metric on E~*. Since X, and
X are disjoint compact sets and Z_., = Xo U X, there is N < 0 such that for alln < N,
VG -y -y = PO,n U Pl,n’ where PO,n N Pl,n =0 and X, C ZO,n = UyePQn Z(yl,
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X1 CZy = Uyeplyn Z(y]. In particular, if d(Xo,X1) = inf{d(xg,x;) : x; € X;} = @ and
N satisfies suppeE_Ndiam(Z(p]) < @, then forn < N, let

Pon={p € VG- - u:dXo, Z(p]) < a}.

Since d is an ultrametric, we have Z(p]NX; =0 for all p € Py,. Therefore, we
may set Py, = VG-, -+ -1 \ Po,. Since G is finitely generated, so is the groupoid
Gly={geG:d(g),c(g) e V}. Let F be a finite generating set for G|y; that is,
Upen F" = Gly. For each n < 0, choose p*" € Py, such that there is f, € F with
pt= £, pPn e Py,

Since r(p®"),r(p"") € V, there are infinite paths x°”,x'" € E™ such that
10" € Z(p®"] and x'* € Z(p'"] for all n < N. Let (n;)r<o be a decreasing sequence such
that (x%™), .o and (x"*);.o converge to x” and x!, respectively. Since x*, x* € Z,,
for all k < 0, we have x°, x' € Z_... Let us show x° € X, and x! € X;.

We have d(y, 20y > o for all k<0 and y € X;; for if not, then there is
K <0, y; €X; and yy € Xy such that d(yo,y;) < max{d(yy, x""%),d(y;, x""%)} < a,
contradicting that d(Xo,X;) = . Hence, we have d(X;,x°)>a. It follows
that x° € Z_, \ X; = Xo. By definition, d(Xo,x")>a for all k<0, and so
x'eZ o\ Xo = X;.

Now, we show x? ~,, x'. Since (x%*); .o converges to x° and (x),o converges to

x!, there is a nonincreasing sequence (17;)x<o such that my; > ny, limy_, _o my = —oco and
Xt oo XM =y, - x' | foreach i € {0, 1} and k < 0. If we denote g, = fnklpo.nkmpo.nk
Nk my—1
0 0 1

for all k <0, then it follows that g, - x,, *--x_; =x,, - -x' . Since F is finite and
(G, E) is contracting, we have that F’ = |, Flg» 1s finite. Define, for my > n > my,,

&n = g"’k+l|x&k+1-~-x2ﬂ' Then, (g,).<0 € F’ satisfies d(g,) = r(x?) and g, -x-- -x(_)1
1 1

»---x! forall n < 0. Hence, x0 ~g x'.
We have shown ¢(x°) = g(x!) € Jo N J, which is a contradiction to the assumption
that Jo N g1 = 0. Hence, J_ is connected and g(u) ~¢ g(v). 0

X

REMARK 6.2. Let Cr) = JcE/ ~c and gc : E=° — Cr) be the quotient map.
Define, for n € E", n € N, the set

Un=61c( | Z(g~n])-

{8€G:d(g)=r(m)}

These clopen sets form a basis for the quotient topology on C ). It is easy to
see that u ~, v implies o(u) ~, o(v), and so there is an induced dynamical system
oc :Cwer — Cwr- It is not typically locally injective, but it is always an open
mapping when (G, E) is contracting.

PROPOSITION 6.3. Let (Gg,Es) be a KEP-action such that B € My({0,1}). For
u,v € E®, u~,vifand only if u=v, or there is K <0 such that s(u) = s(vi) = vy
and B,,_,,, = 1forallk <K, and B, ., =0, tigs1--p—1 = Vg1 - vo1 if K < 1.
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PROOF. Suppose u ~, v and let (gx)r<o be a sequence of groupoid elements such that
d(gr) = r(uy) and gy - g - - pi—1 = vg---v_1 for all k < 0. Since G is a group bundle,
the action of it on E} preserves the range and source vertices of paths. Therefore,
s(ui) = s(gk - tx) = s(vy) for all k < 0.

