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Abstract

We show that the dynamical system associated by Putnam to a pair of graph embeddings is identical to
the shift map on the limit space of a self-similar groupoid action on a graph. Moreover, performing a
certain out-split on said graph gives rise to a Katsura–Exel–Pardo groupoid action on the out-split graph
whose associated limit space dynamical system is conjugate to the previous one. We characterise the
self-similar properties of these groupoids in terms of properties of their defining data, two matrices A, B.
We prove a large class of the associated limit spaces are bundles of circles and points that fibre over a
totally disconnected space, and the dynamics restricted to each circle are of the form z→ zn. Moreover,
we find a planar embedding of these spaces, thereby answering a question Putnam posed in his paper.
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1. Introduction

One of the most beautiful aspects of self-similar group theory is its connections,
discovered by Nekrashevych [11], to the theory of dynamical systems. To any
contracting self-similar group, one can construct its limit dynamical system, which is
a self-map of a compact metric space whose dynamical properties are governed by the
properties of the self-similar group, and vice versa. Many natural dynamical systems
arise as examples, for instance, hyperbolic post-critically finite rational maps acting
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2 J. B. Hume and M. F. Whittaker [2]

on their Julia sets. This description was used, for instance, to solve the twisted rabbit
problem [1].

We prove that Putnam’s binary factors of subshifts of finite type [13] arise as limit
dynamical systems of self-similar groupoids.

An embedding pair consists of two directed graphs H and E, along with a pair of
embeddings ξ0, ξ1 : H ↪→ E satisfying certain conditions. Putnam’s factor is obtained
by identifying two (one-sided) infinite paths in E that arise from the same path in H
embedded along two binary sequences of embeddings that are related through carry
over in binary addition. He then proves that the natural extension of these dynamical
systems are Smale spaces, computes their homology, as well as the K-theory of the
associated C∗-algebras. As a corollary, Putnam proves that these C∗-algebras exhaust
all possible Ruelle algebras arising from irreducible Smale spaces [13, Theorem 6.5].

We show that Putnam’s construction naturally defines a self-similar groupoid action
on a graph. Moreover, we prove, in Theorem 4.3, that the limit dynamical system of
the self-similar groupoid action is identical (not just conjugate) to Putnam’s dynamical
system. Through our approach to studying these systems, we are able to remove one
of Putnam’s standing hypotheses and weaken his requirement of the graph E being
primitive to having no sources, see Section 4.

An interesting corollary of our construction that follows from [13, Theorem 6.5] and
[3, Corollary 8.5] is that the class of (stabilised) C∗-algebras associated to contracting
and regular self-similar groupoids acting on strongly connected finite graphs is equal
to the class of Ruelle algebras associated to irreducible Smale spaces.

This result should be compared with Katsura’s seminal paper [8], where he proved
that all Kirchberg algebras can be realised, up to strong Morita equivalence, as certain
C∗-algebras associated with two integer matrices A, B. While studying these algebras,
Exel and Pardo [4] realised that they arise from self-similar group actions, with the
finite alphabet replaced by a (possibly infinite) graph.

Using Kitchens’ out-split construction for graphs [9], which we extend to
self-similar groupoid actions, we prove that every self-similar groupoid action coming
from an embedding pair can be out-split to a Katsura–Exel–Pardo action. Therefore,
Putnam’s dynamical systems are topologically conjugate to the limit dynamical system
of a Katsura–Exel–Pardo action. This explains the similarity in the K-theory results
[13, Theorems 6.1 and 6.2] and Theorem 3.1 due to Katsura and Exel–Pardo.

The matrices A, B arising from this out-split satisfy some relations between them
that ensure the associated self-similar groupoid is contracting and regular. These
conditions are dynamically important, as contracting guarantees the limit space is
Hausdorff and, assuming contracting, regular is equivalent to the limit dynamical
system being an expanding local homeomorphism (see [3, Proposition 4.8]). Moreover,
the KK-duality results of [3] may be applied in this setting. We characterise these
properties in terms of properties of the matrices A and B.

Given a self-similar groupoid action on a graph, we show the connected component
space of the limit space can be identified with the quotient of the infinite path space
of the graph by a natural equivalence relation. We use this description to prove,
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[3] Katsura–Exel–Pardo actions and their limit spaces 3

for a large class of Katsura–Exel–Pardo actions, the connected components in their
limit spaces are circles and points, analogous to Putnam’s result [13, Corollary 7.7].
We identify the dynamics on the circle components as z→ zn, where n ∈ N can
vary, dependent on the value of z under a natural factor map to a subshift of finite
type. Thus, ‘Katsura–Exel–Pardo systems’ exhibit interesting interplay of zero- and
one-dimensional dynamics.

This description provided the impetus to look for a planar embedding of the limit
space for such Katsura–Exel–Pardo actions, to better understand how the circles and
points are configured. The embedding is reminiscent of a solar system trajectory, with
planets orbiting a star and moons orbiting the planet, but ad infinitum. As a corollary,
we prove that Putnam’s dynamical systems embed into the plane, answering Putnam’s
question (see [13, Question 7.10]).

The paper is organised as follows. In Section 2, we provide background
on self-similar groupoid actions and their limit dynamical systems. Section 3
introduces Katsura’s construction and Exel and Pardo’s realisation of these
as Katsura–Exel–Pardo groupoid actions on graphs, and contains our matrix
characterisation of when they are contracting and regular. Section 4 introduces
Putnam’s binary factors of subshifts of finite type, and we prove that they are limit
dynamical systems of certain self-similar groupoid actions on graphs. Section 5
defines out-splits and uses them, along with the previous result, to show that Putnam’s
dynamical systems are topologically conjugate to the limit space dynamical systems
of Katsura–Exel–Pardo actions over certain out-split graphs. Section 6 contains our
results on the connected components of limit spaces. The final section proves that
regular Katsura–Exel–Pardo systems with B ∈ MN({0, 1}) embed into the plane and,
hence, so do Putnam’s dynamical systems.

2. Self-similar groupoid actions on graphs

In this section, we describe self-similar groupoid actions on finite directed graphs
and their properties. These generalise the notion of a self-similar group introduced by
Bartholdi, Grigorchuk, Nekrashevych and others.

2.1. Directed graphs and their path spaces. We quickly introduce directed graphs;
for a detailed treatment, see Raeburn’s seminal book [14].

A directed graph E is a quadruple E = (E0, E1, r, s) consisting of two sets E0 and E1

along with two functions r, s : E1 → E0 called the range and source maps, respectively.
Elements in E0 are vertices and elements in E1 are edges. We think of an edge e as a
directed arrow from its source vertex s(e) to its range r(e).

Perhaps the most important aspect of a directed graph is its path space. A finite
path μ in a directed graph E is either a vertex μ = v, or a finite sequence of edges
μ = e1 · · · en such that s(ei) = r(ei+1) for all i ≤ n − 1. Let the paths of length n in E be
denoted by En = {e1 · · · en : ei ∈ E1, s(ei) = r(ei+1)}. We then let E∗ �

⋃∞
n=0 En denote
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the set of all finite paths in E. For a path μ = μ1 · · · μn in En, let r(μ) = r(μ1) and
s(μ) = s(μn). For μ ∈ E∗ and X ⊆ E∗, we define

μX = {μν : ν ∈ X, s(μ) = r(ν)} and Xμ = {νμ : ν ∈ X, r(μ) = s(ν)}.

We then have μXν = μX ∩ Xν.
A graph is finite if both E0 and E1 are finite. A graph is strongly connected if, for

all v, w ∈ E0, the set vE∗w is nonempty. Notice that if E is strongly connected, then
vE1 and E1v are nonempty for all v ∈ E0, unless E is the graph with one vertex and no
edges. We say a vertex v in a graph E is a source if vE1 = ∅ and a sink if E1v = ∅.

In this paper, we need to work with both left-, right- and bi-infinite paths in a graph
E. Thus, we define:

• E+∞ � {e1e2e3 · · · : ei ∈ E1, s(ei) = r(ei+1) for all i};
• E−∞ � {· · · e−3e−2e−1 : ei ∈ E1, s(ei) = r(ei+1) for all i}; and
• EZ � {· · · e−2e−1e0e1e2 · · · : ei ∈ E1, s(ei) = r(ei+1) for all i}.

As usual, we endow these spaces with the product topology, with a basis of cylinder
sets. These are indexed by finite paths in each of the three spaces, so we distinguish
them as follows. For

• E+∞: when μ ∈ En, let Z[μ) � {x ∈ E+∞ : x1 · · · xn = μ}; for
• E−∞: when μ ∈ En, let Z(μ] � {x ∈ E−∞ : x−n · · · x−1 = μ}; and for
• EZ: when n ≥ 0 and μ ∈ E2n+1, let Z(μ) � {x ∈ EZ : x−n · · · xn = μ}.

If x is an element in any of the spaces above and m < n ∈ Z appropriately chosen for
the space in question, we define

μ[m, n] � μmμm+1 · · · μn.

2.2. Self-similar actions of groupoids on graphs. Katsura–Exel–Pardo actions are
a type of self-similar groupoid action on a graph, so we take a few paragraphs to
introduce them. For further details, see [10].

Suppose E is a directed graph. Given v, w ∈ E0, a partial isomorphism of E∗ is a
bijection g : vE∗ → wE∗ that is length and path preserving in the sense that |g(μ)| = |μ|
and g(μe) ∈ g(μ)E1 for all μ ∈ E∗ and e ∈ E1 satisfying s(μ) = r(e). We use the notation
g · μ � g(μ) to reduce the number of parentheses. These two conditions are equivalent
to the following property: g is length preserving, and for every μ ∈ vE∗, there is a
partial isomorphism h : s(μ)E∗ → s(g · μ)E∗ such that

g · (μν) = (g · μ)(h · ν) for all ν ∈ s(μ)E∗. (2-1)

We write h = g|μ, as it is uniquely defined by the above property, and call it the
restriction of g to μ.

Let PIso(E∗) denote the set of all partial isomorphisms of E∗, which is itself
a groupoid with units idv : vE∗ → vE∗ defined by idv(μ) = μ for all μ ∈ vE∗ and
multiplication given by composition of maps. Since units are associated with vertices,
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[5] Katsura–Exel–Pardo actions and their limit spaces 5

we go ahead and identify the unit space of PIso(E∗) with E0. The isotropy group of a
unit v ∈ E0 is the set of partial isomorphisms from vE∗ to vE∗.

Given a partial isomorphism g : vE∗ → wE∗, define its domain to be d(g) = v and
its codomain to be c(g) = w. That is, we are renaming the range and source maps in
the groupoid PIso(E∗) by the terms codomain and domain since the symbols s and r
are already in use.

Restriction and multiplication of elements satisfy several relations, which we record
in the following lemma.

LEMMA 2.1 [10, Lemma 3.4 and Proposition 3.6]. Let E be a finite directed graph. For
(g, h) ∈ PIso(E∗)(2), μ ∈ d(g)E∗, ν ∈ s(μ)E∗ and η ∈ c(g)E∗, we have:

(1) r(g · μ) = c(g) and s(g · μ) = g|μ · s(μ);
(2) g|μν = (g|μ)|ν;
(3) idr(μ) |μ = ids(μ);
(4) (hg)|μ = (h|g·μ)(g|μ); and
(5) g−1|η = (g|g−1·η)−1.

A groupoid G with unit space E0 acts on E∗ if there is a groupoid homomorphism
φ : G→ PIso(E∗) that restricts to the identity map on E0. Define Ker(φ) = φ−1(E0),
which is a normal sub-groupoid of G. We say G acts faithfully on E∗ if φ is injective
or, in other words, Ker(φ) = E0. We write g · μ in place of φ(g)(μ).

DEFINITION 2.2. Suppose E = (E0, E1, r, s) is a directed graph, and G is a groupoid
with unit space E0 and a faithful action φ : G→ PIso(E∗). We say (G, E) is a
self-similar groupoid action if for every g ∈ G and e ∈ d(g)E∗, there is h ∈ G such that
φ(g)|e = φ(h). We write g|e � h and call it the restriction of g to e. Using Lemma 2.1,
g|μ ∈ G for μ ∈ d(g)En is well defined and satisfies

g · (μν) = (g · μ)(g|μ · ν) for all ν ∈ s(μ)E∗. (2-2)

Moreover, all the conclusions in Lemma 2.1 hold for the restriction and multiplication
when PIso(E∗) is replaced with G.

If the action of G on E∗ is range preserving, then Gv � {g ∈ G : d(g) = v} is a
group and, hence, G is a group bundle. In that case, we say (G, E) is a self-similar
group bundle on E. As we see later, this holds for all Katsura–Exel–Pardo actions by
definition.

It is useful in this paper to work with nonfaithful actions of groupoids by partial
isomorphisms whose faithful quotient is self-similar. These should be considered as
nonfaithful self-similar groupoids. However, such a term is an oxymoron, so we name
them as below.

