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The Abel–Jacobi map for higher Chow groups
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Abstract

We construct a map between Bloch’s higher Chow groups and Deligne homology for
smooth, complex quasiprojective varieties on the level of complexes. For complex projec-
tive varieties this results in a formula which generalizes at the same time the classical
Griffiths Abel–Jacobi map and the Borel/Beilinson/Goncharov regulator type maps.

1. Introduction

Let CH •(X, •) be the higher Chow groups as introduced by Bloch [Blo86a], and let H•
D(X, Z(•))

be Deligne cohomology. Bloch [Blo86b] constructed, for X smooth, a cycle-class map

cp,n : CH p(X,n)→ H2p−n
D (X, Z(p)).

A somewhat different, but equivalent, approach using extension classes, is presented in [DS91] and
[Sch93]. The purpose of this paper is to give an explicit description of this map in terms of currents.
More specifically, we are interested in the case where X is a smooth projective variety defined over
C, and the higher cycle group in question is that of the nullhomologous cycles CH p

hom(X,n). The
results of this paper pertain to this restricted setting.

As suggested by the title of this paper, we are generalizing the classical Abel–Jacobi map in-
volving a membrane integral (Griffiths’ prescription) and the Borel/Beilinson/Goncharov regulator
type maps involving multiple logarithms, to higher Chow groups. To state this more precisely, we
recall that there is a short exact sequence:

0→ H2p−n−1(X, C)
F pH2p−n−1(X, C) + H2p−n−1(X, Z(p))

→ H2p−n
D (X, Z(p))

→ H2p−n(X, Z(p)) ∩ F p → 0.

Put

CH p
hom(X,n) = ker{CH p(X,n)→ H2p−n

D (X, Z(p))→ H2p−n(X, Z(p))}.

Definition 1.1. The induced map

Φp,n : CH p
hom(X,n)→ H2p−n−1(X, C)

F pH2p−n−1(X, C) + H2p−n−1(X, Z(p))

is called the Abel–Jacobi map.
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The Abel–Jacobi map for higher Chow groups

Let m = dim X. By Poincaré and Serre duality, we will think of this map in the form

Φp,n : CH p
hom(X,n)→ {F

m−p+1H2m−2p+n+1(X, C)}∨
H2m−2p+n+1(X, Z(m− p))

.

We will use the cubical complex description of CH p(X,n) throughout this paper (see § 2). Cycles
live in X×�n, where �n := (P1

C
\{1})n has coordinates (z1, . . . , zn), and there are projection maps

πX : X × �n → X and π� : X × �n → �n. Consider an irreducible subvariety Z ⊂ X × �n, of
codimension p, and a form ω ∈ Fm−p+1Ω2m−2p+n+1

X∞ (X).
One considers the current associated to Z, defined by its action on ω:

1
(2πi)n−p

[ ∫
Z\{Z∩π−1

� ([−∞,0]×�n−1)}

π∗
�((log z1) dlog z2 ∧ · · · ∧ dlog zn) ∧ π∗

Xω

+ (−2πi)
∫

{Z∩π
−1
� [−∞,0]×�n−1}

\{Z∩π−1
� ([−∞,0]2×�n−2)}

π∗
�((log z2) dlog z3 ∧ · · · ∧ dlog zn) ∧ π∗

Xω + · · ·

+ (−2πi)n−1

∫
{Z∩π−1

� ([−∞,0]n−1×�)}
\{Z∩π−1

� ([−∞,0]n)}

π∗
�(log zn) ∧ π∗

Xω

+ (−2πi)n
∫

ζ
π∗

Xω

]
.

Here the latter term is a membrane integral, and log zi represents the branch of the logarithm with
argument in (−π, π) (same for every zi).

Theorem 1.2. The map Φp,n is induced by the above current.

Remark. Strictly speaking, in terms of homology the Tate twist should be 1/(2πi)m−p+n in the
above formula. However, we felt it was more natural to give a cohomological formulation of the
map, where the extra (2πi)m is lost in passage from Deligne homology to cohomology, as indicated
in § 5.6.

The plan of the paper is as follows. After reviewing the classical situation (n = 0), we arrive at
the formula for the Abel–Jacobi (AJ ) map, based on a cup-product calculation at the generic point.
This was the point of view adopted by the second author. Around the same time the first author
arrived at the formula based on a morphism of complexes. This is fully explained in [Ker03], and
the relevant points are explained here. By comparing the extension class [Sch93] construction with
the above formula, we arrive at the above theorem. We are grateful to S. Bloch for remarking that
the AJ map can be described in terms of the dilogarithm associated to the ‘Totaro’ cycles that are
discussed in [Blo91]. This led to the inclusion of an example in § 5.7 below.

2. Some definitions

2.1 Higher Chow groups
A reference for this section is [Blo86a]. Let W/C be a quasiprojective variety. Denote by Zk(W ) the
free abelian group generated by subvarieties of codimension k in W . Consider the n-simplex

∆n = Spec
{

C[t0, . . . , tn]
(1−∑n

j=0 tj)

}
� Cn.

We set

Zk(W,n) := {ξ ∈ Zk(W ×∆n) | every component of ξ meets
all faces {ti1 = · · · = ti� = 0, � � 1} properly}.
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Note that Zk(X, 0) = Zk(W ). Now set ∂j : Zk(W,n) → Zk(W,n − 1) to be the restriction to the
jth face (given by tj = 0). The boundary map

δ =
n∑

j=0

(−1)j∂j : Zk(W,n)→ Zk(W,n − 1)

satisfies δ2 = 0.

Definition 2.1. From [Blo86a], CH k(W, •) = homology of {Zk(W, •), δ}. We put CH k(W ) :=
CH k(W, 0).

Cubical version. Let �n := (P1 \ {1})n with coordinates zi and 2n codimension-one faces obtained
by setting zi = 0,∞, and boundary maps ∂ =

∑
(−1)i−1(∂0

i − ∂∞
i ), where ∂o

i , ∂∞
i , denote the

restriction maps to the faces zi = 0, zi = ∞, respectively. The rest of the definition is completely
analogous except that one has to divide out degenerate cycles. The precise description is given in
§ 5.2. It is known that both complexes are quasiisomorphic.

2.2 Deligne cohomology
Working in the analytic topology, we introduce the Deligne complex (for any subring A ⊆ R)

AD(k) : A(k)→ OX → Ω1
X → · · · → Ωk−1

X︸ ︷︷ ︸
call this Ω•<k

X

.

Definition 2.2. Deligne cohomology is given by the hypercohomology

H i
D(X, A(k)) = Hi(AD(k)).

From the short exact sequence

0→ Ω•<k
X [−1]→ AD(k)→ A(k)→ 0,

one has the short exact sequence

0→ H i−1(X, C)
H i−1(X, A(k)) + F kH i−1(X, C)

→ H i
D(X, A(k))

→ H i(X, A(k)) ∩ F kH i(X, C)→ 0.

In particular, the case (A, i, k) = (Z, 2p − n, p) gives the exact sequence in the introduction.

2.3 Deligne homology

In this part, we follow [Jan88] rather closely. Let µ : A• → B• be a morphism of complexes. Then
the cone complex is given by

Cone(A• µ→ B•) := A•[1]⊕B•,
where the differential δ : A•+1 ⊕B• → A•+2 ⊕B• is given by δ(a, b) = (−da, µ(a) + db).

We introduce some notation: Ωp,q
X∞ is the sheaf of C∞ (p, q)-forms on X; ′Ωp,q

X∞ is the sheaf of
distributions over Ω−p,−q

X∞ . Thus for an open set U ⊂ X, an element of ′Ωp,q
X∞(U) is a continuous

linear functional on the compactly supported forms Γc(U,Ω−p,−q
X∞ ).

Key example I. Any C∞ (p, q)-form η gives a section of ′Ωp−m,q−m
X∞ by the formula

ω 
→ l(η)(ω) =
1

(2πi)m

∫
X

η ∧ ω.
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Key example II. Any piecewise smooth oriented topological r-chain ξ on X gives a current δξ in⊕
p+q=−r

′Ωp,q
X∞(X) by the formula

ω 
→ ε(ξ)(ω) =
∫

ξ
ω.