If B, ,,, =0, then we have gi-ux = and gl,, = w, so that p---pu_1=g-
Mk -1 = Vg---v_1. So, if By, ,, = 0 infinitely often, then u = v. Otherwise, there
is K <0 such that B, ,, =1 for k<K and B =0 if K > 1, in which case,
HK+1 " el = VK41 * V1.

We prove the reverse direction. For k < K, each A,, , ,,-odometer action is recurrent
in the sense that given g € Gg and ¢, f € E/i satisfying d(g) = v, r(e) = r(f) = vy
and s(e) = s(f) = v, there is h € Gy such that d(h) =v;_1, h-e = f and h|, = g. It
is then an easy induction argument to see the action of {g € Gp : d(g) = -1} on
= px € ESO 0 r(u) = vy, s(uy) = vy for all k < j < K} is transitive.

It follows that every path 1 =---nx_1nx such that s(n) = s(u) for all k < K
satisfies 7 ~, - - - ug_1ugx. If K =1, then we are done. Otherwise, since B, ,,,, =0,
we have v = nqugi -+ o) ~e U |

VKsVK+1

Since the action of a KEP-action preserves the vertices of paths, there are factor
maps g : JGpe, — E.” and 7i¢ @ Cgyr, — E.7, where C is the connectivity matrix
of E4. We can use this factor map to describe the connected components of I, £, -
The following fact is contained in the proof of Proposition 6.3.

COROLLARY 6.4. Let (Gg,Es) be a KEP-action such that B € My({0,1}) and
2 € J(GpEy). Denote nq(z) =v. Then, z is a connected component if B,_, ,, =0
infinitely often.

PROOF. The fact that z € J (g, £, is a connected component if B, , ,, = 0 infinitely
often is contained in the proof of Proposition 6.3. ]

We now study the remaining case where 74(z) = v satisfies B,,_, ,, = 1 eventually.

Suppose first B,,_, , =1 for all k<0. Let X, ={u € E;* : s(ux) = v for all k < 0}.
Let ¢, : X, = A, := I;«0l0,...,A,,_,,, — 1} be the natural identification, where we
send H= ( o ev,_;,v,g,i,zev,z,v,l,i,l) to Lv(ﬂ) = (i)

Define a mapping C, : A, — T' = R/Z by sending i = (---ii_;) to C,(i) =
Diiey ik/Avk~1;- It is easy to see that C, : A, — T is a surjection if maxyo A1) =
oo; for re€[0,1), write tg=t, fo=(t_y +i-1)/A,,,, for some 7_; €[0,1) and
i-1 €{0,...,A,,,,—1} and inductively #_; = (t + it)/A,,_,,, for # €[0,1) and
ir €1{0,...,A,,_, ., — 1}. Since max<oA,x,-1] = o0, we have C,(---i_p,i_y) = 1.

If (Gp,Es) is regular, the case where max<oA,q—1] < oo can only happen if

A = 1 for all £ € N. In this case, A, is a single point.

Vk-1,Vk

PROPOSITION 6.5. Let (Gg, E4) be a regular KEP-action such that B € My({0, 1}).
Suppose v € E.” satisfies By, = 1 for all k € N. For u,v € A,, u ~4 v if and only
if C(w) = C(v).
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PROOF. The proposition is trivial (by regularity) if maxy<oA,—1] < ©0, SO we assume
maXxy<o Ayjr,—1] = 0. Given t € [0, 1), there is a unique choice for (- - - i_i_;) if and only
if tp # 0 for all k£ < 0.

If #, = O for some k < O, then if we let K > k be the first number such that ix # 0O,
then C,(---00ig---i_1) =C,(--- (A — 1)(ix —1)---i_), and these are the only
two choices.