DEFINITION 2.3. Let E be a directed graph and G a groupoid with unit space E0. An
action-restriction pair for (G, E) is a map

G ×d r E1 � (g, e)→ (g · e, g|e) ∈ E1 ×s c G (2-3)
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such that:

(A0) r(g · e) = c(g) and d(g|e) = s(e) for every (g, e) ∈ G ×d r E1;
(A1) r(e) · e = e and r(e)|e = s(e) for every e ∈ vE1;
(A2) gh · e = g · (h · e) for every (g, h) ∈ G(2) and e ∈ d(g)E1;
(A3) g−1|e = (g|g−1·e)−1 for every g ∈ G and e ∈ c(g)E1.

We usually denote an action-restriction pair by (G, E) when there is no ambiguity.

If we replace G in the definition above with a finite set A with E0 ⊆ A and retracts
c, d : A→ E0, then this is the notion of an automaton defined in [10], and one checks
that such a pair extends to an action-restriction pair of the free groupoid associated to
(A, c, d). Katsura–Exel–Pardo actions are, in general, not generated from an automaton
but an action-restriction pair as defined above.

If we consider a group G, a finite directed graph E, an action σ : G × E1 → E1

and a one-cocycle ϕ : G × E1 → E1 satisfying Exel and Pardo’s conditions in
[4, Section 2.3], then such a pair defines an action-restriction pair on the group bundle
G × E0 = {gv : g ∈ G, v ∈ E0} by

(gv, e)→ (σ(g, e), (ϕ(g, e)s(e))).

An action-restriction pair for (G, E) defines a (not-necessarily faithful) action
φ : G→ PIso(E∗): for g ∈ G and μ = eν ∈ d(g)En, we inductively define

g · μ = (g · e)(g|e · ν). (2-4)

Note that if g ∈ Ker(φ) and e ∈ d(g)E1, then for all ν ∈ d(g|e)E∗ = s(e)E∗, we have
eg|e · ν = g · (eν) = eν and, hence, g|e · ν = ν. Therefore, g|e ∈ Ker(φ).

It follows that if q : G→ Gφ � G/ ker(φ) is the quotient map, then q(g|e) = q(g)|e
for all g ∈ G and e ∈ d(g)E1 = d(q(g))E1. Hence, the induced action Gφ → PIso(E∗) is
self-similar.

The case that the self-similar action comes from an action-restriction pair induced
by an Exel–Pardo action as above is covered in more detail in [10, Appendix A].

Every self-similar groupoid is an example of an action-restriction pair. Moreover,
self-similar groupoids are in one–one correspondence with action-restriction pairs
whose induced actions as partial isomorphisms are faithful.

2.3. Properties and limit spaces of self-similar groupoid actions on graphs.
In this section, we recall standard properties and constructions associated to
action-restriction pairs and self-similar groupoids acting on the path space of a graph.

DEFINITION 2.4. Let G be a groupoid and E a finite directed graph. An
action-restriction pair (G, E) is contracting if there exists a finite subset F ⊆ G so that,
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for every g ∈ G, there is an n ≥ 0 such that g|μ ∈ F for every path μ ∈ Ek, k ≥ n. Such
a subset F is called a contracting core of (G, E). The nucleus of (G, E) is the set

N �
⋂
{F ⊆ G : F is a contracting core for (G, E)}.

DEFINITION 2.5 [12, Definition 6.1]. Let (G, E) be an action restriction pair. Then,
(G, E) is regular if, for every g ∈ G, there is K ∈ N such that if g · μ = μ and |μ| ≥ K,
then g|μ = s(μ).

Let us see that this notion of regularity is equivalent to that of [3, Definition 4.1] for
self-similar groupoids.

PROPOSITION 2.6. Let (G, E) be a self-similar groupoid such that E has no sources.
Then, (G, E) is regular if and only if for every y ∈ E+∞ such that g · y = y, there exists
μ in E∗ such that y ∈ Z[μ), g · μ = μ and g|μ = s(μ).

PROOF. The ‘only if’ direction is immediate, and the ‘if’ direction follows from
[3, Lemma 4.4]. �

We recall from [3, Section 3] (see [11, Ch. 3]) the construction of the limit space
from a self-similar groupoid. Let (G, E) be a self-similar groupoid. For μ, ν ∈ E−∞,
we say μ is asymptotically equivalent to ν if there is a finite set F ⊆ G and a sequence
(gn)n<0 ⊆ F such that d(gn) = r(μn) and gn · μn · · · μ−1 = νn · · · ν−1 for all n < 0. We
write μ ∼ae ν. It is shown in [3, Section 3] that ∼ae is an equivalence relation and
μ ∼ae ν implies σ(μ) ∼ae σ(ν). The quotient space E−∞/ ∼ae is called the limit space
of (G, E) and is denoted JG,E. The induced continuous mapping from (σ, E−∞) is
called the shift on JG,E and is denoted σ̃.

It is shown in [3, Theorem 4.3] that if (G, E) is a contracting and regular self-similar
groupoid such that E has no sources, then (σ̃,JG,E) is an open, surjective and
positively expansive local homeomorphism.

In many ways, the remainder of this paper is dedicated to understanding, in various
contexts, this limit space dynamical system (σ̃,JG,E) and the conditions above on
(G, E) that give rise to its regularity properties.

3. Katsura–Exel–Pardo groupoid actions on directed graphs

The main examples of self-similar groupoid actions on graphs that we are interested
in are the Katsura–Exel–Pardo groupoid actions [8]. Katsura developed a family of
Cuntz–Pimsner algebras using two matrices as models for Kirchberg algebras. Exel
and Pardo [4, Section 18] realised these as self-similar groupoids acting on a graph
[10, Example 7.7]. For Katsura–Exel–Pardo actions, we completely characterise when
these are contracting and regular, which turns out to be rather subtle.

Let N ∈ N. A Katsura pair is a matrix A = (Aij) in MN(N) and a matrix B = (Bij)
such that Aij = 0 implies Bij = 0. Then, A is the adjacency matrix of the graph EA with

E0
A = {1, 2, . . . , N}, E1

A = {ei,j,m : 0 ≤ m < Aij}, r(ei,j,m) = i, s(ei,j,m) = j.
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8 J. B. Hume and M. F. Whittaker [8]

Exel and Pardo [4, pages 1048–1049] realised that a Katsura pair gives a self-similar
action on a graph in the following way. Define a group action σ : Z × EA → EA and a
one-cocycle ϕ : Z × EA → Z as follows: write g ∈ Z multiplicatively as g = ak, k ∈ Z.
Then, σ(ak, ei,j,m) = ei,j,m̂ and ϕ(ak, ei,j,m) = ak̂, where

kBij + m = k̂Aij + m̂ and 0 ≤ m̂ < Aij. (3-1)

We then obtain an action-restriction pair for (Z × E0
A, EA), defined by

(ak
i , ei,j,m)→ (ei,j,m̂, ak̂

j ), (3-2)

and we call these Katsura–Exel–Pardo groupoid actions (KEP-actions). See [10,
Appendix A] for a more careful treatment of these actions and [10, Example 7.7]
for a description of the faithful quotient. We reserve the notation (GB, EA) for the
corresponding faithful KEP-action associated with a Katsura pair of matrices A and B.

These actions realise their importance within C∗-algebras due to the following.

THEOREM 3.1 [8, Propositions 2.6, 2.9 and 2.10, Remark 2.8], [4, Remark 18.3]. Let
N ∈ N and let A = (Aij) be a matrix in MN(N), and B = (Bij) a matrix in MN(Z) such
that A has no zero rows and Aij = 0 implies Bij = 0. Then, the Cuntz–Pimsner algebra
of the associated self-similar groupoid action O(GB, EA) is separable, nuclear and in
the UCT class. The K-theory groups of O(GB, EA) are given by

K0(O(GB, EA)) = coker(I − A) ⊕ ker(I − B) and
K1(O(GB, EA)) = coker(I − B) ⊕ ker(I − A).

Moreover, if A and B also satisfy:

• A is irreducible and Aij = 0 =⇒ Bij = 0; and
• Aii ≥ 2 and Bi,i = 1 for every 1 ≤ i ≤ N,

then O(GB, EA) is a unital Kirchberg algebra.

Theorem 3.1 outlines several restrictions that can be put on a KEP-action whose
associated Cuntz–Pimsner algebra is a unital Kirchberg algebra. We now consider
restrictions that arise on the self-similar groupoid side. It is helpful to first understand
the kernel of a KEP-action φA,B : Z × E0

A → PIso(E∗A).
Following Exel and Pardo [4, page 1124], for μ ∈ En

A, write μ = ei0,i1,r1 ei1,i2,r2 · · ·
ein−1,in,rn . Define

Aμ �
n−1∏
t=0

Aitit+1 and Bμ �
n−1∏
t=0

Bitit+1 . (3-3)

That is, Aμ and Bμ are the products of the number of edges through the set of vertices
specified by μ.

PROPOSITION 3.2. Let (A, B) be a Katsura pair. Then, ak
i ∈ ker(φA,B) if and only if

kBμ/Aμ ∈ Z for all μ ∈ iE∗A.
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PROOF. One sees by induction on n ∈ N that for k ∈ Z and μ ∈ iEn
A, ak

i · μ = μ if
and only if k(Bμ[1,i]/Aμ[1,i]) ∈ Z for all i ≤ n. Therefore, ak

i ∈ ker(φA,B) if and only if
k(Bμ/Aμ) ∈ Z for all μ ∈ iE∗A. �

Note that for μ ∈ En such that Bμ � 0, k(Bμ/Aμ) ∈ Z if and only if Aμ/gcd(Aμ, |Bμ|)
divides k. So, by Proposition 3.2, the group (GB)i is finite if and only if
maxμ∈iE∗:Bμ�0 Aμ/(gcd(Aμ, |Bμ|)) < ∞ and its cyclic order oi is the smallest k ∈ Z such
that Aμ/gcd(Aμ, |Bμ|) divides k for all Bμ � 0. Thus,

oi = lcm({Aμ/gcd(Aμ, |Bμ|) : μ ∈ iE∗A : Bμ � 0}).

We have the following corollary.

COROLLARY 3.3. Suppose (GB, EA) is a KEP-action and define

E0
A,<∞ � {i ∈ E0

A : (GB)i is finite}.

Then, E0
A,<∞ is invariant in the sense that if e ∈ E1 satisfies Be � 0 and r(e) ∈ E0

A,<∞,
then s(e) ∈ E0

A,<∞.

PROOF. Let ν ∈ E∗ and e ∈ E1 be such that s(e) = r(ν) and Beν � 0. We have
Aeν = AeAν, |Beν| = |Be||Bν| and therefore gcd(Ae, |Be|)gcd(Aν, |Bν|) divides Aeν and Beν

so that gcd(Ae, |Be|)gcd(Aν, |Bν|) divides gcd(Aeν, |Beν|). If we let A′ν = Aν/gcd(Aν, |Bν|)
and B′ν = Bν/gcd(Aν, |Bν|), then

m �
gcd(Aeν, |Beν|)

gcd(Ae, |Be|)gcd(Aν, |Bν|)
= gcd(A′eA′ν, |B′e||B′ν|).

Since gcd(A′ν, B′ν) = 1, the factors in m that divide B′ν must divide Ae and the factors
that divide A′ν must divide Be. From this, we see that m divides AeBe and, therefore,

gcd(Ae, |Be|)gcd(Aν, |Bν|) ≤ gcd((Aeν, |Beν|)) ≤ Ae|Be|gcd(Ae, |Be|)gcd(Aν, |Bν|).

So, if we let C = maxe∈E1 Ae/gcd(Ae, |Be|) and D = maxe∈E1 |Be|gcd(Ae, |Be|), then

C
Aν

gcd(Aν, |Bν|)
≥ Aeν

gcd(Aeν, |Beν|)
≥ 1

D
Aν

gcd(Aν, |Bν|)
. (3-4)

In particular, if maxν∈s(e)E∗:Bν�0(Aν/gcd(Aν, |Bν|)) = ∞, then

∞ = max
ν∈s(e)E∗:Bν�0

Aeν

gcd(Aeν, |Beν|)
≤ max
μ∈r(e)E∗:Bμ�0

Aμ
gcd(Aμ, |Bμ|)

.

This proves that for Be � 0, if s(e) � E0
A,<∞, then r(e) � E0

A,<∞. �

Now, define

E0
A,∞ � {i ∈ E0

A : (GB)i = Z}

and note that E0
A,∞ = E0

A \ E0
A,<∞. Similarly, define

E1
A,∞ � {e ∈ E1

A : s(e) ∈ E0
A,∞ and Be � 0}.
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By Corollary 3.3, r(E1
A,∞) ⊆ E0

A,∞, so EA,∞ � (E0
A,∞, E1

A,∞, r, s) is a sub-graph of EA, and
the action of GB,∞ � {g ∈ G : s(g) ∈ E0

A,∞} on E∗A restricts to an action φA,B,∞ : GB,∞ →
PIso(E∗A,∞).

By re-ordering the vertices if necessary, we may assume E0
A,∞ = {1, . . . , k} for some

k ≤ N. Then, letting A∞ be the adjacency matrix of E1
A,∞, we see that

(A∞)i,j =

⎧⎪⎪⎨⎪⎪⎩Ai,j if Bi,j � 0,
0 otherwise.

Since (GB)i is infinite for i ≤ k, we must have (by Corollary 3.3) r−1(i) ∩ E1
A,∞ � ∅.

