
ABSTRACT
We present an autonomous visual landmark recognition and pose estimation algorithm designed for 
use in navigation of spacecraft around small asteroids. Landmarks are selected as generic points on 
the asteroid surface that produce strong Harris corners in an image under a wide range in viewing 
and illumination conditions; no particular type of morphological feature is required. The set of 
landmarks is triangulated to obtain a tightly fitting mesh representing an optimal low resolution 
model of the natural asteroid shape, which is used onboard to determine the visibility of each 
landmark and enables the algorithm to work with highly concave bodies. The shape model is also 
used to estimate the centre of brightness of the asteroid and eliminate large translation errors prior 
to the main landmark recognition stage. The algorithm works by refining an initial estimate of the 
spacecraft position and orientation. Tests with real and synthetic images show good performance 
under realistic noise conditions. Using simulated images, the median landmark recognition error 
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is 2m, and the error on the spacecraft position in the asteroid body frame is reduced from 45m 
to 21m at a range of 2km from the surface. With real images the translation error at 8km to the 
surface increases from 107m to 119m, due mainly to the larger range and lack of sensitivity to 
translations along the camera boresight. The median number of landmarks detected in the simulated 
and real images is 59 and 44 respectively. This algorithm was partly developed and tested during 
industrial studies for the European Space Agency’s Marco Polo-R asteroid sample return mission. 

NOMENCLATURE
xAST  superscript denotes quantities in the body frame 
xCAM superscript denotes quantities in the camera frame 
xIM superscript denotes quantities in the image plane 
T denotes matrix transpose 
* denotes quaternion multiplication 
K bold indicates tensor quantities and matrices 
L underline indicates vector quantities 

AMICA   Asteroid Multi-band Imaging Camera 
BRDF   Bidirectional Reflectance Distribution Function 
FOV   Field of View 
GNC   Guidance, Navigation and Control 
NEA   Near Earth Asteroid 
PANGU   Planet and Asteroid Natural Scene Generation Utility 
SPICE   Spacecraft, Planet, Instrument, C-matrix, Events 
SURF   Speeded Up Robust Features 

1.0 INTRODUCTION
Small Near-Earth Asteroids (NEAs) are particularly interesting targets for space exploration for 
a number of reasons. There are roughly 2,000 known NEAs that are energetically easier to reach 
than the surface of the Moon(1) and the weak gravity and lack of atmosphere makes sample return 
missions far more feasible than for larger bodies. Asteroids represent the rubble left over from the 
formation of the rocky planets, and small asteroids in particular are thought to exist in a pristine 
state having undergone minimal processing since formation. As such, analysis of the composition 
and structure of their surface material can provide great insight into the conditions and processes 
at work in the early solar nebula, and retrieval of samples for analysis in Earth laboratories offers 
a much wider range of analysis techniques than is available by in-situ measurements. Often rich 
in rare metals, asteroids also represent a potentially vast reserve of natural resources.

However, the small size and weak gravity also pose significant challenges to the proximity 
navigation and landing(2). The low mass results in an often highly irregular shape, producing a 
weak, irregular gravitational field with orbits strongly perturbed by the Sun third body effect and 
radiation pressure. In addition, the surface normal can have large deviations from the local gravity 
direction, making it difficult to determine which way is ‘down’ when close to the surface. The 
small size leads to stringent requirements on the landing precision, and the large distances from 
Earth render teleoperation infeasible over the landing timescale. The use of onboard navigation 
cameras, coupled with intelligent machine vision algorithms, is the crucial enabling technology 
for successful operation in this challenging domain. 
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1.1 Vision-based navigation

The development of machine vision algorithms for navigation purposes is a large and active area of 
research, and a wide variety of systems of varying complexity have been developed for terrestrial 
applications. Major examples include visual odometry for cars(3), state estimation for unmanned 
aerial vehicles(4) and localisation of indoor mobile robots(5). However, the limited processing 
power available onboard spacecraft, combined with the need for highly robust yet autonomous 
algorithms, and the very different environment geometry and dynamics render many terrestrial 
approaches invalid in space. We avoid a thorough review of vision based guidance here, and focus 
mainly on the development of techniques for spacecraft navigation.

The classical method of vision based navigation for interplanetary spacecraft involves observing 
the target while at a large distance and the target is only a few pixels in extent. Measurement of 
the position of the target against the background stars gives a precise estimate of the direction 
towards the target in the inertial frame, a technique known as beacon-based optical navigation(6). 
At closer distances, observations of the limb of the target body can be used in a similar way to 
find the approximate direction to the body centre of mass. The first use of optical navigation in 
the demanding area of planetary entry, descent and landing was the 2003 landing of the Mars 
Exploration Rovers. These used a downward-pointing camera to detect and track surface features 
between pairs of images taken during descent(7). The displacement of features between consecutive 
frames was the only means to detect lateral motion of the landing module induced by winds, which 
was then cancelled by transverse pointing thrusters prior to touchdown. The optical detection and 
tracking of unknown surface features is a major branch of vision based navigation, and work is 
underway on the development of combined camera and dedicated image processing boards to 
support high-framerate feature tracking(8). These algorithms are based ultimately on corner or blob 
detection filters that select distinctive but transient features by looking for maxima in the first 
or second spatial derivatives of the intensity. Common choices are the Harris corner detector(9) 
and the speeded up robust features (SURF) algorithm(10). Tracking features between frames is 
performed by correlation of intensity over small regions surrounding a feature, or more robustly 
by building a rotation and scale invariant description of the local intensity distribution in the case 
of SURF. The displacement of features in the image plane encodes the change in orientation 
and position of the camera from one image to the next, which are ultimately recovered from the 
feature tracks by analysis of the epipolar geometry and essential matrix(11). By tracking transient 
optical features over many frames the trajectory of the camera can be calculated relative to the 
starting point, a mode known as relative navigation. A key shortcoming of relative navigation is 
the gradual accumulation of error: the estimated trajectory takes a random walk away from the 
true trajectory as the navigation filter integrates noisy sensor measurements. The solution to this 
is to periodically reset the filter by directly solving for the instantaneous position and orientation 
of the camera. This is performed by observing landmarks of known 3D position in the target 
body frame. Simultaneous observation of four or more landmarks provides a unique solution for 
the camera position and orientation, or ‘pose’, using photogrammetry techniques (e.g. Ref. 12).

The selection, definition and autonomous recognition of known landmarks is a much more 
challenging task than that of tracking transient optical features. This is because the viewing 
conditions, including the perspective, illumination, rotation and scale of features, may change 
arbitrarily between when the landmarks are first selected and when they are observed again later. 
The descriptor used to identify each landmark thus needs to be invariant to the viewing condi-
tions, or at least a known function of them in order that it can be updated for the current imagery, 
should the viewing conditions be known. This is in stark contrast to tracking transient unknown 
features, which is only concerned with the displacement from one frame to the next so is subject 
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to much smaller changes in the viewing conditions, and which only needs to identify landmarks 
uniquely within their immediate surroundings so can tolerate a simpler description of the landmark.

Several variants of known landmark recognition have been used in spacecraft navigation over 
the years. The earliest implementation was during the NEAR-Shoemaker mission, where craters on 
the surface of asteroid Eros were used as landmarks. Orbital corrections were computed on-ground 
by matching observed craters against a database of craters compiled during the initial mapping 
phase of the mission(13). Craters are good landmarks because they are prominent features that can be 
described by a simple geometric model and matched on the basis of both their size and orientation.

In recent missions, a more sophisticated technique has been developed that uses small 3D digital 
models of arbitrary patches on the target body as landmarks: these ‘L-maps’ are rendered into 
the navigation imagery and aligned with the real image by correlation of intensity. This approach 
was developed during the Hayabusa mission(14) and has been used recently during the Dawn 
mission encounter with asteroid Vesta(15). The benefit of this approach is that it does not rely on a 
particular type of morphological feature, such as craters, which may not be present. It is also an 
intrinsic part of the target characterisation and mapping process, which uses a technique called 
Stereophotoclinometry to estimate the global shape model for the target(16). 