Sheaves ′Ω•,•
X∞ and Ω•,•

X∞ naturally form double complexes, where if D is a current acting on
an r-form, and given an (r − 1)-form ω, then dD(ω) = (−1)r−1D(dω), d = ∂ + ∂̄. [Warning: The
definition of dD differs from that in [Jan88] by a minus sign.] One has Hodge filtrations

F iΩ•
X∞ =

⊕
p+q=•,p�i

Ωp,q
X∞ , F i ′Ω•

X∞ =
⊕

p+q=•,p�i

′Ωp,q
X∞ .

Let (C•(X, Z(k)), d) be the complex of singular C∞-chains with coefficients in Z(k), and put
′Ci = C−i [with differential (−1)i+1d : C−i → C−i−1]. One has a morphism of complexes

ε : ′C•(X, Z(k)) → ′Ω•
X∞(X).

Put
M•

D = Cone{′C•(X, Z(p −m))⊕ F p−m ′Ω•
X∞(X) ε−l−−→ ′Ω•

X∞(X)}[−1].
The homology of this complex, at • = 2p − n− 2m, viz., ′H2p−n−2m

D (X, Z(p −m)), is precisely the
Deligne homology

HD
2m−2p+n(X, Z(m− p)) := ′H2p−n−2m

D (X, Z(p −m)) � H2p−n
D (X, Z(p))

(Poincaré duality).

Remark 2.3. A class in HD
2m−2p+n(X, Z(m− p)) is represented by a triple

(a, b, c) ∈ ′C2p−n−2m(X, Z(p −m))⊕ F p−m ′Ω2p−n−2m
X∞ (X)⊕ ′Ω2p−n−2m−1

X∞ (X),

where da = 0, db = 0, and a − b + dc = 0. Via Poincaré duality, this corresponds to [a] ∈
H2p−n(X, Z(p)), [b] ∈ F pH2p−n

DR (X, C), with [a] = [b] in H2p−n(X, C). Now suppose that [a] =
[b] = 0. Then a = da0, and from Hodge theory, b = db0, where b0 ∈ F p−m ′Ω2p−n−2m−1

X∞ (X). Thus
d(a0 − b0 + c) = 0, and [a0 − b0 + c] represents the corresponding class in

H2p−n−1(X, C)
F pH2p−n−1(X, C) + H2p−n−1(X, Z(p))

� Fm−p+1H2m+n−2p+1(X, C)∨

H2m+n−2p+1(X, Z(m− p))
.

By Hodge-type considerations, the action of the current b0 on Fm−p+1H2m+n−2p+1(X, C) is zero.
Thus the action of the closed current a0 − b0 + c on Fm−p+1H2m+n−2p+1(X, C) is the same as the
action of a0 + c.

We also need a slightly expanded version of Deligne homology for the smooth quasiprojective
case. Let Z be a smooth quasiprojective with good compactification Z̄ (with normal crossing
divisor E). Then C•(Z̄, A(k)) is the complex of singular C∞-chains in Z̄ with coefficients in A(k),
and ′Ci = C−i. Let

′C•(Z̄, E, A(k)) = ′C•(Z̄, A(k))/′C•
E(Z̄, A(k)),

where ′C•
E(Z̄, A(k)) ⊂ ′C•(Z̄, A(k)) is the subcomplex of chains supported on E.

Deligne homology ′H•
D(Z, A(k)), as defined in [Jan88], is given by the cohomology of the complex

Cone(′C•(Z̄, E, A(k)) ⊕ F k ′Ω•̄
Z∞〈E〉(Z̄) ε−l−−→ ′Ω•̄

Z∞〈E〉(Z̄))[−1],

where ε and l are the natural maps of complexes. (The precise description of ε is given in [Jan88], and
the required foundational material can be found in [Kin83].) Here we define Ω•̄

Z
〈E〉 = Ω•̄

Z
(log E)

to be the de Rham complex of meromorphic forms on Z̄, holomorphic on U = Z̄ − E, with at
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most logarithmic poles along E. Also, Ω•̄
Z∞〈E〉 = Ω•̄

Z
〈E〉 ⊗Ω•̄

Z
Ω•̄

Z∞, and ′Ωn
Z̄∞〈E〉 is defined by the

equivalent sheaves
′Ωn

Z̄∞/′Ωn
Z̄∞(on E) ∼= D(Ω−n

Z̄∞(null E)) ∼=
⊕

p+q=n

Ωp+m
Z̄
〈E〉 ⊗OZ

′Ω0,q
Z̄∞.

There is thus a map of complexes ′Ω•̄
Z∞ → ′Ω•̄

Z∞〈E〉 which is surjective at each term; ′Ω•̄
Z∞〈E〉 =

Ω•̄
Z
〈E〉 ⊗Ω•̄

Z

′Ω•̄
Z∞. The corresponding Hodge filtrations are F iΩ•̄

Z∞〈E〉 = {F iΩ•̄
Z
〈E〉} ⊗Ω•̄

Z
Ω•̄

Z∞,

and F i ′Ω•̄
Z∞〈E〉 = {F i+mΩ•̄

Z
〈E〉} ⊗OZ̄

′Ω0,•
Z̄∞ . As is well known (see [Jan88]), there are filtered

quasiisomorphisms

(Ω•̄
Z〈E〉, F i) ↪→ (Ω•̄

Z∞〈E〉, F i) ↪→ (′Ω•̄
Z∞〈E〉[−2m], F i−m).

3. Review of the classical situation (n = 0)

General references for this section are [EV88] and [Jan88]. For a codimension p cycle Z on X, there
is the localization sequence of mixed Hodge structures

0→ H2p−1(X, Z(p))
β→ H2p−1(X \ |Z|, Z(p))→ H2p

|Z|(X, Z(p))→ H2p(X, Z(p)). (3.1)

The map β induces the isomorphism

H2p−1(X, C)
F pH2p−1(X, C)

� H2p−1(X \ |Z|, C)
F pH2p−1(X \ |Z|, C)

, (3.2)

and hence the isomorphism

Jp(X) � H2p−1(X \ |Z|, C)
H2p−1(X, Z(p)) + F pH2p−1(X \ |Z|, C)

. (3.3)

Next, for Z ∈ Zp
hom(X), the fundamental class cZ(Z) is the image of a class c̃Z(Z) ∈ H2p−1(X \

|Z|, Z(p)), uniquely determined up to Im(β). Since c̃Z(Z) defines a class in H2p−1(X \ |Z|, C) (still

denoted by c̃Z(Z)), we end up with a corresponding class Ψp(Z) ∈ Jp(X) via the isomorphisms
above. We use this as our initial definition, as follows.

Definition 3.1. The class Ψp : Zp
hom(X)→ Jp(X) is called the Abel–Jacobi map.

3.1 Comparison to Carlson’s Abel–Jacobi map
The exact sequence (3.1) yields an extension

0→ H2p−1(X, Z(p))→ E→ Z(0)→ 0

via pullback, where E is abstractly identified with H2p−1(X, Z(p)) ⊕ Zc̃Z(Z), equipped with an

(integral) retraction rZ : E → H2p−1(X, Z(p)) killing c̃Z(Z). This rZ extends to a map EC →
H2p−1(X, C).

If c̃F (Z) ∈ EC ⊆ F pH2p−1(X \ |Z|, C) is another lift of the fundamental class of Z respecting

the Hodge filtration, then Carlson’s prescription [Car87] is rZ(c̃F (Z)) ∈ Jp(X), its image under
the retraction. Since c̃Z(Z) and c̃F (Z) both lift the fundamental class, their difference lifts to an

element ξ ∈ H2p−1(X, C). We write this c̃F (Z) = c̃Z(Z)+ ξ; applying rZ shows that ξ = rZ(c̃F (Z)),

and hence that c̃F (Z) = c̃Z(Z) + rZ(c̃F (Z)). Thus

c̃Z(Z) + rZ(c̃F (Z)) ≡ 0 modulo F pH2p−1(X \ |Z|, C).

So we have the following proposition.
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Proposition 3.2. Carlson’s Abel–Jacobi map is the same as Ψp, up to sign.