Hence, A∞ has no zero rows. Letting B∞ � (Bi,j)i,j≤k, we have φA∞,B∞ = φA,B,∞. Note
that, in general, GB∞ is a quotient of GB,∞ = Z × E0

A,∞.
Similarly, let

E1
A,<∞ � {e ∈ E1

A : r(e) ∈ E0
A,<∞ and Be � 0},

so that EA,<∞ � (E1
A,<∞, E0

A,<∞, r, s) is, by Corollary 3.3, a sub-graph of EA and set
GB,<∞ � {g ∈ GB : r(g) ∈ E0

A,<∞}. Then, φA,B restricts to an action φA,B,<∞ : GB,<∞ →
PIso(E∗A,<∞) and letting A<∞ be the adjacency matrix of EA,<∞ and B<∞ = (Bi,j)i,j>k,
we have φA<∞,B<∞ = φA,B,<∞ and GB<∞ = GB,<∞. Note however that EA<∞ may have
sources even if EA has none.

DEFINITION 3.4. Let (A, B) be a Katsura pair. We call (A∞, B∞) the infinite part of
(A, B) and (A<∞, B<∞) the finite part of (A, B), as defined immediately above.

For the following proposition, recall the notion of contracting from Section 2.3.

PROPOSITION 3.5. Let (A, B) be a Katsura pair. Then, the KEP-action (GB, EA) is
contracting if and only if (GB,∞, EA∞) is contracting.

PROOF. The ‘only if’ direction is immediate, so we prove the ‘if’ direction by proving
its contrapositive. If (GB, EA) is not contracting, then for every finite set F such that
GB,<∞ ∪ E0 ⊆ F ⊆ GB, there is g ∈ GB such that g|μn � F for infinitely many paths
(μn)n∈N. For μ ∈ E∗A such that Bμ = 0, we have g|μ = s(μ) ∈ F and, hence, Bμn � 0. If
μ ∈ En

A satisfies Bμ � 0 and r(μi) ∈ E0
A,<∞ for some i ≤ n, then by Corollary 3.3, we

have s(μ) ∈ E0
A,<∞ and, therefore, h|μ ∈ GB,<∞ ⊆ F for any h ∈ r(μ)GB. Since g|μn � F

and Bμn � 0, it follows that μn ∈ E∗A,∞ for all n ∈ N and g ∈ GB,∞. Therefore, (GB∞ , EA∞)
is not contracting. �

Now, we determine a necessary and sufficient condition for the infinite part of
a KEP-action to be contracting. Suppose G is a finitely generated groupoid with
generating set S = S−1, with associated length function 	S : G→ N, and suppose
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(G, E) is an action-restriction pair. Following Nekrashevych [11, Definition 2.11.9],
the contraction coefficient of (G, E) is the quantity:

ρ = lim sup
n→∞

(
lim sup

g∈G,	S(g)→∞
max
μ∈d(g)En

	S(g|μ)
	S(g)

)1/n
. (3-5)

Nekrashevych proved the following result in the case of a self-similar group action.
However, his proof goes through line-for-line with the obvious extension from words
to paths in the action-restriction pair setting.

PROPOSITION 3.6 [11, Lemma 2.11.10 and Proposition 2.11.11]. Let G be a finitely gen-
erated groupoid and E a finite graph with no sources. If (G, E) is an action-restriction
pair, then the contraction coefficient ρ is finite and does not depend on the generating
set. Furthermore, (G, E) is contracting if and only if ρ < 1.

Now suppose that (Z × E0
A, EA) is the action-restriction pair associated to a Katsura

pair (A, B). Then, Equation (3-5) becomes

ρ = lim sup
n→∞

(
lim sup

m→∞
max
μ∈En

A

	S(am
r(μ)|μ)
m

)1/n
. (3-6)

PROPOSITION 3.7. Let (A, B) be a Katsura pair such that A has no zero rows and let
(Z × E0

A, EA) be the associated action-restriction pair. Then, the contraction coefficient
is given by

ρ = lim sup
n→∞

(
max
μ∈En

A

|Bμ|
Aμ

)1/n
.

PROOF. We first prove by induction on m ∈ N that, for fixed 1 ≤ i, j ≤ N and
0 ≤ r < N,

am
i · ei,j,rν = ei,j,rm (al

j · ν) where l = m
Bij

Aij
+

r − rm

Aij
for all ν ∈ jE∗. (3-7)

For m = 1, using Equation (3-1), we have Bij + r = l1Aij + r1 so that

ai · ei,j,rν = ei,j,r1 (al
j · ν) where l = l1 =

Bij

Aij
+

r − r1

Aij
,

as desired. Using Equation (3-7) for m − 1, we have

am
i · ei,j,rν = ai · ei,j,rm−1 (al′

j · ν) where l′ = (m − 1)
Bij

Aij
+

r − rm−1

Aij
. (3-8)

From Equation (3-1), we have Bij + rm−1 = lmAij + rm, so that Equation (3-8) gives

am
i · ei,j,rν = ei,j,rm (alm

j · (a
l′
j · ν)) = ei,j,rm (al′+lm

j · ν),
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where

l = l′ + lm = (m − 1)
Bij

Aij
+

r − rm−1

Aij
+

Bij

Aij
+

rm−1 − rm

Aij
= m

Bij

Aij
+

r − rm

Aij
.

Thus, Equation (3-7) holds.
Suppose μ = ei0,i1,r1 ei1,i2,r2 · · · ein−1,in,rn , ν = ei0,i1,r′1 ei1,i2,r′2 · · · ein−1,in,r′n and am

i0
· μ = ν.

We prove by induction on |μ| = n that

am
r(μ)|μ = al

s(μ) where l = m
Bμ
Aμ
+

n∑
t=1

(rt − r′t )
Bμ[t+1,n]

Aμ[t,n]
. (3-9)

For |μ| = 1, Equation (3-9) holds by Equation (3-7). Using Equation (3-9) for n − 1 and
Equation (3-7), we compute for |μ| = n:

l =
(
m

Bμ[1,n−1]

Aμ[1,n−1]
+

n−1∑
t=1

(rt − r′t )
Bμ[t+1,n−1]

Aμ[t,n]

)Bin−1in

Ain−1in
+

rn − r′n
Ain−1in

= m
Bμ
Aμ
+

n∑
t=1

(rt − r′t )
Bμ[t+1,n]

Aμ[t,n]
,

so Equation (3-9) holds by induction.
We now use Equation (3-9) to compute the contraction coefficient

ρ = lim sup
n→∞

(
lim sup

m→∞
max
μ∈En

A

	S(am
r(μ)|μ)
m

)1/n

= lim sup
n→∞

(
lim sup

m→∞
max
μ∈En

A

∣∣∣∣∣BμAμ
+

1
m

( n∑
t=1

(rt − r′t )
Bμ[t+1,n]

Aμ[t,n]

)∣∣∣∣∣
)1/n

= lim sup
n→∞

(
max
μ∈En

A

|Bμ|
Aμ

)1/n
. �

COROLLARY 3.8. Let (A, B) be a Katsura pair. Then, the associated KEP-action
(GB, EA) is contracting if and only if lim supn→∞(maxμ∈En

A,∞
|Bμ|/Aμ)1/n < 1.

For the following proposition, recall the notion of regular from Section 2.3.

PROPOSITION 3.9. Let (A, B) be a Katsura pair. Then, the KEP-action (GB, EA) is
regular if and only if (GB,∞, EA∞) and (GB<∞ , EA<∞) are regular.

PROOF. The ‘only if’ direction is immediate, so we prove the ‘if’ direction. Suppose
g ∈ G. We show there is M ∈ N such that g · μ = μ, g|μ � s(μ) implies |μ| ≤ M.

Since GB<∞ is finite, there is an M′ ∈ N such that for every h ∈ GB<∞ and ν ∈ E∗A,<∞
satisfying h · ν = ν and g|ν � s(ν), we have |ν| ≤ M′.

Note that g|μ � s(μ) implies Bμ � 0, so by Corollary 3.3, we can write μ = μ1eμ2 for
some μ1 ∈ E∗A,∞ and μ2 ∈ E∗A,<∞ (in this decomposition, we allow μ1 = ∅ or μ2 = ∅).
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If μ1 = ∅, then |μ| ≤ M′ + 1.
If μ1 � ∅, then g ∈ GB,∞. Let M′′ be such that for ν ∈ E∗A,∞, g · ν = ν and g|ν � s(ν)

implies |ν| ≤ M′′. Then, |μ| ≤ M′′ +M′ + 1.
In either case, we have |μ| ≤ M � M′ +M′′ + 1. �

PROPOSITION 3.10. Let (A, B) be a Katsura pair such that A has no zero rows. If the
associated action-restriction pair (Z × E0

A, EA) is contracting, then it is regular.

PROOF. Suppose (Z × E0, EA) is contracting. Write g = ak
i . By Propositions 3.6 and

3.7, there is M ∈ N such that |Bμ|/Aμ < 1/k for all |μ| ≥ M and, hence, k(Bμ/Aμ) � Z.
It follows that g · μ � μ for |μ| ≥ M. Hence, (Z × E0, EA) is regular. �

COROLLARY 3.11. Let (A, B) be a Katsura pair such that the KEP-action (GB, EA) is
contracting. Then, (GB, EA) is regular if and only if (GB<∞ , EA<∞) is regular.

PROOF. Follows immediately from Propositions 3.9 and 3.10. �

We now determine a necessary and sufficient condition for when the finite part of a
KEP-action is regular.

PROPOSITION 3.12. Let (A, B), satisfying supμ∈E∗:Bμ�0(Aμ/gcd(Aμ, |Bμ|)) < ∞ be a
Katsura pair. Then, the KEP-action (GB, EA) is regular if and only if there is K ∈ N
such that for all μ ∈ EK

A and ω ∈ s(μ)E∗A, Aω divides (Bμ/gcd(Aμ, |Bμ|))Bω.

PROOF. We first prove the ‘only if’ direction. Now GB is finite since
supμ∈E∗:Bμ�0(Aμ/gcd(Aμ, |Bμ|)) < ∞; so by regularity, there is K ∈ N such that for
every g ∈ GB and μ ∈ EK

A , if g · μ = μ, then g|μ = s(μ). In particular, for μ ∈ EK
A and

k = Aμ/gcd(Aμ, |Bμ|), we have ak
r(μ) · μ = μ and, therefore, ak

r(μ)|μ = s(μ), which implies
(Bμ/gcd(Aμ, |Bμ|)) · Bω/Aω = (Aμ/gcd(Aμ, |Bμ|)) · Bμω/Aμω ∈ Z for all ω ∈ s(μ)E∗A.
Therefore, Aω divides (Bμ/gcd(Aμ, |Bμ|))Bω for all μ ∈ s(μ)E∗A.

We prove the ‘if’ direction now. Suppose g = ak
i satisfies ak

i · μ = μ for some
μ ∈ iEK

A . This implies kBμ/Aμ ∈ Z, which is equivalent to Aμ/gcd(Aμ, |Bμ|) divides k.
Let m ∈ Z be such that k = m · Aμ/gcd(Aμ, |Bμ|). By the hypothesis, if ω ∈ s(μ)E∗A, then
(Aμ/gcd(Aμ, |Bμ|)) · Bμω/Aμω = Bμ/gcd(Aμ, |Bμ|) · Bω/Aω ∈ Z. Hence, k · Bμω/Aμω =
m · (Aμ/gcd(Aμ, |Bμ|)) · Bμω/Aμω ∈ Z. Then, letting l = kBμ/Aμ, by Proposition 3.2, we
have ak

i |μ = al
s(μ) = s(μ). �

We summarise the results of this section into a theorem.

THEOREM 3.13. Let (A, B) be a Katsura pair. Then, the KEP-action (GB, EA) is
contracting and regular if and only if lim supn→∞(maxμ∈En

A,∞
|Bμ|/Aμ)1/n < 1, and

there is K ∈ N such that Aω divides (Bμ/gcd(Aμ, |Bμ|))Bω for all μ ∈ EK
A,<∞ and

ω ∈ s(μ)E∗A,<∞.

Later in this paper, we restrict to considering Katsura pairs with B taking values of
either 0 or 1. The above theorem has a nice reformulation in this setting.
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2 e2,2,0 e2,2,11
e2,1,0

e1,1,1e1,1,0

e1,2,0

FIGURE 1. The graph EA specified by the adjacency matrix A from Examples 3.15 and 3.16.

COROLLARY 3.14. Let (A, B) be a Katsura pair such that B ∈ MN({0, 1}). If the
KEP-action (GB, EA) is regular, then (GB, EA) is contracting. Moreover, (GB, EA) is
regular if and only if there is K ∈ N such that:

• μ ∈ E∗A,∞, Aμ = 1 =⇒ |μ| ≤ K; and
• μ ∈ E∗A,<∞, |μ| ≥ K =⇒ Aμ[K,|μ|] = 1.