1.2  Marco Polo-R scenario

The known landmark recognition algorithm presented in this paper was initially developed during 
an industrial assessment study for the Marco Polo-R mission. Marco Polo-R was a mission concept 
to land a spacecraft on a small NEA, collect a sample of material from the surface and return it to 
Earth(17). It was a candidate for the M3 launch opportunity within the Cosmic Vision programme(18) 
although was not eventually selected. The algorithm as described here is a refined version based 
on the outcome of tests performed during the study, which ranged from software-only tests using 
fully simulated imagery, to high fidelity robotic simulations using 3D models, scaled dynamics 
and real optical sensors.

The vision segment of the navigation system consists of a combination of feature tracking 
and landmark recognition. The feature tracking algorithm employs the Harris corner detector to 
select points and intensity correlation to track them through later frames, and is described in Ref 
19. The landmark recognition algorithm was used at the start of the descent and landing phase to 
initialise the navigation filter. It had to satisfy a range of explicit and implicit constraints imposed 
by the mission scenario and the space environment, which had a major impact on the design of 
the system. These constraints are as follows: 

No colour Navigation cameras built for spacecraft take monochrome images, so landmark 
recognition cannot use colour to discriminate between landmarks. Note that even if colour images 
were used, asteroids tend to have very small colour variation anyway so this would be of limited use. 

Highly concave body Small asteroids are not large enough for gravity to pull them into a spherical 
shape, and they can exhibit very concave forms with the asteroid Itokawa being a classic example. 
This is important because landmarks may be wholly or partially obscured by intervening terrain, 
and determining the visibility of landmarks on a concave body is a much more difficult task than 
for roughly-spherical convex bodies where a landmark is only obscured if it lies over the horizon. 

Self-similar surface with no craters Unlike nearly all larger bodies in the solar system, small 
asteroids do not necessarily have a cratered surface. In fact it is impossible to guarantee the existence 
of any particular type of geological feature as not much is known about the morphology of these 
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objects. It is likely that much of the surface is highly self-similar and lacks any type of regular 
feature for which a simple geometric description would suffice. In particular, the algorithm should 
not be based on crater recognition.

1.2.1 Prior information

The mission scenario and the design of the rest of the guidance, navigation and control (GNC) 
system mean that several pieces of prior information are available to aid in landmark recognition. 
During an initial phase of global characterisation, a digital 3D shape model of the asteroid is 
computed from which a database of landmarks can be extracted on ground and uploaded to the 
spacecraft. The shape model is assumed to be computed by applying stereophotoclinometry 
techniques to images of the target, a process which can produce a shape model with a resolution 
matching that of the highest resolution images. A major component of the landmark recognition 
algorithm involves the landmark definition and the selection and construction of the database 
from the digital shape model.

An estimate of the spacecraft position and orientation in the asteroid body frame at the time 
the landmark recognition algorithm is triggered is also available. The landmark recognition 
algorithm uses this in conjunction with the real time navigation imagery and the landmarks 
database in order to identify landmarks and refine the pose estimate, which is then used to reset 
the navigation filter at the start of the descent and landing. The accuracy and error distribution of 
the initial pose estimate is of prime interest: the orientation of the spacecraft in the asteroid body 
frame is relatively well known, as the orientation in the inertial frame is known accurately from 
star tracker measurements and the inertial-frame orientation of the asteroid is reasonably well 
known from measurement of the rotational pole and rate during earlier characterisation phases. 
We have assumed a conservative orientation error distribution that is characterised by an angular 
error distributed uniformly in the range [–2:2] degrees, about an axis distributed isotropically 
on the unit sphere. The position error is somewhat less certain, due to the relative instability of 
orbits about small, irregular bodies. The position in the inertial frame is estimated on ground 
using Doppler measurements or delta-DOR(20), which provides an accuracy of around 50m at the 
nominal range to the target from Earth. This is fused with the onboard position estimate, which 
due to the use of a laser altimeter results in an estimate of the spacecraft position which is more 
certain along the line of sight to the asteroid than in the transverse directions. We have therefore 
adopted a model for the spacecraft position error that has components distributed uniformly in 
the range [–50:50] metres in directions perpendicular to the direction towards the asteroid, and 
in the range [–5:5] metres along the line of sight to the asteroid. Note that these are expressed in 
the inertial frame: the position error in the asteroid frame is inflated due to the uncertainty on the 
orientation, although the component along the line of sight remains unchanged.

The range at which the landmark recognition algorithm will be used is known in advance, which 
is useful as this defines the overall scale of asteroid surface features in the images and can be 
used to tailor the landmark database generation. Finally, the direction towards the Sun is known 
accurately onboard, which will turn out to be important later on. 

1.2.2 Landmark definition, extraction and recognition

Landmarks are defined as sites on the asteroid surface that consistently produce strong, stable 
Harris corners(9) when imaged over wide changes in the viewing and illumination angles. The shape 
model of the asteroid is used to identify and select these features by re-imaging it under varying 
conditions. Such sites include prominent boulders on smooth plains, pits containing dark shadows, 
outcrops of rock, peaks and ridges. Selecting landmarks in this manner places no requirements 
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on the types of morphological features present on the surface. The minimum required scale for 
features on the asteroid surface is set by the resolution of the camera and not by the algorithm 
itself; as long as features are present at scales that can be resolved by the camera, then landmarks 
can be extracted. In the tests presented in Sections 4.2 and 4.3, the pixel scale is roughly one metre 
on the asteroid surface, resulting in a minimum feature scale of several metres (allowing for an 
imperfect optical transfer function).

Landmarks are characterised only according to their position in the asteroid body-frame and 
associated uncertainty. The landmark identification algorithm relies on prior knowledge of the 
spacecraft position and orientation, which is used to project the landmark positions into the current 
navigation image. The landmark positions are then compared with the positions of strong Harris 
corners extracted from the current image, and positive identifications are made on the basis of 
proximity alone. The set of identified landmarks is then used to improve the knowledge of the 
spacecraft pose by updating the parameters to bring the projected landmarks into alignment with 
the observed Harris corners.

The full set of 3D landmarks is also triangulated to obtain a low resolution mesh that roughly fits 
the surface of the asteroid. This serves two purposes. First, this allows landmarks lying on the far 
side of the asteroid and those obscured by intervening terrain to be purged from the identification 
step. This is important for highly concave bodies as there is no straightforward way to determine 
the set of visible landmarks, unlike for a roughly spherical body. Second, the low-resolution mesh 
can be used in conjunction with the known sun direction to render a rough image of the asteroid for 
comparison with the observed image. By aligning the simulated and real images, large translation 
errors in the image plane can be greatly reduced prior to the landmark identification step. This 
is important as the proximity-based landmark identification method is highly sensitive to these 
misalignments, which can cause false-positive identifications.

Note that the Harris corner detector has been selected over a range of other point-feature 
detectors(21,22), with the well-established and characterised SURF algorithm(10,23) being the most 
obvious alternative. SURF is a sophisticated feature matching algorithm: it builds a rotation and 
scale invariant description of the features it detects, so that they can be matched in a second image 
under arbitrary rotation and scale changes. However, it is sensitive to variations in the illumination 
angle and rotations not around the camera boresight, both of which occur in the present application, 
so it could not be used for example to match landmarks in the database to features in the images. 
In addition, the scale invariance is not required as the range to the asteroid is known in advance. 
However, the feature detector element of SURF could be used in place of the Harris detector. 
This uses the second spatial derivatives of the image intensity and thus finds maxima and minima, 
or ‘blobs’, of dark and light features. In contrast Harris uses the first spatial derivatives to find 
features where the intensity changes sharply, which have the appearance of corners. The two are 
functionally equivalent in the present context, and the Harris detector was selected due to the fact 
that the optical feature tracking element of the navigation system also used Harris corners, so this 
enabled reuse of the onboard resources; in the complete system, features currently being tracked 
were matched against the landmarks database. 