3.2 Comparison to classical AJ map

We proceed by comparing Ψp with the Deligne cycle-class map in Proposition 3.3, and then identi-
fying the latter with the classical AJ in Proposition 3.4.

Recall the following diagram of exact sequences.

0 �� Zp
hom(X)

Φp,0

��

�� Zp(X)

clp,0

��

�� Zp(X)/Zp
hom(X)

��

�� 0

0 �� Jp(X) �� H2p
D (X, Z(p)) �� H2p(X, Z(p)) ∩ F p �� 0

Proposition 3.3. We have Ψp = Φp,0.

Proof. See [EV88].

Finally, working with Deligne homology, we obtain the following result.

Proposition 3.4. The map Φp,0 coincides with the classical Abel–Jacobi map.

Proof. See [Jan88].

4. A localization argument (first construction of AJ)

If Z ∈ X ×�n is irreducible and of codimension p, consider V := π∗(Z) ⊂ X, which we assume has
dimension m + n − p. The ith coordinate projections Z → � determine rational functions on Z.
Taking the norm of a symbol in Milnor K-theory, after passing to the relevant functions fields,
reduces to the situation of rational functions {f1, . . . , fn} on V . Of course, when n = 1, we are
dealing with the usual norm N : C(Z)× → C(V )×. On an open set UV ⊂ V , we have elements
fj ∈ H0(UV ,O×

UV
) = CH 1(UV , 1). Let U = X \ (V \ UV ). One has the following commutative

diagram.

CH 1(UV , 1)⊗n

∪
��

�� H1
D(UV , Z(1))⊗n

∪
��

CH n(UV , n)

��

�� Hn
D(UV , Z(n))

��
CH p(U, n) �� H2p−n

D (U, Z(n))

CH p(X,n)

��

�� H2p−n
D (X, Z(n))

��

We come up with a formula for the regulator at the generic point, based on the cup-product formula
in Deligne cohomology. We need the following basic lemma.

Lemma 4.1. Let Y be a smooth quasiprojective variety, let f : Y → P1 be a dominant morphism,
and let η ∈ E2m−1

Ȳ
. Then ∫

Ȳ

df

f
∧ η = (2πi)

∫
f−1[−∞,0]

η + d[Tlog f ](η),
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0

8

+

Figure 1. Slit sphere.

where

Tlog f (µ) :=
∫

Ȳ \f−1[−∞,0]
µ log f

and [−∞, 0] = R− is oriented along R− so that ∂[−∞, 0] = {0} − {∞}.
Proof. One observes that log f is single-valued in Ȳ \ f−1[−∞, 0], where log is the branch with
arg ∈ (−π, π); so we have

d((log f)η) =
df

f
∧ η + (log f) dη

there. Let Bε be an ε-band angular sector neighborhood of [−∞, 0] = R− in P1, with boundary
C±(ε); see Figure 1.

Put Dε := f−1(Bε), and L±(ε) = ∂Dε = f−1(C±(ε)). Then∫
Ȳ

df

f
∧ η =

∫
Ȳ \f−1[−∞,0]

d((log f)η)−
∫

Ȳ
(log f) dη

= lim
ε→0+

∫
Ȳ \Dε

d((log f)η) + d[Tlog f ](η)

= − lim
ε→0+

∫
L±(ε)

(log f)η + d[Tlog f ](η).

But
lim

ε→0+
L±(ε) = f−1[−∞, 0]− f−1[−∞, 0] = 0.

Since we pick up a period on log, we arrive at∫
Ȳ

df

f
∧ η = 2πi

∫
f−1[−∞,0]

η + d[Tlog f ](η),

as was to be shown.

We now want to consider the following setting. Let V be an irreducible complex projective
variety (in particular a component of the V from before the lemma). Let f1, . . . , fn ∈ C(V )×,
and put D :=

⋃n
j=1 |(fj)| ∪ Vsing, UV := V \ D. Consider the pair (Ṽ , D̃), where Ṽ is a smooth

projective variety, D̃ a normal crossing divisor, and Ṽ \ D̃ = V \ D. The Deligne (co)homology
of UV can be computed in terms of the Deligne complex of the pair (Ṽ , D̃). We may assume that
f1, . . . , fn : Ṽ → P1 are dominant morphisms. Notice that γj := f−1

j [−∞, 0] are (Borel–Moore)
cycles on UV . Let v = dimV (= m + n− p) and define

Tfj
(µ) = 2πi

∫
γj

µ, Ωfj
(µ) =

∫
Ṽ

dfj

fj
∧ µ, Rfj

(µ) =
∫

Ṽ
(log fj)µ.
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Before stating our next result, we recall the multiplication table [EV88], pertaining to⋃
α

: AD(p)⊗ AD(q)→ AD(p + q),

for any given α ∈ R. Here AD(p) is defined in [EV88] in terms of a cone complex, which is quasi-
isomorphic to the same labelled complex AD(p) that we introduced in § 2.

aq fq ωq

ap ap · aq 0 (1 − α) · ap · ωq

fp 0 fp ∧ fq (−1)deg fp · α · fp · ωq

ωp α · ωp · aq (1− α) · ωp ∧ fq 0

(4.1)

Evidently, up to homotopy,
⋃

α is independent of α ∈ R [EV88]. Now put
⋃

=
⋃

α=0. We have the
following proposition.

Proposition 4.2. (i) For each j, the triple (Tfj
,Ωfj

, Rfj
) defines a class

{(Tfj
,Ωfj

, Rfj
)} ∈ HD

2v−1(UV , Z(v − 1))
PD� H1

D(UV , Z(1)).

(ii) Via the cup product
n⋃

j=1

{(Tfj
,Ωfj

, Rfj
)} = {(Tf ,Ωf , Rf )},

where f = (f1, . . . , fn),

Tf (µ) = (2πi)n
∫

(f1×···×fn)−1[−∞,0]n
µ, Ωf (µ) =

∫
V

df1

f1
∧ · · · ∧ dfn

fn
∧ µ,

and where

Rf (ω) =
[ ∫

V \f−1
1 [−∞,0]

(log f1)
df2

f2
∧ · · · ∧ dfn

fn
∧ ω

+ (−2πi)
∫

f−1
1 [−∞,0]\(f1×f2)−1[−∞,0]2

(log f2)
df3

f3
∧ · · · ∧ dfn

fn
∧ ω + · · ·

+ (−2πi)n−1

∫
(f1×···×fn−1)−1[−∞,0]n−1\(f1×···×fn)−1[−∞,0]n

(log fn)ω
]
.

Proof. Part (i) is immediate from Lemma 4.1 and part (ii) uses the multiplication table above,
the cone complex description of Deligne homology together with Poincaré duality, and induction
on n.

Remark 4.3. As a consequence of part (ii) above, we have the Deligne homology relation

Ωf = Tf + d[Rf], (4.2)

as currents acting on forms that are compactly supported on UV . Using induction, the proof of
Lemma 4.1 can be generalized, which extends the above formula to act on forms on V , as follows.

Proposition 4.4. Consider (dominant) morphisms f1, . . . , fn from V to P1, in general position and
put

R∂f =
n∑

j=1

(−1)j−1R{f1,...,f̂j ,...,fn}

∣∣∣∣
(fj)

.

Then

Ωf = Tf + d[Rf ]± (2πi)R∂f .
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Example 4.5. Suppose we are given a higher Chow cycle Z =
∑

α(fα, Vα) ∈ CH p
hom(X, 1). Then by

Hodge theory, we have
∑

α Ωfα = dS, where by Poincaré duality S ∈ F p (which plays the role of b0

in Remark 2.3) acts as the zero current on Fm−p+1H2m−2p+2(X). Note that γ :=
∑

α γα bounds a
chain ζ, and thus TZ :=

∑
α Tfα = −2πidδζ . Taking the coboundary (see § 2), viz.