PROOF. By Proposition 3.5, it suffices to show (GB,∞, EA,∞) is contracting. By
Proposition 3.9, (GB,∞, EA,∞) is regular. For μ ∈ E∗A,∞, we have ar(μ) · μ = μ if and only
if Aμ = 1, in which case ar(μ)|μ = as(μ). By regularity, there is K ∈ N such that Aμ = 1
implies |μ| ≤ K. Hence, for μ ∈ E∗A,∞, we have Aμ ≥ 2|μ|/K , so that the contracting
coefficient (by Proposition 3.7) is ρ < ( 1

2 )1/K < 1. By Proposition 3.6, (GB,∞, EA,∞) is
contracting.

The second point is equivalent (by Proposition 3.12) to regularity of (GB<∞ , EA<∞).
To prove that the two bullet points imply (GB, EA) is regular, it therefore suffices

to show (by Propositions 3.9 and 3.10) that (GB,∞, EA,∞) is contracting, but this is the
same argument as above. �

We use our characterisations of contracting and regular to provide four examples of
Katsura pairs that exhibit all the possible combinations of the two properties holding
(or not holding).

EXAMPLE 3.15 (Contracting and regular). Let (GB, EA) be the KEP-action defined by

A =
(
2 1
1 2

)
and B =

(
1 1
0 1

)
. (3-10)

Then, A is the adjacency matrix for the graph EA depicted in Figure 1.
Using the relations in Equation (3-1), for μ ∈ 1E∗A and ν ∈ 2E∗A, we obtain the

self-similar action defined by the partial isomorphisms

a1 · e1,1,0μ = e1,1,1μ; a2 · e2,1,0μ = e2,1,0μ;
a1 · e1,1,1μ = e1,1,0(a1 · μ); a2 · e2,2,0ν = e2,2,1ν;
a1 · e1,2,0ν = e1,2,0(a2 · ν); a2 · e2,2,1ν = e2,2,0(a2 · ν).

We have A∞ = ( 2 1
0 2 ) and A<∞ = ∅. Therefore, being contracting and regular depends

only on the first bullet point in Corollary 3.14 holding. For μ ∈ EA∞ , we have
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|μ| > 1 implies Aμ > 1. Hence, (GB, EA) is contracting and regular. Note also that
maxμ∈En

A,∞
|Bμ|/Aμ = 1/2n−1. Therefore, the contracting coefficient

ρ = lim sup
n→∞

(
max
μ∈En

A,∞

|Bμ|
Aμ

)1/n
= lim sup

n→∞

( 1
2n−1

)1/n
=

1
2

.

EXAMPLE 3.16 (Not contracting and not regular). Let (GB, EA) be the KEP-action
defined by

A =
(
2 1
1 2

)
and B =

(
1 1
1 1

)
. (3-11)

Since A is the same as in Example 3.15, A is again the adjacency matrix for the graph
EA in Figure 1. The action is also the same other than a1 · e1,2,0ν = e1,2,0ν.

However, we have A∞ = A and observe that maxμ∈En
A
|Bμ|/Aμ = 1. Therefore, the

contracting coefficient is ρ = 1 so that (GB, EA) is not contracting. It follows from
Corollary 3.14 that (GB, EA) is not regular.

EXAMPLE 3.17 (Contracting and not regular). Let (GB, EA) be the KEP-action
defined by

A =
(
1 2
2 1

)
and B =

(
1 1
0 1

)
. (3-12)

We have A<∞ = ( 1 2
0 1 ) and A∞ = ∅. Therefore, GB is finite, making (GB, EA) auto-

matically contracting. However, for every k ∈ N, we have Bμk = 1 and Aμk = 2 for
μk = ek−1

1,1,0e1,2,0. Corollary 3.14 implies that GB is not regular.

The three examples above have B ∈ MN({0, 1}). For an example to be not contracting
and regular, by Corollary 3.14, we must have B � MN({0, 1}).

EXAMPLE 3.18 (Not contracting but regular). Let (GB, EA) be the KEP-action
defined by

A = (2) and B = (3). (3-13)

We have A∞ = ( 2 ) with contracting coefficient ρ = 3
2 > 1. Hence, (GB, EA) is not

contracting. Moreover, for every μ ∈ E∗A, we have Bμ/Aμ = ( 3
2 )|μ|. Therefore, for every

k ∈ Z, |μ| > |k| implies kBμ/Aμ � Z and, hence, ak · μ � μ. It follows that (GB, EA) is
regular.

4. Binary factors of shifts of finite type and self-similar groupoids

In this section, we show a certain class of topological dynamical systems introduced
by Putnam in [13] can be realised as shifts on the limit spaces of contracting and
regular self-similar groupoids. We would like to note that a generalisation of the spaces
on which Putnam’s systems are defined appears in the PhD thesis of Haslehurst, see
[5, Ch. 3]. We first recall Putnam’s construction.
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Our notation differs slightly from [13]. First, Putnam uses G to denote a directed
graph, whereas we have reserved G for groupoids and E, H for graphs. He also calls
the source map s the initial map and denotes it i, and calls the range map r the terminal
map, denoting it t. The last important distinction is his notation for infinite paths. We
write an infinite path x = (· · · x−2, x−1) ∈ E−∞, whereas Putnam writes (x1, x2, . . .) ∈ X+E
for the same path.

4.1. Putnam’s construction. Let E and H be finite directed graphs, and let
ξ = ξ0, ξ1 : H → E be two injective graph homomorphisms (embeddings) satisfying
ξ0|H0 = ξ1|H0 and ξ0(H1) ∩ ξ1(H1) = ∅. We refer to ξ satisfying the properties above as
an embedding pair.

For μ, ν ∈ E−∞ with μ = · · · μ−2μ−1 and ν = · · · ν−2ν−1, we say μ ∼ξ ν if μ = ν, or
there is n < 0, i ∈ {0, 1} and (yk)k≤n ⊆ H1 such that μk = ξ

i(yk) and νk = ξ1−i(yk) for all
k ≤ n, and one of the following holds:

(1) n = −1;
(2) n < 1, μj = νj for all j > n + 1, and there is yn+1 ∈ H1 such that μn+1 = ξ

1−i(yn+1)
and νn+1 = ξ

i(yn+1); or
(3) n < 1, μj = νj for all j ≥ n + 1, and μn+1 = νn+1 � H1

ξ .

By [13, Proposition 3.7], ∼ξ is an equivalence relation and μ ∼ξ ν for μ, ν ∈ E−∞

implies σ(μ) ∼ξ σ(ν). Therefore, if we denote by Jξ the quotient space E−∞/ ∼ξ, the
shift σ descends to a continuous mapping σξ : Jξ → Jξ.

Putnam shows in [13, Section 3] that if E is assumed primitive and ξ satisfies
an extra hypothesis (H3), then σξ is an expanding surjective local homeomorphism.
In addition, he describes the expanding metric in great detail. We show the same, but
with hypothesis (H3) removed and primitive weakened to no sources by proving that
(σξ,Jξ) is isomorphic to the limit space dynamical system of a contracting and regular
self-similar groupoid acting on E. We then apply the recent work on these dynamical
systems in [3]. We do not, however, extend Putnam’s metric results.

4.2. Putnam’s binary factor maps as self-similar groupoid actions on graphs. In
this section, we show that Putnam’s construction gives rise to a self-similar groupoid
on a graph.

Let ξ = ξ0, ξ1 : H → E be an embedding pair. Denote H0
ξ � ξ

0(H0) = ξ1(H0) and
H1
ξ � ξ

0(H1) ∪ ξ1(H1). Let G̃ξ = Z × E0, with groupoid structure determined by the
projection π : G̃ξ → E0. This means that (m, v), (n, w) ∈ G̃ξ are composable if and only
if v = w, in which case, (m, v)(n, v) = (m + n, v). Hence, d(m, v) = c(m, v) = π(m, v), so
that G̃ξ is a group bundle in the sense that π−1(v) = Z for all v ∈ E0.

For v ∈ H0, let 	(v) be the maximum length of a path y in H satisfying r(y) = v. Con-
sider the quotient bundle Gξ = (

⋃
v∈H0 Z/2	(v)

Z × {ξ0(v)}) ∪ ({0} × (E0 \ H0
ξ )), where

we make the convention that if 	(v) = ∞, then Z/2	(v)
Z = Z. We aim to define a

(faithful) self-similar groupoid action of Gξ on E.
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For (m, v) ∈ G̃ξ = Z × E0 and e ∈ vE1, we define

(m, v) · e =
⎧⎪⎪⎨⎪⎪⎩e if e � H1

ξ ,
ξj(h) if e = ξi(h) for h ∈ H1, i, j, n ∈ {0, 1} such that m + i = 2n + j,

(m, v)|e =
⎧⎪⎪⎨⎪⎪⎩(0, s(e)) if e � H1

ξ ,
(n, s(e)) if e = ξi(h) for h ∈ H1, i, j, n ∈ {0, 1} such that m + i = 2n + j.

(4-1)

This defines an action-restriction pair in the sense of Definition 2.3. To find the kernel
of the induced action φ : G̃ξ → PIso(E∗), let us describe the action and restriction in
terms of the binary odometer action. Let α : Z � {0, 1}∗ be the self-similar group
representation of Z by the 2-odometer action [11, Section 1.7.1]. In our language, this is
the self-similar group defined by the Katsura pair A = (2) and B = (1). More explicitly,
for m ∈ Z and i ∈ {0, 1}, we have

am · i = j and am|i = an where m + i = 2n + j.

For example, we have a · 1k = 0k, a|1k = a and a · 0 = 1, a|0 = id. This completely
describes a as an automorphism of {0, 1}∗.

For n ≥ 0, i = i1i2 · · · in ∈ {0, 1}n and h = h1h2 · · · hn ∈ Hn, let

ξi(h) � ξi1 (h1)ξi2 (h2) · · · ξin (hn). (4-2)

Notice that the embedding ξ : H1 → E1 extends to an embedding ξi : Hn → En via
Equation (4-2). If μ ∈ En satisfies μ = ξi(h) for some i ∈ {0, 1}n and h ∈ vHn, then for
any ν ∈ s(μ)E∗, we have

(m, r(μ)) · μν = ξ(am·i)(h) (am|i, s(μ)) · ν. (4-3)

If e � H1
ξ , then for any ν ∈ s(e)H∗, we have (m, r(e)) · eν = eν. Thus, the action

φ : G̃ξ → PIso(E∗) is completely described by the 2-odometer action and the trivial
action.

Since the kernel of α : Z � {0, 1}n is 2n
Z, the kernel of the G̃ξ-action on E∗ is given

by (
⋃

v∈H0 2	(v)
Z × {ξ0(v)}) ∪ (Z × (E0 \ H0

ξ )). Hence, the quotient of the G̃ξ-action
is Gξ. The quotient action φ : Gξ → PIso(E∗) is then self-similar by the results in
Section 2.2.

EXAMPLE 4.1. Consider the graphs E and H in Figure 2 along with the embedding
pair ξ : H → E defined by ξ0(e) = e0, ξ1(e) = e1. Then, Equation (4-1) gives partial
isomorphisms generating a self-similar groupoid (Gξ, E) via:

(1, v) · e0 = e1 (1, v)|e0 = (0, v), (1, v) · e1 = e0 (1, v)|e1 = (1, v),
(1, v) · f = f (1, v)| f = (0, v),

where (Gξ, E) is not a self-similar groupoid action arising from a KEP-action. Indeed,
if (Gξ, E) was isomorphic to (GB, EA) for some Katsura pair, then A = (3) and B = (n)
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H : v

e

ξ
v f

e1

e0

: E

FIGURE 2. The embedding pair ξ : H → E for Example 4.1.

for some n ∈ Z. The action of Gξ = Z on E is nontrivial and contracting, so its
contracting coefficient satisfies 0 < ρ = |n|/3 < 1. So either |n| = 1 or |n| = 2, but
neither of these cases allow for Z · f = f , Z| f = 0. Thus, (Gξ, E) is not isomorphic
to a KEP-action.

However, we show in Section 5 that every self-similar groupoid from an embedding
pair is an out-splitting of a KEP-action.

4.3. Properties of (Gξ, E). In this section, we prove that the self-similar groupoid
actions associated with a binary factor are contracting and regular. Moreover, we
prove that the shift map on the limit space of the self-similar groupoid is conjugate
to Putnam’s expanding local homeomorphism on the quotient space Jξ = E−∞/ ∼ξ
described in Section 4.

PROPOSITION 4.2. Let ξ = ξ0, ξ1 : H → E be an embedding pair. Then, (Gξ, E) is
contracting and regular.

PROOF. We first show (Gξ, E) is contracting. We show the nucleus is contained in
N = ({−1, 0, 1} × H0

ξ ) ∪ {0} × (E0 \ H0
ξ ). Let g = (m, w) ∈ Gξ. If w � H0

ξ , then m = 0
and, hence, g ∈ N . So suppose w = ξ0(v). First, assume 	(v) < ∞. Then, if there is a
path μ ∈ wE∗ such that |μ| = n ≥ 	(v) + 1, at least one of its edges μk � H1

ξ . So, we have
by Equation (4-1) that

g|μ = (g|μ1···μk )|μk+1···μn = (0, s(μk))|μk+1···μn = (0, s(μn)) ∈ N . (4-4)

If there are no paths μ of length |μ| ≥ 	(v) + 1 in E∗ ending at ξ0(v), then the contracting
condition is satisfied for g vacuously.