2.0 LANDMARK DATABASE CONSTRUCTION
This section explains how the asteroid shape model is processed to extract a database of visual 
surface landmarks. The example used is that of asteroid 25143 Itokawa, for which a high resolution 
shape model is available from the Hayabusa Science Archive(24). The model has a resolution of  
~60cm per vertex, with about 1.57m vertices comprising the full set. The model itself is provided 
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in implicitly connected quadrilateral format(16), an efficient format that is used by major space 
agencies for publishing small body shape data. It is particularly suited to complex shaped bodies 
for which the radial vector may in some cases pierce the surface several times. However, the 
particular format of the shape model is irrelevant. 

2.1 Image simulation

The first stage in database construction is to generate a large number of simulated images of the 
asteroid under a wide range of viewing and illumination angles. In this work we use the Planet 
and Asteroid Natural scene Generation Utility (PANGU) tool(25), which is a high-fidelity image 
simulation package tailored to space environments, and is used to test and validate spacecraft 
vision-based guidance systems in software.

The position and orientation of the spacecraft relative to the asteroid, and the direction towards 
the sun are varied from image to image in order to ensure that the whole surface is viewed at a 
range of angles and lighting conditions. The distance to the asteroid is kept fixed at the expected 
operational range, and the image size and field of view is selected to match the parameters of the 
navigation camera. This ensures that surface features in the simulated images are seen at a similar 
scale and resolution as when the landmark recognition algorithm is used. 

2.2 Candidate landmark extraction

The next stage in the landmark extraction process is to apply the Harris corner detector to all the 
simulated images in order to identify candidate landmark sites. PANGU allows points in the 2D 
image to be de-projected in order to find the corresponding 3D point on the surface of the asteroid 
shape model, which enables recovery of the 3D body-frame position of the surface feature lying 
along the line-of-sight towards each Harris corner. These points are considered to be candidate 
landmarks at this stage: the full set of candidate landmarks obtained over all the simulated imagery 
undergoes further processing to extract the final set of landmarks.

Note that not all Harris corners are suitable: in particular, strong corners occuring on the asteroid 
limb generally don’t correspond to fixed surface features but instead mark the position of the 
horizon against the background sky. In order to eliminate these cases, each feature is correlated 
with its immediate surroundings within a 31 × 31 pixel window. Features with one or more strong 
peaks in the correlation (indicating a part of the image similar in appearance) are purged, which 
successfully removes features lying along the limb. 

2.3 Landmark selection and characterisation

The landmark candidates consists of a set of 3D points on the asteroid surface corresponding to 
locations that produced a strong Harris corner in one simulated image. Embedded within this point 
cloud are dense clusters corresponding to prominent, localised surface features that produced 
Harris corners in many simulated images. These indicate the locations of good known landmark 
sites, and they are extracted from the point cloud by applying a 3D spatial clustering algorithm. 
Traditional clustering algorithms such as K-means and expectation maximisation are not applicable 
in this context, because not all points are to be assigned to a cluster. Also, both of these algorithms 
distribute the points among a fixed number of clusters that must be specified in advance, but in the 
present application we want the number of clusters to emerge naturally from the data.

The clustering algorithm designed for this study involves two stages: a preliminary stage of 
initial cluster extraction, followed by a refinement stage of cluster merging and pruning. The initial 
cluster extraction stage works as follows. Each point in the set is selected in turn. The remaining 
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points are then iterated over to search for any that lie within a fixed distance of the starting point. 
These points form a seed cluster, and further points are added to the seed cluster if they lie within 
a fixed radius of the cluster centroid, which is updated as more points are added. Due to the 
updating of the cluster mean position, this stage is repeated until no more points are added, as a 
previously excluded point may move within the cluster radius. Once the points are exhausted, 
the search is repeated but this time instead of a fixed distance threshold for cluster membership, 
the membership criterion is based on the separation distance weighted by the cluster dispersion 
tensor. This allows extraction of clusters with an intrinsic size larger than the seed radius. Diffuse 
clusters that have been truncated by the fixed seed length tend to have a 1σ confidence region 
roughly half that of the seed length at this stage, so a confidence threshold of at least 2σ should 
be used. Empiricially, a 3σ threshold allows a good trade off between extracting diffuse clusters 
and artificially extending compact clusters, and this is the value adopted in this study.

The cluster refinement stage involves merging and pruning sets of nearby clusters that corre-
spond to the same surface feature seen from different angles. This avoids the possibility of many 
landmarks appearing at roughly the same position in an image, which would make it difficult to 
identify the correct one and lead to underestimated uncertainty on the landmark position. Each 
cluster is selected in turn, and the remaining clusters are iterated over to search for any lying within 
a covariance-weighted distance of 9σ (the covariance on both cluster positions is considered). 
Clusters lying within this threshold are considered possible observations of the same surface 
feature. These clusters are tested in pairs to determine if a merger of the two is appropriate. A 
merger is considered appropriate if the sum of the traces of the individual cluster dispersion tensors 
is greater than the trace of the dispersion tensor of the single cluster formed by their merger. Note 
that the trace provides an orientation-independent estimate of the total cluster dispersion, and this 
criterion allows clusters with approximately similar shapes to be merged. For cluster pairs that 
do not satisfy the merger criterion, the less populated of the two clusters is removed from the set. 
These correspond to distinct surface features lying suffificiently close together that they present 
a risk of false positives during the landmark identification stage. Removing the less populated of 
the two reduces the risk of this happening. 

Figure 1 depicts the various stages in the clustering algorithm. Each cluster in the final merged 
set corresponds to one known landmark. The position of each landmark is obtained from the mean 
position of the cluster, and the landmark position uncertainty is obtained from the cluster dispersion 
tensor. The landmark position uncertainty is thus modelled as a multivariate Gaussian in the asteroid 
body-frame coordinates. The covariance terms are important because the covariance ellipsoid 
is usually highly non-spherical: due to the landmarks being confined to the asteroid surface the 
covariance ellipsoid will generally have one principal axis smaller than the others, corresponding 

(a) Seed clusters (b) Merged clusters (c) Corresponding asteroid 

Figure 1. Extracting landmarks from initial cloud of points.
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approximately to the local surface normal direction. Note that although each landmark corresponds 
roughly to one distinct surface feature, the landmark position covariance does not represent the 
uncertainty in the position of the surface feature. Instead, this essentially quantifies the variation 
in the projected location of the Harris corner produced in an image of the feature, under variations 
in the view and illumination angle. 

2.4 Surface triangulation

The landmarks are connected with their neighbours to obtain a polygon mesh that roughly fits 
the surface of the asteroid, and consists of a set of triangular facets with a landmark lying at each 
vertex. The mesh is obtained by first applying a 3D Delaunay triangulation to the landmarks. 
An incremental insertion algorithm is used for efficiency (see Ref 26), though speed is not a 
prime concern during the landmark database construction phase. Note that triangulation methods 
designed for laser range scan data, such as the ball pivoting algorithm(27), are not suitable because 
they are tailored for point clouds that have a characteristic separation between points. In contrast, 
our landmarks are spaced according to the natural distribution of asteroid surface features and 
tend to vary in density across the surface. The Delaunay triangulation of a set of points has the 
property that each simplex (in 3D, a tetrahedron formed by four points) that is a member of the 
triangulation has a circumscribing sphere (in 3D) that does not contain any other points in the 
set. This triangulation tends to avoid long and narrow triangles, and provides outer triangular 
faces that connect nearby landmarks in a manner that closely approximates the natural shape of 
the asteroid. The outer faces can be identified easily by using the constraint that they form part 
of only one tetrahedron in the triangulation. In contrast, all internal triangular faces form part of 
two adjacent tetrahedra.

The outer surface of the Delaunay triangulation provides the convex hull for the landmarks. This 
is not appropriate for the asteroid surface mesh approximation as any landmarks on concave regions 
of the surface lie inside the convex hull. The triangulation thus requires some post-processing to 
extract the concave hull, which has the property that all of the landmarks lie on the outer surface.