Suppose u ~,.. v for u,v € X,, where a.e. is almost every, and let {g;}r<o and
F C N be a finite set satisfy gp - g+ -p—y = vg---v_y for all k<0 and g, = a:"(:tk)
for my € F. By Equation (3-9) and maxg<oA,[x 1] = oo, there is K € N such that
8rlulkk+K—-11 = aik('uw) for some [} € {—1,0,1}. Since {g€ Gp: g = aﬁ,l e{-1,0,1}} is

VK-2,VK-1

invariant under the restriction map, it follows that we may assume g; = aT(f;k) for
my € {—1,0, 1}. Further invariance conditions imply either my > 0 for all £ <0 or
m; <0 for all k <O0. It is then routine to see u ~q v if and only if «(u) = «(v)
or {t(t0), ()} = {(---00i---i_1), (-~ (Ay, Ly, — D —1)---i_;)} forsome k e N. O

We have for u € A,,

Co(uyb=1 = A, —r = = Coi)(o(p)).

L vy kzl yw k; 1o = Coo

Therefore, when the connected components above the paths v and o(v) in the
connectivity graph Ec of E4 are identified with the circle, the dynamics becomes
7 — ZM-2v-1. We are now able to summarise the results of this section into a theorem.

THEOREM 6.6. Let (Gg, E4) be a regular KEP-action such that B € My({0, 1}). Then,
a connected component of J g, g, is either a point or a circle.

Let C be the graph E5’s connectivity matrix and w: E,* — E." and ng : J 6.5, —
E:” be the induced factor maps. For v € E.®, let K(v) = —min{k <0: B,_,,, =0}
Set Kv) =0iftk<0:B,_,.,, =0} =02.

(1) If K(v) = oo, then n31(v) ~ 7 Y(v). Under this identification, & is the shift
o' ) = i (o).

(2) IfK(v) =0 and maxy« A1) = o, then 715' (v) = T,. Under this identification,
ocisz": Ty, > Tow,n=4,,,,.

(3) IfK(v) = 0 and maxgo A1) < oo, then - '(v) is a single point.

@) If 0 <K(v) <oco, then 71371 (v) = ﬂzrl(O'K(V)(V)) X1 (vg_y -+ v1) and cases (2)
and (3) apply to describe ﬂ'; (XY W)). Under this identification, & is
idxo: ﬂ&l(UK(V)(V)) X1 vg_y--ovy) = ﬂ&l(o'K(V)(v)) X1 (kg -+ Vo).

EXAMPLE 6.7. The description in Theorem 6.6 does not extend when B takes
values different than O or 1. For instance, if A = (3) and B = (2), then Jg, 5, 1S
not homeomorphic to the circle. For if (.5, = T!, then (7, 7. Gy.E,) 1S conjugate
to either (a7, T'") or (a?,T!), where a: T' — T! is a homeomorphism isotopic
to the identity. Hence, the K-theory of the C*-algebra associated to (6, JG,.E,) 1S
isomorphic to the K-theory associated to (z°, T') or (z=3, T'), which by [6, Theorem 3]
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is either (Z/2Z ® Z,Z) or (Z/2Z,Z/2Z). However, by [3], we have O, Topr,) = Oxp
and Katsura shows in [7, Example A.6] that the K-theory of Oy p is (Z/27Z,0).

7. Planar embedding of Putnam’s spaces

In [13, Question 7.10], Putnam asked when J: = E™/ ~, embeds into the plane.
In this section, we prove J: always embeds into the plane by using our description
of J¢ as the limit space of a regular KEP-action. In particular, Theorem 6.6 gave a
topological description of the limit space when B € My ({0, 1}) as a Cantor set bundle
of circles (with the convention that a point is a circle of radius zero). We use this as
inspiration to define an embedding from the limit space to the complex plane whenever
B e My({0,1}) and (G, E4) is regular. See Corollary 3.14 for a characterisation of
regularity in terms of A and B. Notice that Section 5.2 proved that the KEP-actions
from embedding pairs always have the property that A € My({0, 1,2}) and B = (Bj),
where Bj; = max{A; —1,0}. Thus, Putnam’s question is answered by the following
more general result.

THEOREM 7.1. Let (Gg, E4) be a regular KEP-action such that B € My({0, 1}). Then,
there is a continuous injection { : J¢, g, — C.

COROLLARY 7.2. Let ¢ =¢°,&' : H — E be an embedding pair. Then, there is a
continuous injection { : J¢ — C.