δ(−δζ , S, 0) =
(
−TZ ,−

∑
α

Ωα,−2πiδζ − S

)
,

this leads us to (
TZ ,

∑
α

Ωfα ,
∑
α

Rfα

)
∼

(
0, 0,

∑
α

Rfα − 2πiδζ − S

)

in Deligne homology. By applying Poincaré duality, this leads us to Levine’s formula [Lev88] for the
regulator on K1, induced by

ω ∈ Fm−p+1Ω2m−2p+2
X∞ (X)


→ 1
(2πi)m−p+1

(∑
α

∫
Vα\f−1

α [−∞,0]
(log fα)ω − 2πi

∫
ζ
ω

)
.

[Note: In Levine’s formula, the −2πi
∫
ζ ω is replaced by +2πi

∫
ζ ω. This is because he is using the

branch of the logarithm with imaginary part ∈ (0, 2π). Also, we have used the homological version
of the Tate twist, which includes the factor (2πi)m.]

5. The map of complexes (second construction of AJ)

We first describe the notation we shall use, which is a bit more involved than that of the preceding
section (there are also slight differences).

5.1 Notation for currents
Let X be a quasiprojective variety of complex dimension m, Y ⊂ X an oriented analytic subset
of real codimension k, and Ω ∈ Γ(Ω�

X (log D)) where D ⊂ X is any divisor. Associate to any given
meromorphic function f ∈ C(X ) the (2m − 1)-chain Tf := f−1(R−) oriented so that ∂Tf = (f) =
|(f)0| − |(f)∞|. Now define a current (log f)Ω · δY ∈ F k ′D�+k(X ) by∫

X
(log f)Ω · δY ∧ ω := lim

ε→0

∫
Y \Nε(D∪Tf )

(log f)Ω ∧ ι∗Y ω (5.1)

provided the limit exists for every C∞-form ω ∈ Γ(Ω2m−�−k
X∞ ) compactly supported away from the

boundary of X . (The F k means that all ω ∈ Fm−k+1 are annihilated.)

Remark. To reiterate, on the right-hand side, ‘log f ’ is always taken to have imaginary part ∈
(−π, π).

Recall that to any i-current K is associated an (i + 1)-current d[K]:∫
X

d[K] ∧ ω = (−1)i+1

∫
X
K ∧ dω.

So for example d[log f ] = dlog f − 2πiδTf
, and d[dlog f ] = 2πiδ(f).

5.2 Higher Chow groups
We shall use the notation

�n := (P1
C \ {1})n with coordinates (z1, . . . , zn)
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for affine n-space, with subsets

∂�n :=
n⋃

i=1

{(z1, . . . , zn) ∈ �n | zi ∈ {0,∞}}

= faces of �n

and

∂k�n :=
⋃

i1<···<ik

{(z1, . . . , zn) ∈ �n | zi1 , . . . , zik ∈ {0,∞}}

= codimension-k subfaces.

Also let

Nε(∂�n) :=
∞⋃
i=1

{
(z1, . . . , zn) ∈ �n

∣∣∣∣ |zi| < ε or |zi| > 1
ε

}

and �n
ε := �n \ Nε(∂�n).

Let X be a complex projective variety of dimension m, and define subgroups of algebraic cycles
on X ×�n,

Zp(X ×�n) ⊇ cp(X,n) ⊇ dp(X,n),
generated (respectively) by those subvarieties intersecting all subfaces X × ∂k�n properly, and
(among those) by subvarieties pulled back from X×face by a coordinate projection. Set Zp(X,n) :=
cp(X,n)/dp(X,n); writing ρ0

i , ρ
∞
i for the inclusions of the ith faces, define Bloch’s differential

∂B :=
n∑

i=1

(−1)i−1(ρ∞i
∗ − ρ0

i
∗) : Zp(X,n)→ Zp(X,n − 1).

Since ∂B ◦ ∂B = 0 this gives a complex, with CH p(X,n) as homology groups; only for our purposes
cohomological indexing is better and we shall write

CH p(X,n) := H−n{Zp(X,−•)}.

5.3 Currents on ���n

Set

Ωn = Ω(z1, . . . , zn) := dlog z1 ∧ · · · ∧ dlog zn ∈ Fn′Dn(�n), holomorphic n-current
T n := Tz1 ∩ · · · ∩ Tzn ∈ Cn(�n) topological n-chain

Rn = R(z1, . . . , zn)
:= log z1 dlog z2 ∧ · · · ∧ dlog zn

+ (±2πi) log z2 dlog z3 ∧ · · · ∧ dlog zn · δTz1
+ · · ·

+ (±2πi)n−1 log zn · δTz1∩···∩Tzn−1
∈ ′Dn−1(�n),

where ‘±’ means (−1)n−1. For example, R1 = log z and R2 = log z1 dlog z2 − 2πi log z2 · δTz1
. One

may view these also as currents on X ×�n by pullback.
From above one has for n = 1, d[R1] = Ω1 − 2πi · δT 1 , which generalizes to n > 1 via

d[Rn] = Ωn − (2πi)nδT n − (2πi)
n∑

i=1

(−1)iR(z1, . . . , ẑi, . . . , zn) · δ(zi). (5.2)

Moreover,

d[Ωn] = 2πi
n∑

i=1

(−1)iΩ(z1, . . . , ẑi, . . . , zn) · δ(zi) (5.3)
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and

∂T n =
n∑

i=1

(−1)i(ρ0
i ∗T

n−1 − ρ∞i ∗T n−1). (5.4)

5.4 Currents on X

To produce these we must first specify a subcomplex of Zp(X, •) consisting of elements in good
position with respect to certain real subsets of X×�n. Denote by T ◦

zi
= z−1

i (R−) = z−1
i ((−∞, 0)) the

interior of the real (2n−1)-chain Tzi = z−1
i ([−∞, 0]) on �n. Let cp

R
(X,n) consist of all Z ∈ cp(X,n)

intersecting
X × (Tz1 ∩ · · · ∩ Tzj ) and X × {(T ◦

z1
∩ · · · ∩ T ◦

zj
) ∩ ∂k�n}

properly (for all 1 � j � n, 1 � k < n ), and dp
R
(X,n) := cp

R
(X,n) ∩ dp(X,n). Then Zp

R
(X, •) :=

cp
R
(X, •)/dp

R
(X, •) is a complex under ∂B. A moving technique based on unpublished notes of Bloch

and worked out and extended by Levine in [Lev03, § 1.3.4] and [Lev98, § 3.5.12] shows that this is
quasiisomorphic to the Bloch complex, as follows.

Moving by translation lemma. We have Zp
R
(X, •) 
→ Zp(X, •).

The proof consists of showing that any cycle is equivalent to one in general position after a
generic complex affine translation in ∆n. Such cycles are obviously contained in Zp

R
(X, •). Note

that the arguments given by Levine use simplicial coordinates. But the quasiisomorphism between
simplicial and cubical coordinate systems can be applied here. Alternatively one could restate the
moving by translation lemma in cubical coordinates and prove it there. Let us offer an indication
of what the ‘move’ is. Any Z ∈ Zp(X,n) is defined over some k ⊆ C finitely generated /Q̄. Now
consider α1, . . . , αn ∈ C∗ such that trdeg(k(α1, . . . , αn)/k) = n, and let τ = (α1, . . . , αn) act by
multiplication on the coordinates (z1, . . . , zn) of Z in �n.

Proposition. Under these conditions, τ · Z ∈ Zp
R
(X,n).

(Of course, τ · Z is no longer defined over k.)
With some work, this proposition can be used to produce a map of complexes T : Zp(X/k, •) →

Zp
R
(X, •) together with a homotopy H : Zp(X/k, •) → Zp(X, • + 1) respecting Zp

R
and subsets of

X, which satisfies T (Z)−Z = ∂BH(Z) +H(∂BZ). The lemma follows.
Associated to Z ∈ Zp(X,n) one now produces ΩZ ∈ F p′D2p−n(X), RZ ∈ ′D2p−n−1(X) by the

formulas ∫
X

{
ΩZ
RZ

}
∧ ω := lim

ε→0

∑
j

nj

∫
Zj

ε

π
Zj

�
∗
{

Ωn

Rn

}
∧ π

Zj

X
∗ω,

where z =
∑

njZj (Zj irreducible), Zε
j := Zj ∩ (X×�n

ε ), and ω is any C∞-form of the right degree.
These currents are zero if Z ∈ dp(X,n).