The concave hull can be obtained by removing tetrahedra from the triangulation to raise any 
internal points to the surface. In general, the concave hull is not unique and there are a variety of 
ways to remove tetrahedra to accomplish this. However, when landmarks are sufficiently densely 
placed on the surface, one solution is clearly superior. A good heuristic method for obtaining 
the concave hull is to eliminate tetrahedra for which the centre of the circumscribing sphere 
lies outside of the convex hull. This obtains concave regions that are shallow compared to other 
possible solutions (for example those that expose an internal point by piercing a narrow hole 
through the triangulation from the opposite side), resulting in a surface approximation that has a 
low gravitational potential. This method also has the advantage of being easily automated. This 
results in a surface mesh as shown in Fig. 2. 

The final step is to obtain the outwards-pointing surface normal for each triangular facet. Each 
triangle has two possible surface normals pointing in opposite directions perpendicular to the 
plane of the triangle. The direction corresponding to the outward normal, i.e. the direction out of 
the asteroid surface, can be recovered by reference to the full triangulation: the outward-pointing 
normal points away from the tetrahedron that a given triangular facet is part of.

By placing the mesh vertices at the locations of Harris corners and, by proxy, prominent surface 
features, we end up with a rough shape model that optimally captures the natural variation in 
surface texture, that has greater resolution in regions where the surface terrain is more variable, 
and lower resolution in smooth, featureless regions. 
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2.5 Database format

The full database consists of a list of all the landmarks, followed by a list of all the triangular 
facets. Each landmark entry is composed of nine floating-point numbers, three corresponding to 
the landmark mean position and six corresponding to the unique elements of the landmark position 
covariance matrix (which is 3 × 3 and symmetric). Each triangle entry consists of three integers 
that give the indices of the three landmarks in the landmark list that lie at the triangle vertices. The 
outward-pointing normal for each triangle is embedded in the order that the landmark indices are 
listed: the normal n is recovered from the three landmarks L0, L1, L2 using the rule 

                   . . . (1)

where the cross indicates the vector product.

3.0 LANDMARK RECOGNITION
The landmark recognition algorithm operates on images taken by the navigation camera, and aims 
to identify any known landmarks that are presently visible. The basic technique is to project the 
landmarks database into the navigation image, coarsely align it with the observed asteroid image 
based on the brightness centroids, then look for matches between observed Harris corners and 
projected landmarks.

The algorithm requires the camera calibration matrix K, which contains the camera focal lengths 
along each image axis (fi and fj) and the co-ordinates of the principal point (pi and pj). Note that 
the conventional definition of the image axes is used, where i and j are aligned with the X and Y 
axes of the camera frame. K has the form 

                   . . . (2)

 (a) Initial convex hull (b) Extracted concave hull

Figure 2. Extracting a surface mesh using the Delaunay triangulation. 
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with all variables in units of pixels. These quantities are assumed constant during the flight. Also 
required is an initial estimate of the spacecraft position and orientation with respect to the asteroid 
body-fixed frame, in terms of the vector T = (TX TY YZ) and unit quaternion q = (q0  q1 q2 q3) that 
define the transformation from the body-fixed frame to the camera frame (note that strictly   q   = 
1 in order to represent orientation). These quantities change dynamically throughout flight as the 
spacecraft moves around the asteroid. They are estimated continually by the spacecraft navigation 
filter as part of the spacecraft state vector, and they contain noise. The main goal of the landmark 
recognition algorithm is to use observations of known landmarks to reduce the error on T and q. 

3.1 Projection of the landmarks database into the image

Each landmark is defined by the mean LAST and covariance SL
AST of its position in the body-fixed 

frame, where 

                   . . . (3)

The position of each landmark is transformed to the camera frame using standard transformation 
rules, specifically 

                   . . . (4)

where the asterisk denotes quaternion multiplication. Note that an additional zero term must be 
added to the vectors temporarily to allow quaternion multiplication. The landmark position is then 
projected into the image plane using the camera matrix K according to 

                   . . . (5)

The image co-ordinates in pixel units are recovered on division by the perspective co-ordinate ω 

                   . . . (6)

The landmark position covariance matrix is transformed to the camera frame according to the 
standard tensor transformation law 

    SL
Cam = R(q) × SL

ast × R(q)T              . . . (7)

where R(q) is the orthonormal rotation matrix corresponding to the quaternion q, and is calculated 
using 

                   . . . (8)
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Note that R(q–1) = R(q)T. The covariance matrix for the landmark is then projected into the image 
plane by first order propagation, i.e. 

                   . . . (9)

where the Jacobian matrix J contains the partial derivatives of the image plane co-ordinates with 
respect to the camera frame co-ordinates, 

                   . . . (10)

 

3.1.1 Landmark visibility

Not all landmarks can be seen from a given viewpoint, and it is important to identify any that 
are not visible at this stage in order to exclude them from the recognition step. Landmarks lying 
outside of the field of view or behind the camera are trivial to identify based on their image and 
camera frame coordinates, however those lying on the far side of the asteroid or obscured by 
intervening terrain are more difficult. These cases are solved using the surface mesh, as follows: 

Far side test

For each landmark, the surface normals of all triangular facets that it is connected to are computed 
using Equation (1). If all of the surface normals point away from the direction towards the camera, 
then the landmark is judged to lie over the asteroid horizon and is not visible in the current image. 

Intervening terrain test
All landmarks that pass the first test are subject to a more rigorous test designed to identify those 
lying on terrain that faces towards the camera, but which are still obscured due to additional terrain 
lying closer along the line of sight. This test is particularly important for concave bodies. For 
each landmark, all the triangular facets that the landmark is not connected to are tested to check 
if the line of sight vector towards the landmark intersects it, and at what distance. If any triangle 
intersects the line of sight at a closer distance than the landmark, then the landmark is considered 
to be obscured by that section of the mesh and is not visible in the image. Note that this stage can 
be computed in an efficient manner by fitting a minimum bounding sphere to each triangle when 
the database is first loaded, which allows rapid culling of triangles that lie far from the line of sight. 

3.2 Database image rendering and centroiding

The component of the translation error vector lying in the image plane leads to a misalignment 
between the asteroid image and the projection of the landmarks database, which can lead to large 
errors during landmark identification as the main criterion for matching is proximity in the image 
plane. Fortunately, it is possible to significantly reduce the translation error using a pre-processing 
stage that updates the translation estimate so as to align the landmarks database with the asteroid 
in the image plane. This is acheived by using ray tracing techniques to render an image of the 
landmarks database that serves as an approximation to the real image of the asteroid. The update 
to the translation vector is then computed to bring the brightness centroids of the real and synthetic 
images into alignment. This stage is described in more detail in the following sections. 
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3.2.1 Image computation

The image of the landmarks database is computed by first casting a ray out through each pixel 
and finding the intersection between the ray and the landmark surface mesh. The ray r for pixel 
(i,j) is computed by

                   . . . (11)

The point of intersection, if any, between this ray and the landmark surface mesh is found by iterating 
over the mesh and testing each triangle in turn for intersection with the ray. The full computation 
for each triangle is quite costly, so a fast rejection method is used where each triangle is fitted on 
initialisation with a minimum bounding sphere to allow rapid detection and rejection of widely 
non-intersecting rays. Only triangles for which the ray passes within the bounding sphere need to 
be subjected to the full intersection calculation. The full calculation uses standard 3D geometry 
methods and is not repeated here. In general, rays that intersect the landmark surface mesh will 
have two or more intersections corresponding to the near and far sides. The point of intersection 
closest to the camera is the desired one.

Once the intersection point is found, the brightness of the pixel is computed. This is done by 
using the triangle surface normal, the direction towards the camera and the known sun direction 
to estimate the intensity of reflected light. This requires knowledge of the bidirectional reflectance 
distribution function (BRDF) for the asteroid surface material, which defines the ratio between 
the irradiance incident from the light source and the radiance reflected into the view direction. 
Usually, this is estimated during extraction of the initial shape model, so it is assumed that this 
function is known reasonably well. In the case of Lambertian reflectance, the BRDF is simply the 
cosine of the angle between the light source direction and the surface normal.

Finally, self-shadowing is important at all but very low solar phase angles, especially for concave 
bodies, and must be considered when rendering the image of the landmarks surface mesh. Once the 
point of intersection between a given ray and the surface mesh is found, a second ray is projected 
from the intersection point towards the sun. Any intersection between this ray and another section 
of the surface mesh indicates that the original intersection point is in shadow. These pixels are set 
to black in the simulated image. Figure 3 shows a simulated image of a landmarks database at a 
significant solar phase angle, with evident self-shadowing. 