To prove these results, we make several definitions to define the map
¢ JcyE, — C. First, we assume ||A|lmax = max;; la;;| > 1, otherwise, J, g, = E;®
and it is a classical fact £, embeds into C.

Recall that we are working with infinite paths u € E,* with edges labelled by
negative integers j = -+ - _pf_q.

For negative integers m, n such that m < n, let [m,n] = {k € Z : m < k < n}, which
we call an interval. We also consider infinite intervals [—oco,n] = {k € Z : k < n}. We
denote the collection of intervals by 7, and if I € I, then we let I7,I" € Z U {—o0} be
such that/ = [, I"].

For €ijk € E:X’ we let A(e,-‘j,k) = AiJs B(e,'x,-!k) = Bi,j and #(e,",-,k) =k. If/.l € E;*, then
let 7' (i) be the collection of intervals I such that B(y;) = 1 for all j € 1, and is maximal
with respect to this property. We call an interval in 7' type 1. Similarly, let 7°(u)
denote the maximal intervals / satisfying the property B(u;) = 0 for all j € I and call
these intervals fype 0. Then, 7 () = 7°(u) U I'(u) is a collection of pairwise disjoint
intervals such that ez I = [—o0, —1].

We aim to define an embedding map ¢ : E;* — C, which has several components.
For -n e NU {oo} and u = pu_,, - - - u—1 € E’}, we adapt Equation (3-3) by defining

—n

A = ]_[(A(uj) +1) and Al = l_[A(yj),

j=-1 j=-1
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FIGURE 5. The graph E, specified by the adjacency matrix A from Example 7.3.

to define

& H#uy) < H#u)
QOW):ZAO 7 and 91(”)=ZA1 iy
J=1 Pl j=—1 i1
Moreover, let M = [|A|lmax = max;;|a;j| and R = M(N + 1), and define

—n

Q) = Z )R+ r(u_ )R,
j=—1
For an interval I C [~oco,—1] and p € E;*, let y; = u[I~,1"]. Define { : E;* — C
by
l(w) = Z R Q) ezm(eﬂ(y,)) + Z R Q) eZni(GO(/J,)). (7-1)

1e1°u) IeI'(u)

The idea of breaking apart ‘A-ary’ expansion along the intervals in 7 () was inspired
by Putnam’s construction of a metric for J¢, where this idea appears in a more basic
form.

Fork <0and/ € 7, denote I N [—k,—1] =: I;. Observe that { is continuous, as it is
the uniform limit of ({; : E£,* — C)i<o, defined for u € E;* as

L) = Z R Oy, )@ w4 Z R Q(uy, )™ b))
€100 k<l eI (@y: k<I*

which is continuous as it only depends on p 1.
Before continuing the proof, we consider an example that gives a feeling as to how
the embedding works.

EXAMPLE 7.3. Let (G, E,) be the KEP-action defined by

Az(g g) and B:((l) }) (7-2)

Then, A is the adjacency matrix for the graph E4 depicted in Figure 5.
Notice that there are classical odometers at vertices 1 and 2, along with a countably
infinite number of odometers with range 1 and eventual source at vertex 2. However,

https://doi.org/10.1017/51446788725101122 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788725101122

30 J. B. Hume and M. F. Whittaker [30]

we only have the one odometer action with range 2, since any groupoid element a7’
restricts to the unit 1 through the edges e ; fori =0, 1,2.
Consider the collection of paths with each edge having range and source 1,

01,1 = { T eLLmo €L m, €l moy - M € {O, 1} foralli < 0}

We have that I'(u) = [-co,—1] for all € Oy; and, using M =2, N=2 and
R =M(N + 1) = 6, we compute

— ) = i — V(1) = _
Qw)_Z@st)_Z@_S and 9(,1)_22#(,1,)_22]..
J=-1 J=1 j==1 Jj=1
Thus,
_ 1 27i(0(u)+0) _ 1 2mi0(u1)
W =57g¢ T 1080¢

Observe that O;; is in bijective correspondence with binary representations of
numbers in [0, 1], reading right to left, and two decimal expansions are equal exactly
when the paths in O ; are asymptotically equivalent. Thus, the image of { : O;; — C
is the circle centred at the origin with radius 1/1080. Moreover, since O ; is a classical
odometer, J¢, g, restricted to Oy is a circle [11, page 72] and the embedding is
bijective.