Now, suppose w = ξ0(v) and 	(v) = ∞. The 2-odometer action of Z is contracting,
with N = {−1, 0, 1}, see [11, Section 1.7.1]. So, let K ∈ N be the number such
that am|i ∈ {−1, 0, 1} for all |i| ≥ K. Let μ ∈ wE∗ have length |μ| = n ≥ K. If there is
k ≤ n such that μk � ξ0(H1) ∪ ξ1(H1), then Equation (4-4) implies g|μ = (0, s(μ)) ∈ N .
Otherwise, μ1 · · · μn = ξ

i(h) for some i ∈ {0, 1}n and h ∈ Hn. By Equation (4-3), letting
al = am|i, we have

g|μ = (l, s(μ)) ∈ N .

Thus, (Gξ, E) is contracting.
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We now show (Gξ, E) is regular. Let g = (m, w) and μ ∈ wE∗ satisfy g · μ = μ and
g|μ � s(μ). Then, Equation (4-4) implies μ = ξi(h) for some i ∈ {0, 1}∗ and h ∈ H∗. By
Equation (4-3), we have

ξa
m·i(h) = g · μ = μ = ξi(h).

The 2-odometer action is regular, so let M ∈ N be such that if am · ĩ = ĩ and |ĩ| > M,
then am|ĩ = e. Hence, we have |μ| = |i| ≤ M. Therefore, (Gξ, E) is regular. �

4.4. Equality of the dynamical systems (σξ,Jξ) and (σ̃,JGξ ,E). In this section
we prove the following theorem.

THEOREM 4.3. Let ξ = ξ0, ξ1 : H → E be an embedding pair and (Gξ, E) be the
associated self-similar groupoid action on E. Then, the equivalence relation ∼ξ on
E−∞ is equal to the asymptotic equivalence relation ∼ae on E−∞. Thus, (σξ,Jξ) =
(σ̃,JGξ ,E).

We begin by first proving a couple of lemmas.

LEMMA 4.4. Let ξ = ξ0, ξ1 : H → E be an embedding pair and (Gξ, E) be the
associated self-similar groupoid action on E. Suppose μ ∈ E−∞ has the property that
μj � H1

ξ for infinitely many j ∈ N. Then, μ is only asymptotically equivalent to itself.

PROOF. Suppose ν ∈ E−∞ and μ ∼ae ν. Let F ⊆ Gξ be a finite set and (gn)n<0 ⊆ F be
a sequence such that d(gn) = r(μn) and gn · μn · · · μ−1 = νn · · · ν−1 for all n < 0. Let
(jn)n<0 ⊆ {n < 0 : n ∈ Z} be a decreasing sequence such that μjn � H1

ξ for all n < 0.
Then, by definition of the action, we have that gjn · μjn = μjn , gjn |μjn

= (0, s(xjn )) and,
hence, νjn · · · ν−1 = gjn · μjn · · · μ−1 = μjn · · · μ−1 for all n < 0. So μ = ν. �

LEMMA 4.5. Let ξ = ξ0, ξ1 : H → E be an embedding pair and (Gξ, E) be the
associated self-similar groupoid action on E. For μ, ν ∈ E−∞, μ ∼ae ν if and only if
μ = ν or there is n < 0 such that (yk)k≤n ⊆ H1, (ik)k≤n, (i′k)k≤n ⊆ {0, 1} with μk = ξ

ik (yk),
νk = ξ

i′k (yk), for all k ≤ n, (· · · in−1in) ∼ae (· · · i′n−1i′n) relative to the 2-odometer action
of Z, and one of the following hold:

(1)* n = −1; or
(2)* n < 1, μj = νj for all j ≥ n + 1 and μn+1 = νn+1 � H1

ξ .

PROOF. We prove the forward direction first. Suppose that μ ∼ae ν and μ � ν. From
Lemma 4.4, we know that there is n < 0 such that for all k ≤ n, there is ik, i′k ∈ {0, 1}
and yk, y′k ∈ H1 with μk = ξ

ik (yk) and νk = ξi
′
k (y′k). Let n be the largest such n for which

this is true, and let (gk)k<0 be a sequence contained in some finite set F of Gξ satisfying
d(gk) = r(μk) and gk · μk · · · μ−1 = νk · · · μ−1 for all k < 0.
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Let F̃ be a finite set in Z such that (gk)k≤n ⊆ π(F̃ × H0
ξ ), where π : G̃ξ → Gξ is the

quotient map. Then, there is (nk)k≤n ⊆ F̃ such that

ξa
nk ·(ik ···in)(yk · · · yn) = gk · μk · · · μn = νk · · · νn = ξi

′
k ···i
′
n (y′k · · · y′n).

It follows that yk = y′k for all k ≤ n and (· · · in−1in) ∼ae (· · · i′n−1i′n).
Now, if n = −1, then we are done, so assume n < 1 and, without loss of generality,

that μn+1 � H1
ξ . Then νn+1 = gn+1 · μn+1 = μn+1 and gn+1|μn+1 = (0, s(μn+1)), so that

νn+1 · · · ν−1 = gn+1 · μn+1 · · · μ−1 = μn+1 · · · μ−1.
Now, we prove the reverse direction. Let F̃ be a finite set in Z and (nk)k≤n ⊆ F̃ a

sequence such that αnk · ik · · · in = i′k · · · i′n for all k ≤ n. It follows from the definition
of the action of Gξ that if we let gk = π((nk), s(μk)), then gk · μk · · · μn = νk · · · νn for
all k ≤ n. If n = −1, then we are done, so assume n < −1. Since μn+1 = νn+1 � H1

ξ ,
it and its extension to the path μn+1 · · · μ−1 = νn+1 · · · ν−1 are fixed by any element in
Gξ ∩ d−1(s(μn+1)). Then,

gk · μk · · · μ−1 = νk · · · νn(g|μn · μn+1 · · · μ−1)

= νk · · · νnνn+1((0, s(μn+1)) · μn+2 · · · μ−1) = νk · · · ν−1.

So, if we let gj = (0, s(μj)) for j ≥ n + 1, then (gk)k<0 is a sequence contained in
π(F̃ × H0

ξ ) ∪ {0} × (E0 \ H0
ξ ) implementing μ ∼ae ν. �

We now prove the main theorem.

PROOF OF THEOREM 4.3. Recall from [11, Section 3.1.2] that two sequences
(· · · in−1in) and (· · · i′n−1i′n) are asymptotically equivalent relative to the 2-odometer
action of Z if and only if either ik = i′k for all k ≤ n, or there is n′ ≤ n and i ∈ {0, 1}
such that ik = i and i′k = 1 − i for all k ≤ n′, and one of the following holds:

(1)** n = n′; or
(2)** n′ < n, xk = x′k for all n ≥ k > n′ + 1, in′+1 = 1 − i and i′n′+1 = i.

Combining this description of asymptotic equivalence for the 2-odometer action with
the description of asymptotic equivalence for (Gξ, E) in Lemma 4.5 yields equality
with ∼ξ. For clarity, cases (1), (2) and (3) of ∼ξ correspond respectively to cases (1)∗ +
(1)∗∗ (n′ = n = −1), (2)∗∗ (n′ < n ≤ −1), and (2)∗ + (1)∗∗ (n′ = n < −1) of Lemma 4.5
and above. �

5. Out-splittings and KEP-action models for embedding pairs

In this section, we determine the relationship of (Gξ, E) with a KEP-action model.
In particular, we show there are matrices A ∈ MN({0, 1, 2}) and B ∈ MN({0, 1}) such that
(σ̃,JGξ ,E) is topologically conjugate to (σ̃,JGB,EA ). We do so by showing out-splits of
self-similar group bundles preserve limit spaces, and that a certain KEP-action arises
as an out-split of (Gξ, E).
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FIGURE 3. An out-split of the graph on the left appears on the right.

5.1. Out-splits of self-similar group bundles. We take the approach on out-splits
found in [2]. For the ‘classical’ approach, see [9]. Let E be a directed graph and
let OS = (π, β) be a tuple, where π : E1 → E0

OS and β : E0
OS → E0 are maps such

that s = β ◦ π. The out-split of E by OS is the graph EOS = (E0
OS, E1

OS, rOS, sOS),
where E1

OS � E0
OS ×β r E1 and rOS, sOS : E1

OS → E0
OS are defined for (v, e) ∈ E1

OS as
rOS(v, e) = v and sOS(v, e) = π(e).

EXAMPLE 5.1. Let E be the graph on the left of Figure 3. Let E0
OS � {v1, v2, v3} and

π : E1 → E0
OS be defined by

π(1) = v1, π(2) = v2, π(3) = v3 and π(4) = v3.

Since s = β ◦ π, the map β : E0
OS → E0 is given by

β(v1) = β(π(1)) = s(1) = x, β(v2) = x and β(v3) = y.

Then,

E1
OS � E0

OS ×β r E1 = {(v1, 1), (v1, 3), (v1, 4), (v2, 1), (v2, 3), (v2, 4), (v3, 2)},

with the out-split graph EOS depicted on the right of Figure 3.

It is routine to check that the dynamical systems (σ, E−∞) and (σ, E−∞OS ) are
topologically conjugate via the map I : E−∞ → E−∞OS given by

I(. . . , e−2, e−1) = (. . . , (π(e−3), e−2), (π(e−2), e−1)).

More generally, for every n ∈ N, there is a bijection In : E0
OS ×β r En → En

OS defined for
(v, μ) ∈ E0

OS ×β r En with μ = e−n · · · e−1 by

In(v, μ) = (v, e−n)(π(e−n), e−n+1) · · · (π(e−2), e−1).

Now, suppose (G, E) is a self-similar group bundle; that is, the action of G on E∗ is
range preserving. We can define a new group bundle (GOS, EOS) with

GOS = {(g, v) ∈ G × E0
OS : d(g) = c(g) = β(v)},
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where (g, v) and (g, v′) are composable if and only if v = v′, in which case

(g, v) · (g′, v) = (gg′, v).

The action-restriction pair (GOS, EOS) is defined for (g, v) ∈ GOS and (v, e) ∈ E1
OS, as

(g, v) · (v, e) = (v, g · e) and (g, v)|(v,e) = (π(e), g|e). (5-1)

The induced action of (g, v) on a path In(v, e), for (v, e) ∈ E0
OS ×β r En, is

(g, v) · In(v, e) = In(v, g · e), (5-2)

making it clear that the homomorphism φ : GOS → PIso(E∗OS) is faithful. Therefore,
(GOS, EOS) is a self-similar groupoid action on a graph. We call (GOS, EOS) the out-split
of (G, E) by OS.

THEOREM 5.2. Let (G, E) be a self-similar group bundle and EOS an out-split of E.
Then, for μ, ν ∈ E−∞, μ is asymptotically equivalent to ν relative to (G, E) if and
only if I(μ) is asymptotically equivalent to I(ν) relative to the out-split (GOS, EOS).
Consequently, (σ̃,JG,E) is topologically conjugate to (σ̃,JGOS,EOS ).

PROOF. If F ⊆ G is a finite set, we let FOS = {(g, v) ∈ F × E0
OS : d(g) = β(v)}. Then,

μ is asymptotically equivalent to ν if and only if there is a sequence (gn)n<0
contained in some finite set F of G, such that d(gn) = r(μn) and gn · μn · · · μ−1 =

νn · · · ν1 for all n < 0, if and only if there is a sequence (gn)n<0 ⊆ G and a finite
set F ⊆ G such that ((gn, π(μn−1)))n<0 is contained in FOS and satisfies (gn, π(μn−1)) ·
I−n(π(μn−1), μn · · · μ−1) = I−n(π(νn−1), νn · · · ν−1) for all n < 0, if and only if I(μ) is
asymptotically equivalent to I(ν). �

REMARK 5.3. A number of properties are preserved by out-splitting self-similar group
bundles. For instance, using Equations (5-1) and (5-2), it is easy to see that (G, E) is
contracting (or regular) if and only if (GOS, EOS) is contracting (or regular).

5.2. KEP-action models for embedding pairs. Suppose ξ = ξ0, ξ1 : H → E is an
embedding pair and (Gξ, E) its associated self-similar groupoid action. We show there
is a Katsura pair (A, B) such that (GA, EB) is the out-split of (Gξ, E).

Let E0
OS be the set obtained from E1 by identifying the edges ξ0(h) and ξ1(h) for all

h ∈ H1. Let π : E1 → E0
OS be the quotient map. Since the edges being identified share

the same source, there is a unique map β : E0
OS → E0 satisfying β ◦ π = s. Therefore,

the tuple OS = (π, β) determines an out-split (GOS, EOS) of the self-similar group
bundle (Gξ, E). We show (GOS, EOS) is isomorphic to a KEP-action.

If w ∈ π(H1
ξ ), there is a unique h ∈ H1 such that π−1(w) = {ξ0(h), ξ1(h)}. Otherwise,

π−1(w) = {w} ⊆ E1 \ H1
ξ .
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( f , e1)
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(e, f )

FIGURE 4. The out-split associated with Examples 4.1 and 5.5.