3.2.2 Translation update

The correction to the translation vector is computed from the centres of brightness of the observed 
and simulated images, which are calculated according to 

                   . . . (12)

Unit vectors in the camera frame pointing towards each of these centroids, denoted r̂_obs and r̂_sim , 
are then found by deprojecting the centroid image co-ordinates using Equation (11). The initial 
estimate of the spacecraft position in the asteroid body frame, T , is used to resolve these directions 
into a correction to the translation vector ΔT according to 

                   . . .(13)
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where Cos(θ) = r̂_obs . r̂_sim. The estimated spacecraft translation is then updated to T´ = T + ΔT.
The process of simulating an image of the landmarks database and updating the translation vector 

to align the brightness centroid with the real image is repeated until the centroid position varies 
by fewer than five pixels from one iteration to the next. This is necessary mainly to handle cases 
where either the real or simulated asteroid image lies partially outside the FOV, although even if 
both are fully contained within the FOV a significant ΔT can bring new parts of the database into 
view and perturb the brightness centroid. Figure 3 depicts one iteration of the algorithm, showing 
the initial fit (left), the rendered database image (centre) and the fit following the alignment of the 
brightness centroids (right). 

3.2.3 Brightness centroid error and surface reflectance function

The success of the brightness centroid alignment approach relies on the assumption that the real 
asteroid image and the low-resolution database image have similar brightness centroids when 
seen from the same viewpoint and under the same illumination conditions. Additionally, in order 
to render an image of the database a particular surface reflectance function has to be adopted, and 
while this can be reasonably well constrained during derivation of the shape model, any remaining 
uncertainty will propagate to an error in the brightness centroid.

In order to test the similarity in the brightness centroids and the effect of uncertainty in the 
surface reflectance function, we conducted a Monte Carlo simulation that involved rendering 
1,000 images of the database along with a corresponding image of the high resolution asteroid 
shape model. The orientation of the asteroid was randomly drawn for each sample, and a random 
solar phase angle of up to 45° was used in order to test the effect of self-shadowing on the centroid 
deviation. In each case, the brightness centroid of the database image and the simulated asteroid 
image were measured.

The results are plotted in Fig. 4. Each graph plots the results of 1,000 tests, with the ellipses 
indicating the 1σ sample covariance. The three cases correspond to three different choices for the 
real asteroid surface reflectance function. On the left, the Lambertian reflectance function was used, 
which is a standard model of diffuse reflectance and is a common default in computer graphics. 
In the centre, the Oren-Nayar reflectance function was used(28), which models the reflectance of 
rough diffuse surfaces such as plaster and cloth. On the right, the Hapke reflectance function 

(a) Initial database projection (b) Rendered image of database 
mesh

 (c) Fit following centroid alignment 
surface

Figure 3. Landmarks database and asteroid fitting based on brightness centroid alignment. The mesh 
resolution is on average much lower but is tailored to optimally match the surface terrain, with lower 

resolution in featureless regions and higher resolution in regions of greater surface variation. 
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was used(29), which models the reflectance of particulate surfaces including Lunar regolith. This 
exhibits an unusual reflectance with a strong backscattering component towards the light source. 
This selection covers a wide range of possible reflectance functions. In all three cases the database 
image was rendered using the Lambertian reflectance function, so that the latter two cases test the 
effect of an incorrect surface reflectance function on the brightness centroid.

The results in Fig. 4(a) indicate that the brightness centroids of the high-resolution asteroid image 
and the low-resolution database image match to within 1-2 pixels when the reflectance function 
is consistent between the two. The results in Figs 4(b) and 4(c) show that when the incorrect 
reflectance function is used, the centroids may deviate by up to ~4 pixels. Note that in the test 
images, which are similar to Fig. 3, the asteroid subtends around 200-300 pixels depending on the 
configuration so an offset of 1-2 pixels is approximately a one percent deviation. 

3.3 Landmark detection and matching

Landmark identification is performed on the basis of proximity in the image plane between observed 
Harris corners (i, j) and projected landmarks (î , ĵ). Strong Harris corners are extracted from the 
image using the same algorithm used during database construction. These are matched with 
nearby known landmarks using a covariance weighted distance measure calculated according to 

                   . . . (14)

The covariance matrix quantifies the uncertainty on the known landmark position, and is calculated 
according to Equation (9). The closest Harris corner to each known landmark is considered a 
positive match if it lies within 6σ of the landmark (d 2 < 36) and the pairing is reciprocal, i.e the 
Harris corner does not lie closer to another landmark. This threshold is configurable and was 
selected in these tests based on the deviation of observed landmarks from their predicted positions 
following the database rendering and centroiding step. 

(a) Lambert  (b) Oren-Nayar  (c) Hapke 

Figure 4. Deviation in the brightness centroid position between a simulated high-resolution image of the 
asteroid and a corresponding image of the (low-resolution) database surface mesh from the same viewpoint, 

under different assumptions about the surface reflectance function type.
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3.4 Pose estimation

Once the set of recognised known landmarks has been established, the landmark observations 
are used to refine the estimated spacecraft position and orientation. This is achieved by 
adjusting the position and orientation parameters to bring the projected landmarks into 
better alignment with the observed Harris corners to which they are matched. A two stage 
pose estimation algorithm is adopted. In the first stage, a closed-form algorithm is applied 
to the observed landmarks to solve for the spacecraft position and orientation directly, 
without recourse to the initial estimated pose. This amounts to solving the Perspective-n-
Point problem of computer vision, and we use the efficient algorithm of Ref. 12 to obtain 
a solution in a single step. This provides a good starting point for the second stage, which 
involves performing a non-linear optimisation. Note that the original estimated spacecraft 
pose is accurate enough to perform known landmark identification, but usually too coarse to 
optimise directly as the optimisation tends to get stuck in local minima. This motivates the 
need for the additional direct pose estimation stage.

The optimisation stage uses a classic non-linear parameter estimation algorithm where the 
parameters of the spacecraft pose are iteratively updated in order to reduce the total repro-
jection error, which is the displacement in the image plane between the observed landmarks 
position and the predicted location given the current parameters solution. Because the various 
quantities involved in the optimisation are somewhat complex, the algorithm is described in 
greater detail here. 

3.4.1  Relevant quantities

The parameter vector x contains the free parameters of the pose estimation problem, namely the 
quaternion and vector components that describe the orientation and position of the camera frame 
relative to the landmarks database frame: 

                   . . . (15)

Given a set of N identified landmarks, the data vector D has a size of 2N × 1 and contains the 
observed image co-ordinates for each landmark: 

                   . . . (16)

Each landmark has a corresponding entry in the 2N × 1 model vector M, which contains the image 
co-ordinates computed by projecting the landmarks 3D position into the image plane given the 
current solution for the spacecraft pose: 

                   . . . (17)

The basic assumption is that these are coincident (i = î , j = ĵ) given the correct pose solution, up 
to an error quantified by the covariance matrix for (î , ĵ). Note that uncertainty on the observed 
position is considered to be zero. In addition, the covariance between landmarks is assumed to 
be uncorrelated. The covariance matrix for the complete problem thus has the following block 
diagonal form: 

x q q q q T T TX Y Z
T= [        ]0 1 2 3

D i j i j i j i jN N
T= [          ]1 1 2 2 3 3

1 1 2 2 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆM = [          ]T

N Ni j i j i j i j
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                   . . . (18)

where each block consists of the image plane covariance matrix for one landmark. The inverse 
of SLM  has the same block diagonal structure, and is obtained by replacing each block with it’s 
inverse which is simple due to the symmetry, e.g.: 

                   . . . (19)

The objective function for the problem is the total covariance weighted reprojection error, which 
is the sum of the geometric distance between observed and projected landmarks weighted by SM

–1, 
and coincides with the chi-square statistic: 

                   . . . (20)

The Jacobian matrix contains the partial derivatives of the model with respect to the free parameters, 
and has the form 