Similar computations show that

02’2 = { T €22.m 3€22.m ,€22.m_ - M S {O, 1} foralli < 0}
maps to the circle centred at the origin with radius 1/540. Moreover, consider
On =1{€11m,CL1m, €12m €22 m " €22m, - M; €{0,1} forall i < 0}.

For v € O,,, we compute

—00 n 2 0 1 2 l”
Qv)= ) Ostvp) =) =+ — = 6
]; Jj=1 o j;l & S
Thus,
2-& o 1 | .
- 6" 2mib(v) - — _ 27mif(v)
(0 =355¢ (540 1080 - 6") “

So, for each n €N, we have a circle centred at the origin of radius 1/540 —
1/(1080 - 6™).

Now, we consider a collection that does not give a circle centred at the origin.
Consider the collection

P ={vesim, :m-1 €{0,1,2} and v € O,}.
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FIGURE 6. The embedding ¢ : J¢,.r, — C for Example 7.3. The outer circles are centred at the origin with
radius 1/540 — 1/(1080 - 6"). The other visible circles are scaled copies of the outer circles and continue
ad infinitum.

For € P, we compute

H(u-1)
3+1

Thus, the image of {(P) consists of circles of radius 1/63(1/540 — 1/(1080 - 6™))
centred at 1/6%, i/6* and (—1)/6".
See Figure 6 for the visible image of { : J¢,.r, — C.

1
Qm-1-11) = 3 and  O(n-1-1)) = =1{0,1/4,1/2}.

We must show that for u,v € E};, we have {(u) = {(v) if and only if y ~4 v. One
direction is easy.

PROPOSITION 7.4. Let (G, E5) be a regular KEP-action such that B € My({0, 1}).
If u,v € E; satisfy pu ~qe v, then {(p) = {(v).

PROOF. Proposition 6.5 shows that y ~,, v for £ # v if and only if there is k < 0 and
I=[-c0,k]€ I'(w)NT"(v) such that pper -1 = Vige1-11, s@) =) =1vj, By, =1
forall j < k, and Co(U-coi]) = Co(V[—s0.k])-

Since ppir1,-17 = Viks1,-17 and s(u;) = s(v;) for all j < k, we have that IO = 1°0),
I'(u) = 7'(v) and Q(u;) = Q(vy) for all I € I(u), as well as 6 (u;) = 6'(v;) for all
€T\ [-oo,k], for i€{0,1}. The equality 6'(U-cok)) =6'(V[-cos]) follows
from C, = 6'|#, and the above paragraph. All the above equalities then imply
L) =¢). O

To prove the converse direction requires a more careful analysis that we undertake
through a series of lemmas.
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LEMMA 7.5. Let (Gg, Ex) be a regular KEP-action such that B € My({0, 1}). Suppose
u,v are in E;* and let J € I(u) and K € 1(v) be the intervals containing —1,
respectively. If J~ < K=, —oo < K™ and Q(uk) # Q(vg), then {(u) # L(v).

PROOF. We can write R3C(u) = wQ(uk) +r and R*((v) = z2Q(vg) +s for some
w,z€T and r,s € C such that |r|,|s| < R “DN/(R~-1). For any 0 < p,q € R, we
have [wp — zg| > |p — ¢q|. It follows that

RE 2N
RN () = 0] 2 1Q(uk) = Qvg)| = —————
(R-1)
- RE-D2N - 2N
>RE D — — —pgK¥ —“(1 - —) =: (%).
(R-1) R-1
AsR=M(N +1)and M > 2, we have
() = R(K"”(l _ E;) > R(K*—l)(l _ ;) >0 -
Ml+1l__1)= 1+1_1)”
N MN N MN

LEMMA 7.6. Let (Gg, E4) be a regular KEP-action such that B € My({0, 1}). Suppose
u,v are in E;%, and let J € I(u) and K € I(v) be the intervals containing —1.
IfJ- < K™, then {(u) # {(v).