Therefore, for v, w ∈ E0
OS, if Av,w � |v(E1

OS)w| > 0, we have

v(E1
OS)w =

⎧⎪⎪⎨⎪⎪⎩{(v, ξ0(h)), (v, ξ1(h))} for some h ∈ H1 if w ∈ π(H1
ξ ),

{(v, w)} otherwise.
(5-3)

In the first case, we denote ev,w,m � (v, ξm(h)) for m ∈ {0, 1} and in the second case,
denote ev,w,0 � (v, w). Replacing the notation (k, v) ∈ GOS with ak

v, we see that when
Av,w � 0, the action and restriction (GOS)v × v(E1

OS)w→ v(E1
OS)w × (GOS)w is given by

(ak
v, ev,w,m)→ (ev,w,m̂, ak̂

w), where

k(Av,w − 1) + m = k̂(Av,w) + m̂ and 0 ≤ m, m̂ < Av,w − 1. (5-4)

Comparing Equation (5-4) with Equations (3-1) and (3-2), we see that (GOS, EOS) is
canonically isomorphic to (GB, EA), where B = (max{0, Av,w − 1})v,w∈E0

OS
. We record

this formally as a corollary to Theorem 5.2.

COROLLARY 5.4. Let ξ = ξ0, ξ1 : H → E be an embedding pair and let (Gξ, E) be
its associated self-similar groupoid action, as described in Section 4.2. Then, the
out-split (GOS, EOS) of (Gξ, E), described in Section 5.2 is canonically isomorphic
to the KEP-action (GB, EA) with A = (Av,w)v,w∈E0

OS
the adjacency matrix of EOS and

B = (max{0, Av,w − 1})v,w∈E0
OS

. Moreover, the limit spaces (σ̃,JGξ ,E) and (σ̃,JGB,EA ) are
topologically conjugate.

EXAMPLE 5.5. Consider again Example 4.1. We have E0
OS = {e, f } and the quotient

map π : E1 → E0
OS satisfies

π(e0) = π(e1) = e, π( f ) = f

and

E1
OS = {( f , f ), (e, f ), (e, ei), ( f , ej) : i, j ∈ {0, 1}}.

The graph E and its out-split OS is recorded in Figure 4. If we order e < f , then the
KEP-action is defined by the matrices

A =
(
2 1
2 1

)
and B =

(
1 0
1 0

)
.
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6. KEP-systems as bundles of odometers

We now provide a description of the KEP-systems (σ̃,JGB,EA ) as a bundle of
dynamical systems that fibre over the shift space of the connectivity graph of EA when
B is a matrix taking values in {0, 1}. Note that from the previous section, this class
includes the dynamical systems arising from embedding pairs.

We go even farther and first describe the connected component space of the limit
space for an arbitrary finitely generated and contracting self-similar groupoid (G, E).
This result does not appear in the literature anywhere else.

Recall that for a topological space X, its connected component space C(X) is the
quotient of X by the equivalence relation ∼C, where x ∼C y if and only if x and y are in
the same connected component.

For a self-similar groupoid (G, E) and μ, ν ∈ E−∞, we say μ ∼e ν if and only if
there is (gn)n<0 ⊆ G such that d(gn) = r(μn) and gn · μn · · · μ−1 = νn · · · ν−1 for all n < 0.
Note that this is the same as asymptotic equivalence, except we do not require the
sequence of groupoid elements to lie in a finite set.

PROPOSITION 6.1. Let (G, E) be a finitely generated and contracting self-similar
groupoid. Then, C(JG,E) = E−∞/ ∼e.

PROOF. Let q : E−∞ → JG,E be the quotient map. We show q(μ) ∼C q(ν) if and only
if μ ∼e ν.

First, suppose μ, ν ∈ E−∞ are such that μ �e ν. Let n < 0 be such that g · μn · · · μ−1 �
νn · · · ν−1 for all g ∈ G such that d(g) = r(μn). Then, the set

Z =
⋃

{g∈G:d(g)=r(μn)}
Z(g · μn · · · μ−1]

is clopen and does not contain ν, which is also saturated with respect to the asymptotic
equivalence relation. Therefore, q(Z) ⊆ JG,E is a clopen set such that q(μ) ∈ q(Z) and
q(ν) � q(Z). Hence, q(μ) �C q(ν).

Suppose now μ, ν ∈ E−∞ are such that μ ∼e ν. Let V = s(E−∞). For n < 0, let

Zn =
⋃

{g∈G:d(g)=r(xn), c(g)∈V}
Z(g · μn · · · μ−1].

Then, Zn−1 ⊆ Zn and μ, ν ∈ Zn for all n < 0. Denote Z−∞ =
⋂

n<0 Zn. We show
J−∞ � q(Z−∞) is connected.

SupposeJ−∞ = J0 ∪ J1, whereJ0,J1 are nonempty, pairwise disjoint and clopen
in the relative topology induced from J−∞. Since Z−∞ is closed and saturated with
respect to the asymptotic equivalence relation, J0 and J1 are also closed in JG,E. Let
X0 = q−1(J0) and X1 = q−1(J1). Let d be an ultrametric metric on E−∞. Since X0 and
X1 are disjoint compact sets and Z−∞ = X0 ∪ X1, there is N < 0 such that for all n ≤ N,
VG · μn · · · μ−1 = P0,n ∪ P1,n, where P0,n ∩ P1,n = ∅ and X0 ⊆ Z0,n �

⋃
y∈P0,n

Z(y],
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X1 ⊆ Z1,n �
⋃

y∈P1,n
Z(y]. In particular, if d(X0, X1) = inf{d(x0, x1) : xi ∈ Xi} = α and

N satisfies supp∈E−N diam(Z(p]) < α, then for n ≤ N, let

P0,n = {p ∈ VG · μn · · · μ−1 : d(X0, Z(p]) < α}.

Since d is an ultrametric, we have Z(p] ∩ X1 = ∅ for all p ∈ P0,n. Therefore, we
may set P1,n = VG · μn · · · μ−1 \ P0,n. Since G is finitely generated, so is the groupoid
G|V = {g ∈ G : d(g), c(g) ∈ V}. Let F be a finite generating set for G|V ; that is,⋃

n∈N Fn = G|V . For each n < 0, choose p0,n ∈ P0,n such that there is fn ∈ F with
p1,n � fn · p0,n ∈ P1,n.

Since r(p0,n), r(p1,n) ∈ V , there are infinite paths x0,n, x1,n ∈ E−∞ such that
x0,n ∈ Z(p0,n] and x1,n ∈ Z(p1,n] for all n < N. Let (nk)k<0 be a decreasing sequence such
that (x0,nk )k<0 and (x1,nk )k<0 converge to x0 and x1, respectively. Since x0,nk , x1,nk ∈ Znk

for all k < 0, we have x0, x1 ∈ Z−∞. Let us show x0 ∈ X0 and x1 ∈ X1.
We have d(y, x0,nk ) ≥ α for all k < 0 and y ∈ X1; for if not, then there is

K < 0, y1 ∈ X1 and y0 ∈ X0 such that d(y0, y1) ≤ max{d(y0, x0,nK ), d(y1, x0,nK )} < α,
contradicting that d(X0, X1) = α. Hence, we have d(X1, x0) ≥ α. It follows
that x0 ∈ Z−∞ \ X1 = X0. By definition, d(X0, x1,nk ) ≥ α for all k < 0, and so
x1 ∈ Z−∞ \ X0 = X1.

Now, we show x0 ∼ae x1. Since (x0,nk )k<0 converges to x0 and (x1,nk )k<0 converges to
x1, there is a nonincreasing sequence (mk)k<0 such that mk ≥ nk, limk→−∞mk = −∞ and
xi,nk

mk · · · x
i,nk
−1 = xi

mk
· · · xi

−1 for each i ∈ {0, 1} and k < 0. If we denote gmk = fnk |p0,nk
nk ···p

0,nk
mk−1

for all k < 0, then it follows that gmk · x0
mk
· · · x0

−1 = x1
mk
· · · x1

−1. Since F is finite and
(G, E) is contracting, we have that F′ =

⋃
n∈N F|En is finite. Define, for mk > n > mk+1,

gn = gmk+1 |x0
mk+1 ···x

0
n+1

. Then, (gn)n<0 ⊆ F′ satisfies d(gn) = r(x0
n) and gn · x0

n · · · x0
−1 =

x1
n · · · x1

−1 for all n < 0. Hence, x0 ∼ae x1.
We have shown q(x0) = q(x1) ∈ J0 ∩ J1, which is a contradiction to the assumption

that J0 ∩ J1 = ∅. Hence, J−∞ is connected and q(μ) ∼C q(ν). �

REMARK 6.2. Let C(G,E) = JG,E/ ∼C and qC : E−∞ → C(G,E) be the quotient map.
Define, for η ∈ En, n ∈ N, the set

Uη = qC

( ⋃
{g∈G:d(g)=r(η)}

Z(g · η]
)
.

These clopen sets form a basis for the quotient topology on C(G,E). It is easy to
see that μ ∼e ν implies σ(μ) ∼e σ(ν), and so there is an induced dynamical system
σC : C(G,E) → C(G,E). It is not typically locally injective, but it is always an open
mapping when (G, E) is contracting.

PROPOSITION 6.3. Let (GB, EA) be a KEP-action such that B ∈ MN({0, 1}). For
μ, ν ∈ E−∞A , μ ∼e ν if and only if μ = ν, or there is K < 0 such that s(μk) = s(νk) � vk

and Bvk−1,vk = 1 for all k ≤ K, and BvK ,vK+1 = 0, μK+1 · · · μ−1 = νK+1 · · · ν−1 if K < 1.
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PROOF. Suppose μ ∼e ν and let (gk)k<0 be a sequence of groupoid elements such that
d(gk) = r(μk) and gk · μk · · · μ−1 = νk · · · ν−1 for all k < 0. Since GB is a group bundle,
the action of it on E∗A preserves the range and source vertices of paths. Therefore,
s(μk) = s(gk · μk) = s(νk) for all k < 0.

If Bvk−1,vk = 0, then we have gk · μk = μk and g|μk = vk, so that μk · · · μ−1 = g ·
μk · · · μ−1 = νk · · · ν−1. So, if Bvk−1,vk = 0 infinitely often, then μ = ν. Otherwise, there
is K < 0 such that Bvk−1,vk = 1 for k ≤ K and BvK ,vK+1 = 0 if K > 1, in which case,
μK+1 · · · μ−1 = νK+1 · · · ν−1.

We prove the reverse direction. For k ≤ K, each Avk−1,vk -odometer action is recurrent
in the sense that given g ∈ GB and e, f ∈ E1

A satisfying d(g) = vk, r(e) = r( f ) = vk−1
and s(e) = s( f ) = vk, there is h ∈ GB such that d(h) = vk−1, h · e = f and h|e = g. It
is then an easy induction argument to see the action of {g ∈ GB : d(g) = vk−1} on
{μ = μk · · · μK ∈ E(K−k)+1

A : r(μ) = vk−1, s(μj) = vj for all k ≤ j ≤ K} is transitive.
It follows that every path η = · · · ηK−1ηK such that s(ηk) = s(μk) for all k ≤ K

satisfies η ∼e · · · μK−1μK . If K = 1, then we are done. Otherwise, since BvK ,vK+1 = 0,
we have ν � ημK+1 · · · μ−1 ∼e μ. �

Since the action of a KEP-action preserves the vertices of paths, there are factor
maps πJ : JGB,EA → E−∞C and πC : CGB,EA → E−∞C , where C is the connectivity matrix
of EA. We can use this factor map to describe the connected components of JGB,EA .
The following fact is contained in the proof of Proposition 6.3.

COROLLARY 6.4. Let (GB, EA) be a KEP-action such that B ∈ MN({0, 1}) and
z ∈ J(GB,EA). Denote πJ (z) = v. Then, z is a connected component if Bvk−1,vk = 0
infinitely often.

PROOF. The fact that z ∈ J(GB,EA) is a connected component if Bvk−1,vk = 0 infinitely
often is contained in the proof of Proposition 6.3. �

We now study the remaining case where πJ (z) = v satisfies Bvk−1,vk = 1 eventually.
Suppose first Bvk−1,vk = 1 for all k < 0. Let Xv = {μ ∈ E−∞A : s(μk) = vk for all k < 0}.

Let ιv : Xv → Av � Πk<0{0, . . . , Avk−1,vk − 1} be the natural identification, where we
send μ = (· · · ev−3,v−2,i−2 ev−2,v−1,i−1 ) to ιv(μ) = (· · · i−2i−1).

Define a mapping Cv : Av → T1 = R/Z by sending i = (· · · i−2i−1) to Cv(i) =∑−∞
k=−1 ik/Av[k,−1]. It is easy to see that Cv : Av → T is a surjection if maxk<0 Av[k,−1] =

∞; for t ∈ [0, 1), write t0 = t, t0 = (t−1 + i−1)/Av−2,v−1 for some t−1 ∈ [0, 1) and
i−1 ∈ {0, . . . , Av−2,v−1 − 1} and inductively tk−1 = (tk + ik)/Avk−1,vk for tk ∈ [0, 1) and
ik ∈ {0, . . . , Avk−1,vk − 1}. Since maxk<0 Av[k,−1] = ∞, we have Cv(· · · i−2, i−1) = t.