                   . . . (21)
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The Jacobian elements can be computed analytically by considering the transformation from the 
landmarks frame to the camera frame followed by the projection into the image plane. For example, 
the first elements of rows one and two are, from Equations (5) and (6), 

                   . . . (22)

where fi and fj  are the camera focal lengths along the i and j directions in the image plane. The 
remaining column entries of J (the partial derivatives with respect to the parameters q1, q2, q3, TX, 
TY, TZ) can be computed by replacing q0 in Equation (22). The partial derivatives of the landmark 
position vector in the camera frame with respect to the free parameters are 

                   . . . (23)
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3.4.2 Parameter updates

The iterative pose estimation procedure involves calculating updates to the parameters vector x 
that drive the weighted total reprojection error χ2 in Equation (20) towards zero. The parameter 
update vector 
 

for each iteration is calculated according to the Levenberg-Marquardt algorithm, which has the form 

                   . . . (24)

The parameter λ is the damping factor. Equation (24) is solved for δ in a numerically stable manner 
by using the LUP decomposition to avoid explicit inversion of the 7 × 7 matrix  JT SM

–1 J + diag(JT 

SM
–1 J). The update to the parameters is then applied according to 

Note that the update to the parameters results in an attitude quaternion that in general no longer has
q = 1, and it is important to renormalise the attitude quaternion elements after each parameter 
update. 

3.4.3  Outlier rejection

Pose estimation is somewhat sensitive to incorrect landmark matches, so an iterative outlier rejection 
scheme is used in order to purge these. Once the pose estimation algorithm has converged, the set 
of identified landmarks is tested for consistency between the updated model and observed position; 
any model landmarks found to now lie greater than 6σ from their observed counterpart are removed, 
and any newly identified landmarks, given the updated model, are added to the set. This scheme 
is repeated until a stable set of landmarks is found, which typically occurs after 2-3 iterations. 

3.4.4 Convergence

The convergence of the pose estimation algorithm and the ability for noisy known landmark 
observations to constrain the spacecraft pose were tested in a Monte Carlo fashion using many 
sets of simulated landmark data generated from the landmarks database described in Section 4.1. 
Each realisation was produced by randomly positioning the camera at a fixed range of 2km from 
the asteroid pointing towards the asteroid centre, and projecting the database into the image plane. 
Ten landmarks were selected at random and observed image plane positions were drawn from the 
landmark covariance matrices, producing a set of ten known landmark observations for input to 
the pose estimation algorithm. The histograms in Fig. 5 show the results of 100,000 trials, in terms 
of the distribution of errors on the camera/asteroid relative pose following algorithm convergence. 
The attitude error is computed as the error in the relative orientation of the camera and asteroid 
body frame, and the translation error is the error in the position of the camera in the asteroid 
body frame†. These metrics will be used later to determine the algorithm performance in more 
realistic scenarios. Note that in the non-linear-only case, the initial pose estimate was obtained by 
disturbing the ground truth spacecraft pose by adding random translation and orientation errors 
drawn from Gaussian distributions of standard deviation 50m and 2°, respectively. This margin 
is representative of the expected errors in a real scenario. 
 † Which is distinct from the position of the asteroid in the camera frame, which is considerably less uncertain due to errors in the asteroid orientation 
inflating the former translation error. The position of the spacecraft in the asteroid body frame is the quantity more relevant to navigation.
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For the assumed initial pose estimation dispersion, the non-linear optimisation scheme does 
not achieve good results on its own, due to getting stuck in local minima. The closed-form pose 
estimation algorithm gives better performance, however the full algorithm that uses the closed-
form followed by non-linear optimisation gives the best results. Note that the absolute accuracy of 
the pose solution is affected significantly by the number of landmarks observed, their distribution 
in the image plane and the camera field of view; the performance in more realistic scenarios is 
demonstrated in Section 4. 

3.5 Profiling

The execution times for various stages in the complete landmark recognition algorithm are listed 
in Table 1. These were measured during the tests with simulated images presented in Section 4.2, 
and were performed on a Toshiba Satellite Pro laptop with an Intel i5 CPU running at 2.40GHz. 
The database rendering stage is by far the most intensive, taking around 30 seconds for a 512 ×  
512 pixel image. However, the implementation presented in this paper is based on ray-tracing for 
simplicity, while in a real application the considerably faster polygon shading technique could 
be used to reduce execution time. In addition, if the algorithms are implemented in a dedicated 
image processing FPGA there may be opportunity to use a GPU-style architecture to further reduce 
execution time. In any case, this paper is concerned with the performance of the algorithms rather 
than their implementation in real hardware.  

Figure 5. Comparison of pose estimation methods applied to simulated data. Note that the histograms are 
normalised to units of frequency per degree and metre respectively. 

Stage   Execution time 
Database image rendering  32.7s 
Brightness centroid measurement  6.70ms 
Feature extraction  758ms 
Landmark recognition and pose estimation  520ms

Table 1
Execution times for various stages in the landmark recognition algorithm
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4.0 TESTING AND RESULTS
In order to test the performance of the full visual landmark recognition algorithm in a realistic 
scenario, images of asteroid Itokawa were obtained under known ground-truth spacecraft pose and 
illumination conditions. These were then processed by the known landmark recognition algorithm 
using a degraded pose in order to simulate realistic uncertainty on the spacecraft position and 
orientation.

Two sets of images were used. The first was generated artificially using the PANGU tool to 
render images of the high resolution Itokawa shape model. This model was also used to derive 
the known landmarks database. This set provides a very large number of images under a wide 
range of viewing conditions for robust statistical analyis. It also allows us to de-project points in 
the image to recover their 3D position on the asteroid surface, which enables an important test 
of the landmark recognition error that is not possible with real images. The second set of images 
was selected from real Itokawa image data taken by the Asteroid Multi-Band Imaging Camera 
(AMICA) instrument on the Hayabusa spacecraft. These images are limited in number, and have a 
limited range of illumination conditions: the sun is mostly in opposition due to the sun-synchronous 
orbit used by Hayabusa. The ground-truth spacecraft pose is obtained from the mission SPICE 
kernels, which are reconstructions of the ephemeris and attitude obtained by reprocessing all of 
the available sensor data, including the imaging data and shape model. No formal estimate of the 
accuracy is available from the SPICE kernels, but inspection of the alignment between the asteroid 
body and the landmarks database indicates that errors are small enough for the trajectory data to 
be considered ground truth for the purposes of these tests. These images are of interest as they 
demonstrate performance of the algorithm on real mission data affected by image noise and other 
degradations. They also implicitly validate the approach of extracting the landmarks database from 
the derived shape model (rather than e.g. directly from the images). This is important because any 
systematic errors in the shape model or the database construction procedure would not be apparent 
in the tests using only simulated images. 

4.1 Landmarks database

The landmark database used in these tests was generated from a set of 500 simulated images of the 
Itokawa shape model. The camera was placed at a distance of 2km from the asteroid at a random 
position in the asteroid body frame, oriented to point towards the asteroid centre. The Sun was 
randomly positioned such that the camera-asteroid-Sun phase angle was less than 60 degrees. Two 
databases were generated tailored to each of the two test scenarios: for the simulated images tests, 
the database was generated using the Lambert BRDF in order to match the reflectance function 
used to generate the test images. This database contains 409 landmarks which are connected by 
814 triangles comprising the surface mesh. In the real images tests, the database was generated 
using the Oren-Nayar BRDF in order to more closely match the surface reflectance function 
seen in the real images of Itokawa, which is considerably flatter with less backscattering than the 
Lambert BRDF. This database consists of 337 landmarks and 670 triangles, slightly fewer than 
for the Lambert case because the flatter BRDF results in lower contrast surface features producing 
fewer distinctive landmarks. 