PROOF. If Q(ug) # Q(vg), then Lemma 7.5 implies (u) # £(v), so assume
Qug) = Q(vk). Therefore, J and K are of the same type. We denote this type by
i € {0, 1}. We have

@ - N R¥'N
R3 > 10 2mi@ ()| _ Q3T Y _o _
()] > Qe | ;} = = Q) - =
and
R < 1Q(v)e? @O0 1 R i N o+ BN
o HR R-1"
Therefore,

N _ _
R - R = Quy) — Q(vg) — ﬁ(R” + R,

Since Q(ug) = Q(vk), we have

—J7+1 1 RK*_]
Q -Q > -2,
) =000 = ), o= sH—
j=—K=+2

so to show [{(u)| > |£(v)|, it suffices to show
RK7—1
>
2(R—-1) R

N - -
(R R,
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Or equivalently, by dividing the above inequality by the left-hand side, show
1> 2N(RY K +1 4 R¥K+1) Using 3/ -K +1<-3 and K~ <-1, we have
2N(R3 + RV > 2N(RY K+l 4 R2K™+1) " 50 it suffices to show R® > 2N(1 + R?).
Using R = M(N + 1) and M > 2, we have

R® = MNR? + R* > 2NR* + R* > 2NR? + 2N = 2N(1 + R?). O

LEMMA 7.7. Let (Gg, Ex) be a regular KEP-action such that B € My ({0, 1}). Suppose
u#vare in E;* such that {(u) = {(v). Let j <0 be the largest number such that
w; # vj and let J\(u) € I(p) and J1(v) € I(v) be the intervals containing j. Then,
Jiw* = Lm)"

PROOF. Let k> j be the smallest number such that k =1, and k =1, for some
I, € I(u) and I, € I(v). Since p,, = vy, for all m > k, it follows that I, = I,. Thus,
there exists z € C such that Z(u) = z+ R¥*¢(0cM(u)) and £(v) = z+ R¥*Z (oM (v)).
Hence, £(c¥(u)) = £(c¥(v)). Denote ' = o¥(u) and v/ = o¥(v). Let us now show
Jiwt =k—-1=J,(»)", or equivalently, J,(u")" = -1 =J1(")". Let K;(u') € T(')
and K (v') € 7(v') be the intervals containing —1.

By minimality of k, either j — k € K;(u’) orj —k € K1(v') or [K;(u')]™ # [K1(V)].
Hence, we have either:

1) j-keKi()NK W);
() j-keK(V)NK()andj—keK ()UK u); or
3 [Ki@)]” # [K0N)] .

Let us confirm the lemma in each case.

Case (1). If j—ke Ki(V)NK;('), then Ji(u') = Ki(u') and J (V') = K1 (V).
Hence, J1 ()" = [Ki(u)]" =1 =[K,0)]" =J1(V)*.

Case (2). If j—k¢Ki(V)NK (') and j—ke Ki(V)UK;('), then either
K@) <Ki(v')~ or Ki(v/)" <K (')". In either case, Lemma 7.6 implies
(W) # L(vV'), which is a contradiction.

Case (3). If j—k¢ K\(V)UK, ('), then K\(V')” >j—k, Ki(u')>j—k and
v,, = p, for all m > j — k. Therefore, we have [K;(v')]” = [K;(v')]”. However, this
is a contradiction to the assumption in case (3). O

LEMMA 7.8. Let (Gp,Es) be a regular KEP-action such that B is in My({0,1}).
Suppose p,v are in E,* and let J € I(u) and K € 1(v) be the intervals containing
—1.If —c0 < J7, J = K and Q(uy) = Q(vy), then 0“(uy) # 6°(vy) implies £ (u) # £(v).