Remark. (i) That the limit on the right-hand side always converges follows from an elementary
analytic argument, in which the proper intersection condition on each Zj plays a crucial role (e.g.,
see [Ker03] for the proof for ΩZ).

(ii) An appealing alternative form of the definition, e.g. for RZ , is RZ =
∑

njπ
Zj

X ∗π
Zj

�
∗Rn. The

push-forward π
Zj

X ∗ should be regarded as involving integration for those j for which Zj has fibers
of dim � 1 over X. Note in particular that the numbers codimX{suppπX(Zj)} are not in general
all the same.

Finally set TZ :=
∑

j nj · πX{Zj ∩ (X × T n)} ∈ C2m−2p+n(X). The relations (5.2)–(5.4) give rise
to formulas

∂TZ = T∂BZ , d[ΩZ ] = 2πiΩ∂BZ , d[RZ ] = ΩZ − (2πi)nδTZ − 2πiR∂BZ . (5.5)
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5.5 The map of complexes
Define a complex of cochains for the Deligne homology of X,

C•−2m
D (X, Z(p −m)) := Cone



C2m−•(X, Z(p))

⊕
F p′D•(X)

→ ′D•(X)


 [−1](−m)

= {C2m−•(X, Z(p)) ⊕ F p′D•(X)⊕ ′D•−1(X)}(−m)

with differential D taking (a, b, c) 
→ (−∂a,−d[b],d[c] − b + δa). Then according to the formulas
(5.5), sending

Z 
→ (−2πi)p−n

(2πi)m
((2πi)nTZ ,ΩZ , RZ) =: RX(Z)

produces a map of complexes

RX : Zp
R
(X,−•)→ C2p−2m+•

D (X, Z(p −m));

that is, DRX(Z) = RX(∂BZ). (Note: ΩZ = 0 if p > m or p < n.) According to the moving lemma
we may replace Zp

R
(X,−•) by Zp(X,−•) with the caveat that the map is in the derived category.

This induces the desired map

AJ : CH p(X,n)→ HD
2m−2p+n(X, Z(m − p))

∼=←−
PD

H2p−n
D (X, Z(p)).

If ∂BZ = 0 then Z represents a class [Z] ∈ CH p(X,n), and we write AJ [Z] or Φp,n(Z) for the class
[RX(Z)].

Remark. (i) AJ is in fact a ring homomorphism; that is, if [W] ∈ CH p(X, �) and [Y] ∈ CH q(X,n)
then [W ×Y] ∈ CH p+q(X, � + n) and

[RX(W)] ∪ [RX(Y)] = [RX(W ×Y)]

under the cup product in Deligne (co)homology. The class on the left-hand side is given (modulo
factors of 2πi) by

((2πi)�+nTW ∩ TY , ΩW ∧ ΩY , (−1)�(2πi)�δTW · RY + RW ∧ ΩY);

that this equals ((2πi)�+nTW×Y ,ΩW×Y , RW×Y) is implied by the formula

R(w1, . . . , w�; y1, . . . , yn) = (−1)�(2πi)�δT (w1,...,w�) ·R(y1, . . . , yn)

+ R(w1, . . . , w�) ∧ Ω(y1, . . . , yn)

on ��+n = �� ×�n (with coordinates w1, . . . , w�; y1, . . . , yn).
(ii) The projection of this AJ map to the real Deligne cohomology, i.e. the composition

CH p(X,n) −→
AJ

H2p−n
D (X, Z(p)) −→

πR
H2p−n

D (X, R(n)),

agrees exactly with the regulator map defined by Goncharov in [Gon95] (see [Ker03]).
(iii) On the other hand, the AJ map defined in [Gon95] was not correct. Indeed, the formula

there is given by a sum of the real regulator with a membrane integral. If one adopted the AJ
map defined in [Gon95], then the formula in Example 4.5 above would involve replacing log fα by
log |fα|, resulting in a current that would not descend to the level of cohomology.

5.6 Passage to ordinary cohomology
Now let n � 1 and Z be a higher Chow cycle: ∂BZ = 0. Then d[ΩZ ] = 0, ∂TZ = 0, and d[RZ ] =
ΩZ − (2πi)nTZ imply that [ΩZ ] = (2πi)nTZ in H2p−n(X, C) . Multiplying by (2πi)p−n, we get a
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class in
F pH2p−n(X, C) ∩H2p−n(X, Z(p)). (∗)

This is the closest thing we get to a ‘fundamental class’ for Z ; when TZ ∼ 0 we say [Z] ∈
CH p

hom(X,n).
For X projective (and n � 1 ), (∗) is a torsion group. Consequently, the class

[ΩZ ] ∈ F pH2p−n(X, C)

is zero while [TZ ] ∈ H2p−n(X, Z) is at worst torsion.
To proceed further we must have TZ ∼ 0. So, in general, we must either (a) pass to rational

coefficients (to render (∗) zero) or (b) assume the slight restriction [Z] ∈ CH p
hom(X,n). While we

have chosen (b), we emphasize that what follows (for the remainder of the paper) works essentially
verbatim with Z replaced everywhere by Q (instead of this assumption). Moreover, if X is such that
H2p−n(X, Z) has no torsion, CH p(X,n) = CH p

hom(X,n) and no such choice is necessary. (Trivial
example: X = pt.)

Assuming, then, that Z (i.e. TZ ) is nullhomologous, there exist ‘primitives’ Ξ ∈ F p′D2p−n−1(X),
ζ ∈ C2m−2p+n+1(X, Z) such that d[Ξ] = ΩZ , (−1)nd[δζ ] = δ∂ζ = TZ (or, strictly speaking, δTZ ).
Here ζ is called a ‘membrane’.

We may now modify RX(Z) by a coboundary, to get

((2πi)nTZ ,ΩZ , RZ) + D((−2πi)nζ,Ξ, 0) = (0, 0, RZ − Ξ + (−2πi)nδζ =: R′′
Z).

Now Ξ and (−2πi)pζ are ambiguous by F pH2p−n−1(X, C) and H2p−n−1(X, Z(p)), respectively, and
so we have a well-defined class

(−2πi)p−n[R′′
Z ] ∈ H2p−n−1(X, C)

F pH2p−n−1(X, C) + H2p−n−1(X, Z(p))

reflecting the isomorphism of the latter group with H2p−n
D (X, Z(p)) for n � 1 and X projective.

[Note: (2πi)m has already disappeared in the PD ∼=.] Since this quotient is equivalent to

{Fm−p+1H2m−2p+n+1(X, C)}∨/im{H2m−2p+n+1(X, Z(p))},
this class (and thus AJ [Z]) is computed by the functional

1
(−2πi)n−p

∫
X

R′
Z ∧ (·) modulo periods (2πi)p

∫
γ
(·),

where R′
Z := RZ+(2πi)nδζ and we may drop the Ξ-term, again thanks to Hodge-type considerations

(see Remark 2.3).

Example. One easily recovers Levine’s formula for CH p(X, 1) from this approach, writing R1 = log z
and

RZ =
∑
α

π
(Zα,fα)
X ∗π

(Zα,fα)
�

∗(log z) =
∑
α

log fα · δZα .

5.7 A further simplification for n ��� p or p > m

For p in this range we may clean up the above functional considerably; since then F pH2p−n−1(X, C)
= 0 and Fm−p+1Ω2m−2p+n+1

X∞ (X) = F 0Ω2m−2p+n+1
X∞ (X), we may as well evaluate it on integral

classes, that is, Poincaré duals of topological (2p−n−1)-cycles ξ. The ‘periods’ are then all in Z(p),
as is the contribution from the term (2πi)nδζ in R′

Z . One may therefore regard the functional

1
(−2πi)n−p

∫
(·)

RZ ∈ Hom(H2p−n−1(X, Z), C/Z(p))

as representing AJ [Z] ∈ H2p−n−1(X, C/Z(p)).
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Example. In the very simple (but interesting) series of examples CH p(pt., 2p− 1), RZ is simply the
number

∫
Z R2p−1, and the resulting classes

AJ [Z] =
1

(−2πi)p−1

∫
Z

R2p−1 ∈ C/Z(p) ∼= H1
D(pt., Z(p))

are related to Goncharov’s Chow p-logarithm [Gon95]. Here we just want to point out (for p = 2)
how to construct classes in CH 2(pt., 3) with torsion and nontorsion AJ images. Note that for p = 2
the above formula simplifies to

−AJ [Z] =
∫
Z∩Tz1

log z2 dlog z3 + 2πi
∑

p∈Z∩Tz1∩Tz2

log z3(p),

since one integral vanishes for type reasons. Consider a, b ∈ C∗ \ {1} and introduce

V (a) = {(1− a/t, 1− t, t) | t ∈ P1} ∩�3,

W (b) = {(1 − b/t, t, 1− t) | t ∈ P1} ∩�3.