4.2 Simulated images

A set of 6,000 simulated images of Itokawa was generated in a similar manner to the images used 
to generate the landmark database. The camera was placed at distance of 2km from the asteroid 
origin in a random direction, and oriented to point the boresight towards the origin. The camera 
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field of view was set to 18.3°, a value identified as a good trade off between the ability to view 
the surface at high resolution while fitting the entire asteroid in the image. This was the value 
adopted for the navigation camera in the Marco Polo-R studies. The generated images were 512 
× 512 pixels, which is smaller than normal for navigation cameras (which often have 1,024 × 
1,024) but enables faster processing for Monte Carlo simulations. At the nominal range (2km) and 
asteroid radius (200m) this results in a pixel scale of roughly 1.13m on the asteroid surface, which 
corresponds to an asteroid rotation of ~0.324  (as viewed from the spacecraft) and a spacecraft 
translation in the asteroid frame of ~11.3m. These set approximate limits on the accuracy of the 
asteroid position and attitude determination obtainable from imaging data.

The estimated position and attitude used as input to the landmark recognition algorithm was 
generated from the ground truth by adding random errors according to the following scheme. The 
main sources of error, according to Section 1.2, are in the spacecraft position and the asteroid 
orientation in the inertial frame. The spacecraft position knowledge was degraded by adding a 
random vector with components in the camera frame uniformly distributed within the ranges 
[–50:50] metres in the X and Y axes (lying in the image plane), and [–5:5] metres in the Z axis 
(along the boresight). The uncertainty in the spacecraft position along the boresight is lower due 
to the presence of a laser altimeter. The error distribution for components perpendicular to the 
boresight are determined by the accuracy of position estimation available by ground-based orbit 
determination. The asteroid orientation knowledge was degraded by adding a rotation about a 
random axis, with a magnitude uniformly distributed in the range [–2:2] degrees. Once the degraded 
position and attitude of the spacecraft and asteroid have been set in the inertial frame, the relative 
position and attitude are computed for input to the landmark recognition algorithm. 

4.2.1 Pose estimation error

The distribution of errors on the spacecraft position and orientation in the asteroid frame before 
and after the landmark recognition algorithm has operated are shown in Fig. 6. The median error 
on the attitude is reduced from 1.00° to 0.58°, and that on position is reduced from 45.3m to 
20.9m. Note that the median is a more appropriate statistic than the mean due to a small number 
of high outliers. The position error distribution following convergence also changes shape, with 

Figure 6. Spacecraft attitude and translation error distributions before and after the landmark recognition 
algorithm has converged. The attitude error is the rotation required to align the estimated and ground 

truth asteroid body frames. The translation error is the difference between the estimated and ground truth 
position of the spacecraft in the asteroid body frame. The improvement in position knowledge following the 
intermediate step of database rendering and centroiding is also shown on the right. Note that this step does 

not improve the knowledge of the orientation, so is not shown on the attitude plot.
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the error perpendicular to the boresight (the XY components) being reduced and the error along the 
boresight (Z component) inflated: the root-median-square error in each component changes from 
(27.1, 27.4, 2.45)  to (10.2, 10.1, 8.11). This is due to the fact that images are less sensitive to the 
along-boresight position, especially when the field of view is small. In practice, fusion with an 
altimeter would reduce the along-boresight error. Interestingly, outlying points tend to have large 
errors on both the position and the attitude and arise due to incorrect landmark identifications; 
in these cases, the asteroid is incorrectly ‘rolled’ about an axis perpendicular to the line of sight, 
causing both the attitude and position to diverge. When incorporated into a navigation system, 
these cases would presumably be detected by the navigation filter and rejected. 

4.2.2 Landmark recognition error

The image simulation environment allows pixels containing the asteroid image to be de-projected 
to obtain the 3D position of the corresponding point on the asteroid surface. This enables an 
important test for the landmark recognition robustness, as it allows the 3D position of the known 
landmark in the database to be compared with the 3D position of the surface point that has been 
matched with the landmark. As landmarks are not individually recognisable, the only way to 
check that a correct identification has been made is to test the offset between the known landmark 
position in the asteroid body frame (recorded in the database) and the de-projected position of the 
surface point. The pose estimation algorithm requires that these points are coincident, up to an 
error characterised by the position covariance matrix for the known landmark. This can only be 
tested on a statistical basis by analysing a large enough set of landmarks. 

The error distributions for all recognised landmarks is shown in Fig. 7. These distributions consist 
of 337,854 individual landmark observations over 6,000 images in the test sequence, for an average 
of 56 landmarks per frame. The median absolute landmark recognition error is 1.99m. Folding 
in the landmark covariance, the χ2 distribution is somewhat broader than expected from theory (a 
three degree-of-freedom χ2 corresponding to the three spatial dimensions in which landmarks are 
localised); this would seem to indicate that the true error distribution on the landmark position 
is not truly Gaussian and is likely broader and flatter. However the assumption of a Gaussian 
distribution greatly simplifies matters by allowing straightforward error propagation, and the good 
overall accuracy vindicates this approach. 

Figure 7. Deviation between the 3D position of the known landmark in the database, and the point on the 
asteroid surface identified with the landmark. The error is expressed in terms of the absolute deviation in 
metres (left) and the covariance-weighted squared deviation (the χ2 statistic; right). The median absolute 
error is 1.99m. The fact that the observed χ2 distribution is broader than expected indicates that the true 

landmark position error distribution is broader than Gaussian. 
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(a) Initial fit prior to landmark recognition

(b) Rendered landmarks database for iteration 1

(c) Converged solution

Figure 8. These figures depict various stages in the execution of one test using a real image of asteroid 
Itokawa. They have been cropped for clarity. Figure 8(a) presents the initial noisy projection of the landmarks 

database into the image; the black and red spots show the brightness centroids for the real asteroid and 
the rendered landmarks database, respectively. The blue ellipses indicate the 6σ matching radius for each 
of the model landmarks, which lie at the vertices of the mesh. Figure 8(b) shows the rendered landmarks 

database corresponding to 8(a): this is produced using the Oren-Nayar reflectance function in an attempt to 
match the flat, low contrast reflectance exhibited by the real asteroid. Figure 8(c) shows the final converged 
solution. The red diamonds mark Harris corners detected in the real image, a subset of which correspond to 

the observed locations of known landmarks.
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4.3 Real images

A set of 132 real images of the asteroid Itokawa were selected for use in these tests. These were 
taken by the Hayabusa spacecraft on the 1st October 2005 from the ‘home’ position at a distance 
of 8km from the asteroid, using the AMICA instrument(24,30). AMICA has a FOV of 5.83° and takes 
images of 1,024 × 1,024 pixels; at the nominal altitude of home position the entire asteroid is in 
the FOV. AMICA also has four 200 × 200 pixel polarizers mounted along one edge, which result 
in reduced intensity over roughly one fifth of the image. This effect would be difficult to simulate 
during the database rendering step, so the images were chosen with Itokawa in a configuration 
that leaves it clear of the masked area. The AMICA pixel scale of ~0.00569° pix–1 provides a 
resolution of ~0.78m pix–1 on the asteroid surface, which corresponds roughly to an asteroid 
rotation of ~0.223° and resulting spacecraft displacement in the asteroid body frame of ~31m. The 
smaller FOV and higher pixel resolution may therefore offer greater constraint on the orientation 
relative to the tests with simulated images, however the larger range to the asteroid will inflate 
the translation errors. In addition, the real images are slightly out of focus and it was necessary to 
increase the kernel size of the Harris corner detector in order to detect larger scale features that are 
not obliterated by the blurring. An image from the test sequence is shown in Figure 8(a), together 
with the initial noisy projection of the landmarks database. The same error distributions are used 
as in the simulated images case, and each real image was used ten times with ten noise realisations 
in order to increase the sample size to 1,320. Figure 8(b) shows the rendered database image for 
the first iteration, using the Oren-Nayar reflectance function to more closely match the observed 
reflectance (compare this to Fig. 3(b) that uses the Lambert BRDF). Figure 8(c) shows the final 
fit for this test following convergence of the landmark recognition algorithm. 

