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Introduction

When studying the solutions of elliptic boundary value problems in a
bounded, smoothly bounded domain DczRn we often encounter the formula

r r * * •> ("00 ifyeD (la)
\u(x) / - y(x, y)~y(x, y) / - u(x)\ dSx = My) if ye 3D (Ib)

JUDI dnx dnx J ^ 0 if y $ D (lc)

where u(x) e C2(D)n>C'(D) is a solution of the second order self-adjoint elliptic
equation

Lu(x) = (A±k2)u(x) = 0, x e D (2)

and — denotes differentiation along the inward normal to 3D at x e 3D.
8nx

y(x, y) is a fundamental solution of (2), and as such has at x = y a singularity
described by

- —\og\x-y\ ifn = 2,

y(x, y)-
2n

^—r(-)n-"2\x-y\2-" if it £3.
L2n-4 \2

(3)

The results (la) and (lc) can be obtained in a straightforward way by
applying Green's Theorem to u(x) and any fundamental solution which is
defined in a sufficiently large domain. However the result (Ib) is neither as
obvious nor as easily obtained as is generally claimed in textbooks, though,
as we shall see, it is true in the sense of the theory of distributions for fundamental
solutions which, apart from a singularity of type (3) at x = y, are regular in
Dx D. For other choices of the fundamental solution (e.g. the Dirichlet
Green's function) not satisfying this restriction, (Ib) is meaningless unless a
suitable definition can be given for the left hand side. In this paper we shall
establish (Ib) for fundamental solutions having the required behaviour in Dx D
and shall show that when a maximum principle is available (L = A-k2,
k2 ^ 0) (Ib) can be made meaningful in the distributional sense for the Dirichlet
Green's function of L and D. It is sufficient to demonstrate this for L = A.

1 Now at the Department of Mathematics, University of Strathclyde.
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1. For convenience we restrict ourselves to the case n = 2. Results for
n ^ 3 follow in a similar manner. Fix y e 3D and let Ke be the disc of radius
e centred at y. Let Se = dKer\D. Applying Green's Theorem to w(x) and
y(x, y) in D — Kc and performing a simple residue calculation, noting that on
Se we have

, . 1 , 3 5
y(x, J O ~ - — log a, — = —

27t o«x oe
and rfS, = erf0 (0 ±S 0 ^ 7t), we obtain the result

lim \()
JaD-Kc (.

Therefore to establish (16) it suffices to show that

( )

lim f \u(x) ~ y{x, y)-y(x, y) A u(x)l dS, = My)-

lim f \ ~ y(x, y) - y(x, y) -f- u(x)\ dSx = 0. (4)

Since 3D is smooth, we have in a neighbourhood of y, dSx ^ dr where

r = | x—y |. Since u(x) is continuous in I) it follows that
dnx

(5)lim I y(x, y) — u(x)dS;c = lim — — u(y) \ log rdr = 0.

Finally, let r(x) denote the radius of the circle Cx through x and y which
is tangent to dD at x. Since 3Z> is smooth, r(x)-*R, the radius of the osculating
circle for 3D at y, as x->^. Thus for e small enough and x e dDr\Ke it follows
that r(x) ^ -̂ i?. If a is the angle between the vector from y to x and the inward
normal nx to 3D at x we have, since | nx \ = 1 and | Vx \ x—y || = 1, that

cos a<

By the

and hence

geometry

^ 1
~ In

nx.

of the circle

we have at once

lim 1

cos
X -

that

V*log

Cxit

y\

u(x)

x-y

follows

1 <
2r(x) -

— v(x.

2n

that

1
R

v)dSr

1

\x-y

= 0.

This completes the proof of (4) and so of
2. The harmonic Green's function, G(x, y), of D is defined for x e 5,

y $ 3D by G(x, >0 = }>(x, j ) + w(x, 7), where y{x, y) is the function on the
right hand side of (3) and

Axw(x, y) = 0, x e D,
w(x, y) = - y(x, y), x e 3D.
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G(x, y) is positive for x,yeD (1, p. 262). Since G{x, y) is not properly defined
for y e 3D, the appropriate form of (Ib), namely

JdD
u(x) — G(x, y)dSx = iu(y), ye 3D (6)

requires interpretation.
To this end let Ge(x, y) be the harmonic Green's function for the region

De = Dr\Kt. Applying (1Z>) over D with y{x, y) = Gc(x, y), we obtain

f u(x) A G.(x, y)dSx- f G,(x, y) / - u(x)dSx = i«(y).

Fix e0. For e<e0, GEO(JC, y) — Gc{x, y) is harmonic in De and non-negative on
dDe. By the maximum principle it is non-negative in Dt.

Thus

G&x,y)j-u[x)dSx S constj

As in (5) above the right hand side tends to zero with e. Hence

lim u(
£-*° JdD

(x) — Gc(x, y)dSx = iu(y), y e 3D.

This shows that in (6) we may interpret — G(x, y) as the limit in the distribution
dnx

sense as e->0 of the well defined functions — G£(x, y) (2, Chapter 2; 3).
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