Then one easily shows that

∂V (a) = (1− a, a), ∂W (b) = (b, 1 − b).

Hence ξa := V (a)−W (1− a) defines a class in CH 2(pt., 3).
The value Φ2,3(ξa) ∈ C/Z(2) is not hard to compute. Noting that ξa ∈ c2

R
(pt., 3) for 1− a �∈ R−,

one finds that

Φ2,3(ξa) = Li2(a) + Li2(1− a) + log a log(1− a),

where Li2 is the dilogarithm, and log is the principal branch. By Beilinson’s rigidity [Bei85], this
value does not depend on a. Hence

Φ2,3(ξa) = lim
a→0

Φ2,3(ξa) =
∞∑

n=1

1
n2

=
π2

6
∈ C/Z(2)

is a torsion class.
Next, let D2 be the Bloch–Wigner function, B2(C) be the Bloch group, and st : B2(C) →

C∗ ∧
Z C∗ the standard map {a}2 
→ (1 − a) ∧ a. Finally set ρ(a) = Alt3(V (a)). The following

proposition is proved in [Ker03, § 3.1.2].
Proposition. Given any element

∑
mj{aj}2 ∈ ker(st) ⊆ B2(C),

∑
mjρ(aj) ∈ Z2(pt., 3) may be

completed to a higher Chow cycle Z by adding ‘decomposable’ elements ∈ Z1(pt., 2)
∧

Z1(pt., 1).
The composition πR ◦ Φ2,3 on Z is then computed by �(RZ) =

∑
mjD2(aj) ∈ R.

So if
∑

mjD2(aj) �= 0 (there are many examples), AJ (Z) ∈ C/Z(2) is nontorsion.

Example. Let X be a compact Riemann surface. We recover the formula for the real regulator

r2,2 : CH 2(X, 2) → H2
D(X, R(2))

in [Ram89] by composing AJ with πR (which takes the imaginary part in this case).
The irreducible components of Z ∈ Z2(X, 2) are of two types: (a) curves contained in �2 over

isolated points of X; (b) graphs (over X) of pairs of meromorphic functions f, g ∈ C(X). Writing

Γf,g := {(x, f(x), g(x)) ∈ X × (P1)2 | x ∈ X} ∩ (X ×�2),

one has

Z =
∑

mk · {xk} × Ck +
∑

njΓfj ,gj
= Z(a) + Z(b).
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Now assume ∂BZ = 0, and compute AJ [Z]: since
∫
Cj

R2∧π∗
Xω = 0 (for any 1-form on X), RZ(a)

= 0.
Thus

RZ = RZ(b)
=

∑
njRfj ,gj

=
∑

nj(log fj dlog gj − 2πi log gjδTfj
);

integrating the latter current over loops γ ∈ ΩX gives

AJ [Z] ∈ Hom(H1(X, Z), C/Z(2)) ∼= H1
D(X, Z(2)).

The technical point here is this: prior to integrating one should move the loop (in its homology class)
to avoid all points {xk} and

⋃ |(fj)|∪|(gj)|. It can be shown directly (and is also clear from the setup
here) that integrals over loops around any of these points are trivial (∈ Z(2)), and so the integral
is independent of the ‘move’ in question. Note that the imaginary part of log f dlog g − 2πi log gδTf

is log |f |darg g + arg f dlog |g| − 2π log |g|δTf
. Adding to this d[− arg f log |g|] = −log |g|darg f −

arg f dlog |g| + 2π log |g|δTf
gives the cohomologous current

log |f |darg g − log |g|darg f.

(It is well known that Beilinson refers to this as ‘Mama’s formula’.) Integrating this over loops gives

r2,2[Z] ∈ Hom(H1(X, Z), R) ∼= H2
D(X, R(2)).

An alternative formula sends

γ 
→ �
(∫

γ
log f

dg

g
− log |g(p)|

∫
γ

df

f

)
,

where γ is based at p and log f is not the principal branch (but rather is continued along γ, starting
from p).

5.8 Geometric interpretation

Now we ask, to what extent is AJ (for n � 1) ‘like’ an Abel–Jacobi map in the classical sense (for
n = 0), of integrating forms over a chain Γ with ∂Γ = Z? To answer this question we first extend
the classical approach to the subgroup Zp(X × �n,X × ∂�n) ⊆ cp(X,n) of relative (algebraic)
cycles, consisting of those Z for which Z · (X×∂�n) = 0, i.e. the intersections with each face cancel
(counted with multiplicity). Since every class in CH p(X,n) is represented by such a cycle, it makes
sense to ask whether the resulting relative AJ map coincides with the AJ constructed above.

The relevant details in the discussion that follows can be found in [Ker03]. Let Z ∈ Zp(X ×
�n,X × ∂�n) have [complex] dimension d = m + n− p. Assume as above that [Z] ∈ CH p

hom(X,n),
and for the time being that Z is also in Zp

R
(X,n). We replace Z by a ‘limit’ of topological cycles

via a kind of excision. Namely, writing In :=
⋃n

i=1{(z1, . . . , zn) ∈ (C∗)n | zi = 1} and letting Z0
ε

represent the analytic closure of Z ∩ (X × �n
ε ) on X × (C∗)n, for each ε > 0 (sufficiently small)

there are topological relative cycles

Z0
ε +Wε = Zε ∈ Ztop

2d (X × (C∗)n,X × In)

where

lim
ε→0

∫
Wε

π�
∗
{

Ωn

Rn

}
∧ πX

∗α = 0 (∀C∞-forms α on X).

Since Lefschetz duality guarantees a perfect pairing between

H2d(X × (C∗)n,X × In) ∼= H2d−n(X)⊗ 〈(S1)n〉
and

H2p(X ×�n,X × ∂�n) ∼= H2p−n(X) ⊗ 〈T n〉,
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Zε is homologous (mod X × In) to TZε × (S1)n, where TZε = πX(Zε ∩ (X × T n)). So there exists a
topological (2d + 1)-chain Γ0

ε on X × (C∗)n such that

∂Γ0
ε −Zε + TZε × (S1)n ⊆ X × In.

The relative cycle Z is also a higher Chow cycle; therefore TZε [∼ TZ ] ∼ 0 is the boundary of a
membrane ζε on X. (This is equivalent to [Z] ∈ CH p

hom(X,n), which is what we are assuming.)
Set Γε = Γ0

ε + ζε× (S1)n. Since this has boundary Zε (mod X× In), it now makes sense to define
the relative Abel–Jacobi of Z as a functional (mod periods) on

F d+1H2d+1(X × (C∗)n,X × In; C) ∼= F d−n+1H2d−n+1(X, C)⊗
〈

1
(2πi)n−p

Ωn

〉

induced by the formula

AJ rel(Z)ω := lim
ε→0

1
(2πi)n−p

∫
Γε

π�
∗Ωn ∧ πX

∗ω

where as test forms we use all d-closed ω ∈ Fm−p+1Ω2m−2p+n+1
X∞ (X). It can be shown that the

resulting map

AJ rel : Zp(X ×�n,X × ∂�n)→ H2p−n
D (X, Z(p))

∼= H2p−n−1(X, C)
F pH2p−n−1(X, C) + H2p−n−1(X, Z(p))

respects relative rational equivalence. (Intuitively speaking, AJ rel should go to some ‘H2p
D (X ×

�n,X × ∂�n; Z(p))’; one can easily justify defining this to be H2p−n
D (X, Z(p)).)