4.3.1 Pose estimation error

The distribution of errors on the spacecraft orientation and position in the asteroid frame, before 
and after the landmark recognition algorithm has converged, are shown in Fig. 8. The median 
error on the orientation is reduced from 1.04° to 0.90°, whereas the median error on the position 
has increased from 107m to 119m. The position is not very well constrained due to the large 
distance to the asteroid: a small orientation error leads to a large change in the spacecraft position 
in the asteroid body frame. These errors are larger than expected based on a simple extrapolation 
from the simulated images tests to account for the smaller FOV and larger range, and presumably 
are increased due to the blur in the real images. The root-median-square position error in each 
component, expressed in the spacecraft frame, changes from (59.3, 58.0, 3.4) to (74.7, 46.7, 
43.1). The behaviour is similar to the simulated images tests: the along-boresight position error is 
inflated due to the lack of sensitivity in this direction. Again, fusion with an altimeter would reduce 
this. Interestingly, the position error in the spacecraft Y axis (vertical in the images) is the only 
component to be reduced, presumably because in these particular images the asteroid is primarily 
aligned with and extended along the X axis (horizontal in the images — see Fig. 8), resulting in 
reduced localisation in that direction relative to the perpendicular direction. 

4.3.2 Number of detected landmarks

The number of landmarks detected in each image, for both the simulated and real image tests, 
is shown in Fig. 10. Pose estimation formally requires a minimum of four landmarks in order to 
reach a unique solution; this is satisfied in all test cases. The median number of detected landmarks 
is 59 in the simulated images and 44 in the real images. The difference is consistent with the 
differing landmark database size for each scenario (409 versus 337), which is ultimately caused 
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by the different levels of contrast in surface detail caused by variations in the reflectance function. 
There does not appear to be a significant degradation in landmark recognition when moving to 
real images, which suggests the algorithm is robust to realistic image noise and that the method 
of defining the landmarks database is valid. 

5.0 DISCUSSION

5.1 Realism

The tests presented in Section 4 have been designed to be as realistic as possible within the limitations 
imposed by computer simulation. Images from navigation cameras and other GNC sensory inputs from 
real mission data are not usually available as the scientific instruments are given downlink priority. 
On-ground tests with real cameras require complex and expensive equipment such as the robotic 

Figure 9. Error distributions on the spacecraft orientation and position in the asteroid body frame, before and
after the landmark recognition algorithm has converged. The plots show the results of 1,320 tests performed
on real images of the asteroid Itokawa, and are analagous to the results derived from simulated images that

are presented in Fig. 6.

Figure 10. Number of landmarks detected per image, for both the simulated and real image test scenarios. 
The median in each case is 59 and 44, which is consistent with the different sizes of the landmark database. 

 (a) Simulated images  (b) Real images
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facility(31) that was used during the Marco Polo-R industrial studies that tested a previous version of 
the algorithm presented in this paper. (Note that as the algorithm is an extended and refined version of 
that used during the industrial studies, the results from those high-fidelity tests are likely not realistic 
for the algorithm in its current state.) Using a combination of computer simulated and real images 
from non-navigation cameras is the most feasible means of testing the algorithm for this paper. The 
simulation scenarios and parameters used in the tests derive from those adopted for the industrial studies, 
and were selected to be representative of a real asteroid optical navigation scenario. For example, 
the camera field of view was identified as a good trade off between high resolution and wide angle 
in order to optimise the surface pixel scale. The altitude at which the landmark recognition is used 
and the range of Sun elevations are selected considering that the spacecraft commences the descent 
and landing phase from either a self-stabilised terminator orbit or inertial hovering above the landing 
site(2). The initial errors on the spacecraft/asteroid relative pose are derived considering the accuracy 
of star trackers, delta-DOR positioning, and the likely knowledge of the asteroid rotational state and 
ephemeris following the global characterisation phase and observations leading up to the encounter. 
The main limitation of simulated images is the lack of a realistic optical and electronic noise model, 
which was the motivation for including tests using real images from the Hayabusa mission. While 
AMICA is not a navigation camera, it is the same general type of instrument (a framing camera) with a 
detector size (1,024 × 1,024 pixels) equal to that of the navigation camera considered during the Marco 
Polo-R studies(8). Navigation cameras tend to use CMOS detectors whereas AMICA uses a CCD so 
the electrical noise will be a little different, but overall the effects of noise can likely be mitigated by 
judicious choice of filter sizes within the algorithm. 

5.2 Relation to existing optical navigation strategies

An alternative optical navigation algorithm, developed recently and employed by the Dawn and 
Hayabusa missions(16, uses landmarks that consist of small 3D shape models of isolated patches 
of the asteroid surface. These typically contain around 10,000 vertices, and tens to hundreds of 
them are pieced together over the whole asteroid in order to constrain the global shape model in an 
offline analysis. Only a small subset are used during optical navigation; these are projected into the 
image plane and rendered, then aligned with the observed asteroid features in order to constrain the 
spacecraft pose. Both the L-map method and the method presented in this paper use landmarks that 
are robust to variations in the view and illumination angles. In the L-map method this is achieved 
by rendering the landmarks using the (approximately) known values of these angles; our method 
achieves this by selecting landmarks that are stable under wide variations in these angles. Both 
methods can filter out landmarks that lie on the far side of the asteroid, by looking for landmarks 
for which the surface normal points away from the camera. However, in our method knowledge 
of the complete asteroid shape allows the identification of landmarks that lie on terrain facing 
towards the camera but that are obscured by intervening terrain, so it can potentially provide better 
performance on highly concave or irregular bodies. Our method uses a whole-asteroid alignment 
approach to reduce the lateral translation errors, by using an optimized low-resolution polygon mesh 
representation of the asteroid global shape. The L-map method does this using multiple individual 
landmarks. It is possible that the mesh allows comparable constraint on the lateral translation while 
being smaller than even a single 10,000-vertex L-map, although the sophistication and complexity 
of L-maps relative to our landmarks (Harris corners) likely gives better constraint on the position 
of individual landmarks, and thus better constraint on the final spacecraft pose. A full trade off of 
the performance and process burden of the two methods is outwith the scope of this paper; we feel 
that the two methods are complementary, and the use of a surface mesh could be combined with 
L-map based landmarks to exploit the best features of each algorithm. 
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6.0 CONCLUSION
In this paper we have presented an autonomous landmark recognition and pose estimation algorithm 
designed for use in vision-based navigation of spacecraft about small asteroids. The algorithm is 
based on the use of prominent Harris corners as known landmarks, and identifies them based on 
proximity in the image plane between predicted and observed Harris corners. In addition a rough 
surface mesh model is used to determine the visibility status of each landmark, and to simulate the 
brightness centroid in order to reduce large transverse position errors. The algorithm was tested on 
sets of simulated and real images. In the real images, the Harris corner detector filter size had to 
be enlarged in order to overcome blurring in the image and detect larger scale features. With that 
tuning, no major sensitivity to noise was detected in the landmark recognition process and the two 
test scenarios identified the same number of landmarks, once the differing size of their landmark 
databases was taken into account. The accuracy of pose estimation is dependent on the range to the 
target, as at larger ranges the orientation error causes the position error to be inflated. This, in addition 
to a slight blurring, led to poorer constraint on the spacecraft position in the real images tests. It was 
also found that the pose estimation solution was less constrained in the along-boresight direction, 
suggesting that fusion with an altimeter would be a natural extension to the system. The position 
error for landmarks based on Harris corners was found to be broader than Gaussian, and is induced 
by changes in the view and illumination angles. This non-Gaussianity may have an impact on GNC 
systems that assume Gaussian error models. In addition, the assumed surface reflectance function had 
an impact on the accuracy of the brightness centroid modelling, although at a relatively low level.

Possible future refinements include considering all observed Harris corners within the matching 
radius of a landmark as potential matches, and using a RANSAC scheme among all possible 
landmark matches to reject outliers and identify the most reliable set of landmark observations. 
In addition, the approach of using a surface mesh to model the brightness centroid and test the 
landmark visibility on a concave body is quite general and can be used with other more sophis-
ticated types of landmark such as SURF features or L-maps. The process of reducing translation 
errors in the image plane by aligning the brightness centroids of the observed and simulated images 
could be enhanced by using whole-image alignment. Finally, the stages of database rendering 
and landmark recognition could be coupled to ensure that the pose estimation algorithm gives 
a final result that maintains a consistent model and observed brightness centroid, which could 
detect outlying pose estimation solutions. 
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