PROOF. Note that Q(u;) = Q(vg) implies J = K is type 1 for ¢ and v, or type O for u
and v. We denote this shared type as k. From Q(u;) = Q(v,), we have A,’jl = A’jj = A.
Therefore, we may write 8*(u;) = m/A and 6*(v;) = n/A for some m,n € N U {0} such
that m,n < A. By the hypothesis, we have m # n. Hence,

| ezm'ek(m) _ ezmek(v,)l =1- ezm'(n—m)/A| >|1- ez”i/Al.
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Denote —J~ =:jand My = M + 1 —k. We have A < Mf{ and, since @*(uy) # ¢ (vy), A > 1.
Therefore,

11— e2/A] > |1 = My = |2 - 2005(—7;) - 2sin(1j).

M, M
Putting these two inequalities together, we have
. . s
200 - 2] > 2 5in (), (7-3)
MJ
k

Denote Q(uy) = Q(vy) =: w and write £(1) = (w/R3)eX™©) 4 (1/RY) (¥ (W), {(v) =
(w/R3)e¥ 01 4 (1/R¥)¢(07(v)). Using Equation (7-3) and |¢] < N/R3(R — 1), we see

that
G0 - )] 2 2 sin(A%) - % (7-4)
From w > Z’l:} 1/R > 1/2(R - 1) and sin(x) > x — x3/3! for all x > 0, we have
3
21% Sin(]%) - R31'+32(]I\€]— D> ® —11)R3(1\% - 6;121‘) - R3J'+32(IIZ— TR

By multiplying the right-hand side of inequality (7-5) by szR3(R — 1), we see that,
by inequality (7-4), to prove the lemma, it suffices to prove

e T 2NM
T 6 > R
Note that
INM, _ONM + DY _ 4 + 1)
RY ~— (N+1D3¥M¥ ~— 23M3
Therefore,
, 3 aNMY ) 3 3
2j T k 2j T T
Min— o~ = 2 Mn - —4zdn- 7 ~4>0. o

THEOREM 7.9. Let (Gp,Es) be a regular KEP-action such that B € My({0,1}).
If p,v e E\™ are such that {(u) = {(v), then either u=v or there is k <0 such
that ug—-1 = Vik-13, [—o0,k—1] € I'(w)yn '), s(uy) = s(vj) for all j <k—-1 and
0" (U—cok-11) = 0' V= f=11)-

PROOF. If u = v, we are done, so suppose i # v. Let j < 0 be the largest number such
that y1; # v; and let J € 7(u) and K € 7(v) be the intervals containing j and note that
Lemma 7.7 implies that J* = K*.
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We claim that it suffices to show that J~ = K~ = —co and that J =K is of
type 1. Indeed, If this is the case, denoting u’ = o *!l(u) and v = oV *!l(v),
then 1/R2Q(uy)e?™ W) = ;(u') = £(v') = 1/R2Q(v;)e* ™ 0D This implies that
Q(uy) = Q(vy) and 2™ W) = 27809 wwhich is the case if and only if s(u;) = s(v;) for
allj < k—1and ' (U-—cos-17) = ' (Vj—cok-1))-

Suppose either —co < J or —co < K. Then, one of /- <K~ or K~ <J ,orJ =K
and —oco < J7. In the first two cases, Lemma 7.6 implies {(u’) # {(v'), which is a
contradiction. In the final case, Lemma 7.5 implies £(u’) # £(V') if Q(uy) # Q(v,) and
Lemma 7.8 implies {(u') # {(v') if Q(uy) = Q(v;), which is a contradiction in both
cases.

Therefore, we must have J~ = K~ = —oco. For v € £, #(v;) < AS(, —2foralli<0.

Hence, e : E;* — T is injective. Therefore, if J was type 0, then it () —

0 implies p; = v;, which is a contradiction. So, J is of type 1 and the proof
is complete. ]

COROLLARY 7.10 (Proof of Theorem 7.1). Let (Gg, E4) be a regular KEP-action such
that B € My({0, 1}). If u,v € E\™ are such that {(u) = {(v), then p ~g v. Therefore,
{ : J6pE, — Cis an embedding.

PROOF. The characterisation of {(u) = {(v) in Theorem 7.9 is equivalent to u ~4, v
(see Proposition 6.5 or the proof of Proposition 7.4). ]
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