To see that this is the same as AJ of Z (considered instead as a higher Chow cycle), we show
the following proposition.

Proposition 5.1. We have

lim
ε→0

∫
Γε

Ωn ∧ ω = (−1)n
(∫

Z
Rn ∧ ω + (−2πi)n

∫
ζ
ω

)

for ω d-closed.

Proof. By Stokes’ theorem for currents and (5.2),∫
Zε(=∂Γε)

Rn ∧ ω = (−1)n
∫

Γε

d[Rn ∧ ω]

= (−1)n
∫

Γε

d[Rn] ∧ ω

= (−1)n
∫

Γε

Ωn ∧ ω − (−2πi)n
∫

πX [Γε∩(X×T n)]
ω − 0.

The residue term in (5.2) makes no contribution because Γε∩(X×∂�n) = ∅. Now one can construct
Γ0

ε explicitly (as in [Ker03]) so that

dimR[πX{Γ0
ε ∩ (X × T n)}] < 2d− n + 1;

for our purposes then πX [Γε ∩ (X × T n)] = ζε, and∫
Γε

ω ∧ Ωn = (−1)n
(∫

Zε

ω ∧Rn + (−2πi)n
∫

ζε

ω

)
.

Taking limits then gives the result.
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Remark. (i) In light of the coincidence of these two maps, we may view the previous ‘simplification
for n � p or p > m’ as asserting that the relative AJ map on (X ×�n,X × ∂�n) may be ‘pushed
down to X’ where it consists merely of computing periods of the current RZ . This is essentially
thanks to the fact that Hn((C∗)n, In) = FnHn((C∗)n, In), and H∗((C∗)n, In) = 0 for ∗ �= n.

(ii) We can modify this approach in case Z /∈ Zp
R
(X,n). Referring to the Proposition in § 5.4,

we remark that Z can also be brought into good position with respect to the X × (Tz1 ∩ · · · ∩ Tzi)
etc. by perturbing these real chains (rather than Z) by τ .

To deal with such Z, therefore, one merely repeats all of § 5.8 with the ‘perturbation’ Tzi 
→
T ′

zi
:= Tzi/αi

(which accordingly leads to a different chain Γ′
ε), and also with branches of log(zi)

in Rn replaced by branches with cuts at T ′
zi

. Proposition 5.1 then holds exactly. There is no need
to take limits as the perturbations approach 1, since Γ′

ε amounts simply to a different choice of
bounding membrane for computing the relative AJ map.

Such a procedure has been carried out in a concrete computation in [Ker03, § 3.2].

5.9 Quasiprojective case
Now let V ⊂ X be an arbitrary divisor; we show how to define

AJX\V : CH p(X \ V, n)→ H2p−n
D (X \ V, Z(p)).

Let (X̄, V̄ ) be a pair where V̄ is a normal crossing (n.c.) divisor and X̄ \ V̄ = X \ V . By Bloch’s
moving lemma, restriction induces a quasiisomorphism of complexes

Zp(X̄,−•)/Zp−1(V̄ ,−•) −→
 Zp(X \ V,−•).
The homotopy H described in § 5.4 leads to a proof that

Zp
R
(X̄,−•)/Zp−1

R
(V̄ ,−•) 
−→ Zp(X̄,−•)/Zp−1(V̄ ,−•).

Finally, the triple ((2πi)nTZ ,ΩZ , RZ) once again yields a map of complexes

AJX\V : Zp
R
(X̄,−•)/Zp−1

R
(V̄ ,−•)

−→ Cone



C2m−2p−•(X̄, V̄ ; Z(p))

⊕
Γ(F p′D2p+•

X̄
(log V̄ ))

→ Γ(′D2p+•
X̄

(log V̄ ))


 [−1](−d),

which induces AJX\V .

Remark. (i) We need the n.c. condition in order that the latter complex actually compute H2p−n
D (X\

V, Z(p)).
(ii) We could not use Zp(X̄ \ V̄ ,−•) here because ΩZ and RZ have (in general) worse than log

poles along V̄ , for Z ∈ Zp(X̄ \ V̄ , n).
(iii) The simplifications that occurred in the projective case for n � 1 (and rational coefficients)

require p > m or n > p here (as F pH2p−n(X \ V, C) ∩H2p−n(X \ V, Q(p)) must vanish).
(iv) In case n > p, or n = p > m, the Γ(F p′D2p+•

X̄
(log V̄ )) terms do not enter. The situation

simplifies and we may work with RZ (respectively TZ) directly on X \ V (respectively (X,V )).
Taking the limit we get AJ maps over the generic point

AJ ηX
: CH p(C(X), n)→ H2p−n

D (ηX , Z(p)).

Example. For n = p > m, CH n(C(X), n) ∼= KM
n (C(X)) by a result of Totaro [Tot92] (this is also

due to Nesterenko and Suslin). The resulting map

AJ ηX
: KM

n (C(X))→ Hn
D(ηX , Q(n)) ∼= Hn−1(ηX , C/Q(n))
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is called the Milnor regulator and is studied extensively in [Ker03]. As in the projective case,
AJ ηX

{f1, . . . , fn} may be computed as a functional on topological cycles, namely∫
(·)

R(f1, . . . , fn) ∈ Hom(Hn−1(ηX , Z), C/Q(n)).

6. How a cycle gives rise to an extension of motives (third construction of AJ)

Let Z be a cycle in CH p
hom(X,n). By normalization of chain complexes [EZ50, p. 512], we may

assume that all individual intersections Z ∩ {zi = 0,∞} are zero. Let U := �n
X \ |Z| and ∂U :=

U ∩ ∂�n
X . One has an exact sequence (in any reasonable theory satisfying weak purity and the

homotopy axiom)

H2p−2(U)→ H2p−2(∂U)→ H2p−1(U, ∂U)→ H2p−1(U)→ H2p−1(∂U).

By weak purity H i
|Z|(�n

X) = 0 for i < 2p. Also by the homotopy axiom, H i(�n
X) = H i(X) for i � 0.

Therefore H2p−2(U) = H2p−2(X) (naturally) and furthermore one has for all i � 0

H i(∂�n
X) = H i(X) ⊕H i−n+1(X),

i.e. ∂�n
X is like a real (n − 1)-sphere. Moreover H i(∂U) = H i(∂�n

X) for i = 2p − 2, again by weak
purity for the faces. Using all this, the long exact sequence now becomes

0→ H2p−n−1(X)→ H2p−1(U, ∂U)→ ker{H2p−1(U)→ H2p−1(∂U)} → 0.

But

ker{H2p−1(U)→ H2p−1(∂U)} ⊆ ker{H2p
|Z|(�

n
X)◦ β→ H2p

|∂Z|(∂�n
X)◦}.

The symbol ◦ stands for the kernel of the map forgetting supports. This implies that we have a long
exact sequence

0→ H2p−n−1(X)→ H2p−1(U, ∂U)→ ker(β)→ H2p−n(X). (6.1)

To see this, one simply applies the serpent lemma to the following diagram of exact sequences.

0

��

H2p−2(∂U)

��
H2p−1(X) H2p−1(U, ∂U)

�� ��������������

0 �� H2p−1(�n
X)

��

�� H2p−1(U)

��

�� H2p
|Z|(�n

X)◦

��

�� 0

0 �� H2p−1(∂�n
X)

��

�� H2p−1(∂U) �� H2p
|∂Z|(∂�n

X)◦ �� 0

H2p−n(X)

��
0

This yields an extension via pullback

0→ H2p−n−1(X, Z(p))→ E→ Z(0)→ 0, (6.2)
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where the motive Z(0) is generated by the algebraic cycle {Z} in ker(β). If we specialize to singular
cohomology, we obtain an extension of mixed Hodge structures:

E ∈ Ext1MHS(Z(0),H2p−n−1(X, Z(p))) � H2p−n−1(X, C)
F pH2p−n−1(X, C) + H2p−n−1(X, Z(p))

=: Jp,n(X),

(6.3)
as desired.