If (GB, EA) is regular, the case where maxk<0 Av[k,−1] < ∞ can only happen if
Avk−1,vk = 1 for all k ∈ N. In this case,Av is a single point.

PROPOSITION 6.5. Let (GB, EA) be a regular KEP-action such that B ∈ MN({0, 1}).
Suppose v ∈ E−∞C satisfies Bvk−1,vk = 1 for all k ∈ N. For μ, ν ∈ Av, μ ∼ae ν if and only
if Cv(μ) = Cv(ν).
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PROOF. The proposition is trivial (by regularity) if maxk<0 Av[k,−1] < ∞, so we assume
maxk<0 Av[k,−1] = ∞. Given t ∈ [0, 1), there is a unique choice for (· · · i−2i−1) if and only
if tk � 0 for all k < 0.

If tk = 0 for some k < 0, then if we let K ≥ k be the first number such that iK � 0,
then Cv(· · · 00iK · · · i−1) = Cv(· · · (AvK−2,vK−1 − 1)(iK − 1) · · · i−1), and these are the only
two choices.

Suppose μ ∼a.e. ν for μ, ν ∈ Xv, where a.e. is almost every, and let {gk}k<0 and
F ⊆ N be a finite set satisfy gk · μk · · · μ−1 = νk · · · ν−1 for all k < 0 and gk = amk

r(μk)
for mk ∈ F. By Equation (3-9) and maxk<0 Av[k,−1] = ∞, there is K ∈ N such that
gk|μ[k,k+K−1] = alk

r(μk+K ) for some lk ∈ {−1, 0, 1}. Since {g ∈ GB : g = al
i, l ∈ {−1, 0, 1}} is

invariant under the restriction map, it follows that we may assume gk = amk
r(μk) for

mk ∈ {−1, 0, 1}. Further invariance conditions imply either mk ≥ 0 for all k < 0 or
mk ≤ 0 for all k < 0. It is then routine to see μ ∼ae ν if and only if ι(μ) = ι(ν)
or {ι(μ), ι(ν)} = {(· · · 00ik · · · i−1), (· · · (Avk−2,vk−1 − 1)(ik − 1) · · · i−1)} for some k ∈ N. �

We have for μ ∈ Av,

Cv(μ)Av−2,v−1 = Av−2,v−1

−∞∑
k=−1

in
Av[k,−1]

=

−∞∑
k=−2

ik
Av[k,−2]

= Cσ(v)(σ(μ)).

Therefore, when the connected components above the paths v and σ(v) in the
connectivity graph EC of EA are identified with the circle, the dynamics becomes
z→ zAv−2,v−1 . We are now able to summarise the results of this section into a theorem.

THEOREM 6.6. Let (GB, EA) be a regular KEP-action such that B ∈ MN({0, 1}). Then,
a connected component of JGB,EA is either a point or a circle.

Let C be the graph EA’s connectivity matrix and π : E−∞A →E−∞C and πJ :JGB,EA→
E−∞C be the induced factor maps. For v ∈ E−∞C , let K(v) = −min{k < 0 : Bvk−1,vk = 0}.
Set K(v) = 0 if {k < 0 : Bvk−1,vk = 0} = ∅.

(1) If K(v) = ∞, then π−1
J (v) � π−1(v). Under this identification, σ̃ is the shift

σ : π−1(v)→ π−1(σ(v)).
(2) If K(v) = 0 and maxk<0 Av[k,−1] = ∞, then π−1

J (v) � Tv. Under this identification,
σ̃ is zn : Tv → Tσ(v), n = Av−2,v−1 .

(3) If K(v) = 0 and maxk<0 Av[k,−1] < ∞, then π−1(v) is a single point.
(4) If 0 < K(v) < ∞, then π−1

J (v) � π−1
J (σK(v)(v)) × π−1(vK−1 · · · v1) and cases (2)

and (3) apply to describe π−1
J (σK(v)(v)). Under this identification, σ̃ is

id × σ : π−1
J (σK(v)(v)) × π−1(vK−1 · · · v1)→ π−1

J (σK(v)(v)) × π−1(vK−1 · · · v2).

EXAMPLE 6.7. The description in Theorem 6.6 does not extend when B takes
values different than 0 or 1. For instance, if A = (3) and B = (2), then JGB,EA is
not homeomorphic to the circle. For if J(GB,EA) � T1, then (σ̃,JGB,EA ) is conjugate
to either (α−3,T1) or (α3,T1), where α : T1 → T1 is a homeomorphism isotopic
to the identity. Hence, the K-theory of the C∗-algebra associated to (σ̃,JGB,EA ) is
isomorphic to the K-theory associated to (z3,T1) or (z−3,T1), which by [6, Theorem 3]
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is either (Z/2Z ⊕ Z,Z) or (Z/2Z,Z/2Z). However, by [3], we have O(σ̃,JGB ,EA ) � OA,B
and Katsura shows in [7, Example A.6] that the K-theory of OA,B is (Z/2Z, 0).

7. Planar embedding of Putnam’s spaces

In [13, Question 7.10], Putnam asked when Jξ = E−∞/ ∼ξ embeds into the plane.
In this section, we prove Jξ always embeds into the plane by using our description
of Jξ as the limit space of a regular KEP-action. In particular, Theorem 6.6 gave a
topological description of the limit space when B ∈ MN({0, 1}) as a Cantor set bundle
of circles (with the convention that a point is a circle of radius zero). We use this as
inspiration to define an embedding from the limit space to the complex plane whenever
B ∈ MN({0, 1}) and (GB, EA) is regular. See Corollary 3.14 for a characterisation of
regularity in terms of A and B. Notice that Section 5.2 proved that the KEP-actions
from embedding pairs always have the property that A ∈ MN({0, 1, 2}) and B = (Bij),
where Bij = max{Aij − 1, 0}. Thus, Putnam’s question is answered by the following
more general result.

THEOREM 7.1. Let (GB, EA) be a regular KEP-action such that B ∈ MN({0, 1}). Then,
there is a continuous injection ζ : JGB,EA → C.

COROLLARY 7.2. Let ξ = ξ0, ξ1 : H → E be an embedding pair. Then, there is a
continuous injection ζ : Jξ → C.

To prove these results, we make several definitions to define the map
ζ : JGB,EA → C. First, we assume ‖A‖max = maxi,j |ai,j| > 1, otherwise, JGB,EA � E−∞A
and it is a classical fact E−∞A embeds into C.

Recall that we are working with infinite paths μ ∈ E−∞A with edges labelled by
negative integers μ = · · · μ−2μ−1.

For negative integers m, n such that m ≤ n, let [m, n] = {k ∈ Z : m ≤ k ≤ n}, which
we call an interval. We also consider infinite intervals [−∞, n] = {k ∈ Z : k ≤ n}. We
denote the collection of intervals by I, and if I ∈ I, then we let I−, I+ ∈ Z ∪ {−∞} be
such that I = [I−, I+].

For ei,j,k ∈ E1
A, we let A(ei,j,k) = Ai,j, B(ei,j,k) = Bi,j and #(ei,j,k) = k. If μ ∈ E−∞A , then

let I1(μ) be the collection of intervals I such that B(μj) = 1 for all j ∈ I, and is maximal
with respect to this property. We call an interval in I1 type 1. Similarly, let I0(μ)
denote the maximal intervals I satisfying the property B(μj) = 0 for all j ∈ I and call
these intervals type 0. Then, I(μ) = I0(μ) ∪ I1(μ) is a collection of pairwise disjoint
intervals such that

⋃
I∈I(μ) I = [−∞,−1].

We aim to define an embedding map ζ : E−∞A → C, which has several components.
For −n ∈ N ∪ {∞} and μ = μ−n · · · μ−1 ∈ En

A, we adapt Equation (3-3) by defining

A0
μ =

−n∏
j=−1

(A(μj) + 1) and A1
μ =

−n∏
j=−1

A(μj),
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2 e2,2,0 e2,2,11
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e2,1,1
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e1,1,1e1,1,0
e1,2,1

e1,2,0

FIGURE 5. The graph EA specified by the adjacency matrix A from Example 7.3.

to define

θ0(μ) =
−n∑

j=−1

#(μj)

A0
μ[j,−1]

and θ1(μ) =
−n∑

j=−1

#(μj)

A1
μ[j,−1]

.

Moreover, let M = ‖A‖max = maxi,j |ai,j| and R = M(N + 1), and define

Ω(μ) =
−n∑

j=−1

s(μj)Rj + r(μ−n)R−(n+1).

For an interval I ⊆ [−∞,−1] and μ ∈ E−∞A , let μI = μ[I−, I+]. Define ζ : E−∞A → C
by

ζ(μ) =
∑

I∈I0(μ)

R3I+Ω(μI)e2πi(θ0(μI )) +
∑

I∈I1(μ)

R3I+Ω(μI)e2πi(θ0(μI )). (7-1)

The idea of breaking apart ‘A-ary’ expansion along the intervals in I(μ) was inspired
by Putnam’s construction of a metric for Jξ, where this idea appears in a more basic
form.

For k < 0 and I ∈ I, denote I ∩ [−k,−1] =: Ik. Observe that ζ is continuous, as it is
the uniform limit of (ζk : E−∞A → C)k<0, defined for μ ∈ E−∞A as

ζk(μ) =
∑

I∈I0(μ): k≤I+
R3I+Ω(μIk )e

2πi(θ0(μIk )) +
∑

I∈I1(μ): k≤I+
R3I+Ω(μIk )e

2πi(θ1(μIk )),

which is continuous as it only depends on μ[k,−1].
Before continuing the proof, we consider an example that gives a feeling as to how

the embedding works.

EXAMPLE 7.3. Let (GB, EA) be the KEP-action defined by

A =
(
2 2
3 2

)
and B =

(
1 1
0 1

)
. (7-2)

Then, A is the adjacency matrix for the graph EA depicted in Figure 5.
Notice that there are classical odometers at vertices 1 and 2, along with a countably

infinite number of odometers with range 1 and eventual source at vertex 2. However,
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we only have the one odometer action with range 2, since any groupoid element am
2

restricts to the unit 1 through the edges e2,1,i for i = 0, 1, 2.
Consider the collection of paths with each edge having range and source 1,

O1,1 = {· · · e1,1,m−3 e1,1,m−2 e1,1,m−1 : mi ∈ {0, 1} for all i < 0}

We have that I1(μ) = [−∞,−1] for all μ ∈ O1,1 and, using M = 2, N = 2 and
R = M(N + 1) = 6, we compute

Ω(μ) =
−∞∑

j=−1

6js(μj) =
∞∑

j=1

1
6j =

1
5

and θ(μ) =
−∞∑

j=−1

2j#(μj) =
∞∑

j=1

m−j

2j .

Thus,

ζ(μ) =
1

5 · 63 e2πi(θ(μ)+0) =
1

1080
e2πiθ(μ).

Observe that O1,1 is in bijective correspondence with binary representations of
numbers in [0, 1], reading right to left, and two decimal expansions are equal exactly
when the paths in O1,1 are asymptotically equivalent. Thus, the image of ζ : O1,1 → C
is the circle centred at the origin with radius 1/1080. Moreover, since O1,1 is a classical
odometer, JGB,EA restricted to O1,1 is a circle [11, page 72] and the embedding is
bijective.

Similar computations show that

O2,2 = {· · · e2,2,m−3 e2,2,m−2 e2,2,m−1 : mi ∈ {0, 1} for all i < 0}

maps to the circle centred at the origin with radius 1/540. Moreover, consider

On = {· · · e1,1,m−n−2 e1,1,m−n−1 e1,2,m−n e2,2,m−n+1 · · · e2,2,m−1 : mi ∈ {0, 1} for all i < 0}.

For ν ∈ On, we compute

Ω(ν) =
−∞∑

j=−1

6js(νj) =
n∑

j=1

2
6j +

∞∑
j=n+1

1
6j =

2 − 1
6n

5
.

Thus,

ζ(ν) =
2 − 1

6n

5 · 63 e2πiθ(ν) =

( 1
540
− 1

1080 · 6n

)
e2πiθ(ν).

So, for each n ∈ N, we have a circle centred at the origin of radius 1/540 −
1/(1080 · 6n).

Now, we consider a collection that does not give a circle centred at the origin.
Consider the collection

P = {νe2,1,m−1 : m−1 ∈ {0, 1, 2} and ν ∈ On}.

https://doi.org/10.1017/S1446788725101122 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788725101122


[31] Katsura–Exel–Pardo actions and their limit spaces 31

FIGURE 6. The embedding ζ : JGB ,EA → C for Example 7.3. The outer circles are centred at the origin with
radius 1/540 − 1/(1080 · 6n). The other visible circles are scaled copies of the outer circles and continue
ad infinitum.

For η ∈ P, we compute

Ω(η[−1,−1]) =
1
6

and θ(η[−1,−1]) =
#(μ−1)
3 + 1

= {0, 1/4, 1/2}.

Thus, the image of ζ(P) consists of circles of radius 1/63(1/540 − 1/(1080 · 6n))
centred at 1/64, i/64 and (−1)/64.

See Figure 6 for the visible image of ζ : JGB,EA → C.

We must show that for μ, ν ∈ E−A , we have ζ(μ) = ζ(ν) if and only if μ ∼ae ν. One
direction is easy.

PROPOSITION 7.4. Let (GB, EA) be a regular KEP-action such that B ∈ MN({0, 1}).
If μ, ν ∈ E−∞A satisfy μ ∼ae ν, then ζ(μ) = ζ(ν).

PROOF. Proposition 6.5 shows that μ ∼ae ν for μ � ν if and only if there is k < 0 and
I = [−∞, k] ∈ I1(μ)∩I1(ν) such that μ[k+1,−1] = ν[k+1,−1], s(μj)= s(νj)=: vj, Bvj−1,vj = 1
for all j ≤ k, and Cv(μ[−∞,k]) = Cv(ν[−∞,k]).

Since μ[k+1,−1] = ν[k+1,−1] and s(μj) = s(νj) for all j ≤ k, we have that I0(μ) = I0(ν),
I1(μ) = I1(ν) and Ω(μI) = Ω(νI) for all I ∈ I(μ), as well as θi(μI) = θi(νI) for all
I ∈ Ii(μ) \ [−∞, k], for i ∈ {0, 1}. The equality θ1(μ[−∞,k]) = θ1(ν[−∞,k]) follows
from Cv = θ

1|Av and the above paragraph. All the above equalities then imply
ζ(μ) = ζ(ν). �

To prove the converse direction requires a more careful analysis that we undertake
through a series of lemmas.
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LEMMA 7.5. Let (GB, EA) be a regular KEP-action such that B ∈ MN({0, 1}). Suppose
μ, ν are in E−∞A and let J ∈ I(μ) and K ∈ I(ν) be the intervals containing −1,
respectively. If J− ≤ K−, −∞ < K− and Ω(μK) � Ω(νK), then ζ(μ) � ζ(ν).

PROOF. We can write R3ζ(μ) = wΩ(μK) + r and R3ζ(ν) = zΩ(νK) + s for some
w, z ∈ T and r, s ∈ C such that |r|, |s| ≤ R(K−−1)N/(R − 1). For any 0 < p, q ∈ R, we
have |wp − zq| ≥ |p − q|. It follows that

R3|ζ(μ) − ζ(ν)| ≥ |Ω(μK) −Ω(νK)| − R(K−−1)2N
(R − 1)

≥ R(K−−1) − R(K−−1)2N
(R − 1)

= R(K−−1)
(
1 − 2N

R − 1

)
=: (∗).

As R = M(N + 1) and M ≥ 2, we have

(∗) = R(K−−1)
(
1 − 2

M
1

1 + 1
N −

1
MN

)
≥ R(K−−1)

(
1 − 1

1 + 1
N −

1
MN

)
> 0. �

LEMMA 7.6. Let (GB, EA) be a regular KEP-action such that B ∈ MN({0, 1}). Suppose
μ, ν are in E−∞A , and let J ∈ I(μ) and K ∈ I(ν) be the intervals containing −1.
If J− < K−, then ζ(μ) � ζ(ν).

PROOF. If Ω(μK) � Ω(νK), then Lemma 7.5 implies ζ(μ) � ζ(ν), so assume
Ω(μK) = Ω(νK). Therefore, J and K are of the same type. We denote this type by
i ∈ {0, 1}. We have

R3|ζ(μ)| ≥ |Ω(μJ)e2πi(θi(μJ ))| − R3J−
∞∑

j=1

N
Rj = Ω(μJ) − R3J−N

R − 1

and

R3|ζ(ν)| ≤ |Ω(νK)e2πi(θi(νK ))| + R3K−
∞∑

j=1

N
Rj = Ω(νK) +

R3K−N
R − 1

.

Therefore,

R3|ζ(μ)| − R3|ζ(ν)| ≥ Ω(μJ) −Ω(νK) − N
R − 1

(R3J− + R3K−).

Since Ω(μK) = Ω(νK), we have

Ω(μJ) −Ω(νK) ≥
−J−+1∑

j=−K−+2

1
Rj ≥

RK−−1

2(R − 1)
,

so to show |ζ(μ)| > |ζ(ν)|, it suffices to show

RK−−1

2(R − 1)
>

N
R − 1

(R3J− + R3K−).
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Or equivalently, by dividing the above inequality by the left-hand side, show
1 > 2N(R3J−−K−+1 + R2K−+1). Using 3J− − K− + 1 ≤ −3 and K− ≤ −1, we have
2N(R−3 + R−1) ≥ 2N(R3J−−K−+1 + R2K−+1), so it suffices to show R3 > 2N(1 + R2).
Using R = M(N + 1) and M ≥ 2, we have

R3 = MNR2 + R2 ≥ 2NR2 + R2 > 2NR2 + 2N = 2N(1 + R2). �

LEMMA 7.7. Let (GB, EA) be a regular KEP-action such that B ∈ MN({0, 1}). Suppose
μ � ν are in E−∞A such that ζ(μ) = ζ(ν). Let j < 0 be the largest number such that
μj � νj and let J1(μ) ∈ I(μ) and J1(ν) ∈ I(ν) be the intervals containing j. Then,
J1(μ)+ = J1(ν)+.

PROOF. Let k > j be the smallest number such that k = I−μ and k = I−ν for some
Iμ ∈ I(μ) and Iν ∈ I(ν). Since μm = νm, for all m ≥ k, it follows that Iμ = Iν. Thus,
there exists z ∈ C such that ζ(μ) = z + R3kζ(σ|k|(μ)) and ζ(ν) = z + R3kζ(σ|k|(ν)).
Hence, ζ(σ|k|(μ)) = ζ(σ|k|(ν)). Denote μ′ = σ|k|(μ) and ν′ = σ|k|(ν). Let us now show
J1(μ)+ = k − 1 = J1(ν)+, or equivalently, J1(μ′)+ = −1 = J1(ν′)+. Let K1(μ′) ∈ I(μ′)
and K1(ν′) ∈ I(ν′) be the intervals containing −1.

By minimality of k, either j − k ∈ K1(μ′) or j − k ∈ K1(ν′) or [K1(μ′)]− � [K1(ν′)]−.
Hence, we have either:

(1) j − k ∈ K1(ν′) ∩ K1(μ′);
(2) j − k � K1(ν′) ∩ K1(μ′) and j − k ∈ K1(ν′) ∪ K1(μ′); or
(3) [K1(μ′)]− � [K1(ν′)]− .

Let us confirm the lemma in each case.
Case (1). If j − k ∈ K1(ν′) ∩ K1(μ′), then J1(μ′) = K1(μ′) and J1(ν′) = K1(ν′).

Hence, J1(μ′)+ = [K1(μ′)]+ = 1 = [K1(ν′)]+ = J1(ν′)+.
Case (2). If j − k � K1(ν′) ∩ K1(μ′) and j − k ∈ K1(ν′) ∪ K1(μ′), then either

K1(μ′)− < K1(ν′)− or K1(ν′)− < K1(μ′)−. In either case, Lemma 7.6 implies
ζ(μ′) � ζ(ν′), which is a contradiction.

Case (3). If j − k � K1(ν′) ∪ K1(μ′), then K1(ν′)− > j − k, K1(μ′) > j − k and
ν′m = μ

′
m for all m ≥ j − k. Therefore, we have [K1(ν′)]− = [K1(ν′)]−. However, this

is a contradiction to the assumption in case (3). �

LEMMA 7.8. Let (GB, EA) be a regular KEP-action such that B is in MN({0, 1}).
Suppose μ, ν are in E−∞A and let J ∈ I(μ) and K ∈ I(ν) be the intervals containing
−1. If −∞ < J−, J = K and Ω(μJ) = Ω(νJ), then θk(μJ) � θk(νJ) implies ζ(μ) � ζ(ν).

PROOF. Note that Ω(μJ) = Ω(νK) implies J = K is type 1 for μ and ν, or type 0 for μ
and ν. We denote this shared type as k. From Ω(μJ) = Ω(νJ), we have Ak

μJ
= Ak

νJ
=: A.

Therefore, we may write θk(μJ) = m/A and θk(νJ) = n/A for some m, n ∈ N ∪ {0} such
that m, n < A. By the hypothesis, we have m � n. Hence,

|e2πiθk(μJ ) − e2πiθk(νJ )| = |1 − e2πi(n−m)/A| ≥ |1 − e2πi/A|.
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Denote −J− =: j and Mk =M+1−k. We have A≤Mj
k and, since θk(μJ) � θk(νJ), A > 1.

Therefore,

|1 − e2πi/A| ≥ |1 − e2πi/Mj
k | =

√
2 − 2 cos

( 2π

Mj
k

)
= 2 sin

(
π

Mj
k

)
.

Putting these two inequalities together, we have

|e2πiθk(μJ ) − e2πiθk(νJ )| ≥ 2 sin
(
π

Mj
k

)
. (7-3)

Denote Ω(μJ) = Ω(νJ) =: ω and write ζ(μ) = (ω/R3)e2πiθk(μJ ) + (1/R3j)ζ(σj(μ)), ζ(ν) =
(ω/R3)e2πiθk(νJ ) + (1/R3j)ζ(σj(ν)). Using Equation (7-3) and |ζ | ≤ N/R3(R − 1), we see
that

|ζ(μ) − ζ(ν)| ≥ 2
ω

R3 sin
(
π

Mj
k

)
− 2N

R3j+3(R − 1)
. (7-4)

From ω ≥ ∑j+1
i=1 1/Rj ≥ 1/2(R − 1) and sin(x) ≥ x − x3/3! for all x ≥ 0, we have

2
ω

R3 sin
(
π

Mj
k

)
− 2N

R3j+3(R − 1)
≥ 1

(R − 1)R3

(
π

Mj
k

− π
3

6M3j
k

)
− 2N

R3j+3(R − 1)
. (7-5)

By multiplying the right-hand side of inequality (7-5) by M3j
k R3(R − 1), we see that,

by inequality (7-4), to prove the lemma, it suffices to prove

M2j
k π −

π3

6
>

2NM3j
k

R3j .

Note that

2NM3j
k

R3j ≤ 2N(M + 1)3j

(N + 1)3jM3j ≤
4(M + 1)3j

23jM3j ≤ 4.

Therefore,

M2j
k π −

π3

6
−

2NM3j
k

R3j ≥ M2j
k π −

π3

6
− 4 ≥ 4π − π

3

6
− 4 > 0. �

THEOREM 7.9. Let (GB, EA) be a regular KEP-action such that B ∈ MN({0, 1}).
If μ, ν ∈ E−∞A are such that ζ(μ) = ζ(ν), then either μ = ν or there is k < 0 such
that μ[k,−1] = ν[k,−1], [−∞, k − 1] ∈ I1(μ) ∩ I1(ν), s(μj) = s(νj) for all j ≤ k − 1 and
θ1(μ[−∞,k−1]) = θ1(ν[−∞,k−1]).

PROOF. If μ = ν, we are done, so suppose μ � ν. Let j < 0 be the largest number such
that μj � νj and let J ∈ I(μ) and K ∈ I(ν) be the intervals containing j and note that
Lemma 7.7 implies that J+ = K+.
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We claim that it suffices to show that J− = K− = −∞ and that J = K is of
type 1. Indeed, If this is the case, denoting μ′ = σ|J

++1|(μ) and ν′ = σ|J
++1|(ν),

then 1/R2Ω(μJ)e2πiθ1(μJ ) = ζ(μ′) = ζ(ν′) = 1/R2Ω(νJ)e2πiθ1(νJ ). This implies that
Ω(μJ) = Ω(νJ) and e2πiθ1(μJ ) = e2πiθ1(νJ ), which is the case if and only if s(μj) = s(νj) for
all j ≤ k − 1 and θ1(μ[−∞,k−1]) = θ1(ν[−∞,k−1]).

Suppose either −∞ < J or −∞ < K. Then, one of J− < K− or K− < J−, or J = K
and −∞ < J−. In the first two cases, Lemma 7.6 implies ζ(μ′) � ζ(ν′), which is a
contradiction. In the final case, Lemma 7.5 implies ζ(μ′) � ζ(ν′) if Ω(μJ) � Ω(νJ) and
Lemma 7.8 implies ζ(μ′) � ζ(ν′) if Ω(μJ) = Ω(νJ), which is a contradiction in both
cases.

Therefore, we must have J− = K− = −∞. For ν ∈ E−∞A , #(νi) ≤ A0
νi
− 2 for all i < 0.

Hence, e2πiθ0 : E−∞A → T is injective. Therefore, if J was type 0, then e2πiθ0(μJ ) =

e2πiθ0(νJ ) implies μJ = νJ , which is a contradiction. So, J is of type 1 and the proof
is complete. �

COROLLARY 7.10 (Proof of Theorem 7.1). Let (GB, EA) be a regular KEP-action such
that B ∈ MN({0, 1}). If μ, ν ∈ E−∞A are such that ζ(μ) = ζ(ν), then μ ∼ae ν. Therefore,
ζ : JGB,EA → C is an embedding.

PROOF. The characterisation of ζ(μ) = ζ(ν) in Theorem 7.9 is equivalent to μ ∼ae ν
(see Proposition 6.5 or the proof of Proposition 7.4). �
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