Note that H2p
|Z|(�n

X) is generated by the components of |Z|, and therefore F pH2p
|Z|(�n

X) =

H2p
|Z|(�n

X). Now put

V = ker{ker(β)→ H2p−n(X)}.
Then F pV = V . By applying the serpent lemma to

0 �� F pH2p−n−1(X)

��

�� F pH2p−1(U, ∂U)

��

�� F pV �� 0

0 �� H2p−n−1(X) �� H2p−1(U, ∂U) �� V �� 0

we deduce that
H2p−n−1(X, C)

F pH2p−n−1(X, C)
� H2p−1(U, ∂U, C)

F pH2p−1(U, ∂U, C)
,

and hence

Jp,n(X) � H2p−1(U, ∂U, C)
F pH2p−1(U, ∂U, C) + H2p−n−1(X, Z(p))

. (6.4)

Note that the formula in (6.4) generalizes the formula in (3.3) for the case n = 0 (�0
X = X,

∂�0
X = 0). From (6.1), we have a sequence analogous to (3.1), namely

0→ H2p−n−1(X, Z(p))
β̃→ H2p−1(U \ ∂U, Z(p))→ ker(β)→ H2p−n(X, Z(p)), (6.5)

and modulo the image of β̃, the higher Chow cycle Z ∈ CH p
hom(X,n) defines a class Ψp,n(Z) ∈

Jp,n(X), with the help of (6.4).

7. Comparing definitions

In this section it is proved that the constructions of AJ via explicit currents and via extension
classes (in §§ 5 and 6, respectively) agree, namely the following theorem holds.

Theorem 7.1. For X projective and [Z] ∈ CH p
hom(X,n), Ψp,n(Z) = Φp,n(Z). If n � 1, then

without the ‘hom’ assumption one has this equality modulo torsion (i.e. replacing Z by Q in the
target groups).

Proof. We only need to show that the extension definition gives the same as our explicit formula,
since the equality between Bloch’s map and the extension definition was already shown by Scholl
[Sch93]. We begin by picking apart the last section’s construction in some detail, and show in
particular that this construction agrees with the geometric interpretation of the AJ map given
in § 5.8 above.

Recall �n = (P1 \ {1}), ∂�n = Altn({0,∞}× (P1 \ {1})n−1), �n
X = X ×�n, etc. Let [Z] be any

class ∈ CH p(X,n). By normalization [EZ50] we may choose Z to be a relative cycle, so that all face
intersections Z ·∂�n

X are zero as cycles; moreover, H2p(�n
X) injects into H2p(∂�n

X) (e.g. see diagram
(6.2)). So the fundamental class of Z in H2p

|Z|(�n
X) goes to zero in H2p(�n

X) and H2p
|∂Z|(∂�n

X); this
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accounts for Z determining a class in ker(β), where

β : H2p
|Z|(�

n
X)◦ → H2p

|∂Z|(∂�n
X)◦.

None of this has anything to do with [Z] ∈ CH p
hom(X,n).

Now we describe the map

ker(β)→ H2p−n(X);

triviality of this map is what the ‘hom’ indicates. Roughly speaking, this can be seen as also saying
that the fundamental class of Z in H2p(�n

X , ∂�n
X) is trivial. This corresponds to triviality of Z as a

topological cycle in H2m+2n−2p(X × (C∗, {1})n), which is best expressed by casting Z as a limit of
topological cycles Zε which are (modulo X×In) boundaries of topological (2m+2n−2p+1)-chains
compactly supported on X × (C∗)n.

This map was defined via the following ‘serpent’ of maps and lifts.

H2p−1(U)

��

��
H2p

|Z|(�n
X)◦��� � �

H2p−1(∂�n
X)

��

��
H2p−1(∂U)��� � �

H2p−n(X)

Here the last (vertical) map takes

H2p−1(∂�n
X) ∼= H0(∂�n)⊗H2p−1(X)⊕Hn−1(∂�n)⊗H2p−n(X) � H2p−n(X),

which is to say α 
→ π∗(α ∧ d[Ωn]) or (for topological cycles) C → π∗(C · ∂T n
X). [The point is

that Hn−1
|∂�n|((P

1)n) ∼= {Hn−1(∂�n)}∨ is generated by ∂[Ωn] (or Poincaré-dually by ∂T n); therefore
wedging with this and pushing down (integrating fiberwise) ‘removes’ the Hn−1(∂�n) part from α.]
To see where Z goes under the ‘composition’, we will use the following equivalent homological
serpent.

ker :
[H2m+2n−2p(|Z̄|)→ H2m+2n−2p((P1)nX , In

X)]

(1)
��

H2m+2m−2p+1((P1)nX , |Z̄| ∪ In
X)

��

2
��

H2m+2n−2p−1(∂(P1)nX , ∂Īn
X )

4
��

��
H2m+2n−2p−1(∂(P1)nX , |∂Z̄| ∪ ∂Īn

X)
(3)��

H2m+n−2p(X)

Tracing through, we have (since Z is in the upper right-hand kernel)

Z = ∂Y 1−→ Y 2−→ Y · ∂�n
X

cycle mod |∂Z̄|∪∂ĪnX

3−→

Y · ∂�n
X

cycle mod ∂ĪnX

4−→ π∗((Y · ∂�n
X) · ∂T n

X) = π∗(Y · ∂T n
X).
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Now recall that TZ = π∗(Z · T n
X) (where T n

X = X × T n). Since

∂π∗(Y · T n
X) = π∗(∂Y · T n

X)± π∗(Y · ∂T n
X),

we see that the image of Z under the above map is (mod coboundary and up to sign) equivalent to
TZ . Therefore we will write

T : ker(β)→ H2p−n(X)

(or, more formally, (2πi)pT : ker(β)→ H2p−n(X, Z(p))).
If [Z] ∈ CH p

hom(X,n) then TZ ∼ 0. Thus we get an element in the right-hand term of the twisted
sequence (from (6.5)

0→ H2p−n−1(X, Z(p)) A−→ H2p−1(U, ∂U)Z(p)
B−→ ker(T )Z(p) → 0;

we show how to lift it to the center term. The map B is the composite

H2p−1(U, ∂U)→ H2p−1(U)→ H2p
|Z|(�

n
X)

or (homologically)

H2m+2n−2p(|Z̄|)
(1)

��
H2m+2n−2p+1(X × (C∗)n, |Z| ∪ In

X)
��
H2m+2n−2p+1(X × (P1)n, |Z̄| ∪ Īn

X)
(2)��

∂

��

where the lifts indicated (possible because of the exact sequence) take Z to a bounding chain
Γ (where ∂Γ = Z mod In

X) and then to a limit of bounding chains Γε compactly supported on
X × (C∗)n (with ∂Γε = Zε mod In

X) as described in § 5.
We will write ζZ for the image of the integral lift

lim
ε→0

Γε in H2p−1(U, ∂U)C/F pH2p−1(U, ∂U).

Its preimage β̃−1(ζZ) under

β̃ :
H2p−n−1(X)C
F pH2p−n−1(X)

∼=−→ H2p−1(U, ∂U)
F pH2p−1(U, ∂U)

,

taken modulo H2p−n−1(X, Z(p)), gives Ψp,n(Z). Now β̃ dualizes to

β̃∨ : Fn+m−p+1H2n+2m−2p+1(X × (C∗)n, |W | ∪ In
X)C

(∼=)−→ Fm−p+1Hn+2m−2p+1(X)C.

If we think of β̃−1(ζZ) ∈ {Fm−p+1H2m−2p+n+1(X)C}∨ as a functional on forms, then it (and hence
Ψp,n(Z)) is computed on ω by

[β̃−1(ζZ)]ω = ζZ [(β̃∨)−1ω]. (∗∗)
(This essentially comes from Carlson’s theory [Car87].)

It remains to trace through β̃∨. As β̃ is given by the composition

H2p−n−1)(X)
��

��

� � �� H2p−2(∂�n
X)

��������������
�� H2p−1(U, ∂U)

H2p−n−1(X)⊕H2p−2(X)

∼=

�����������������
H2p−2(∂U)

��

then β̃∨ must be

H2m−2p+n+1(X) � H|∂�n
X |(X × (P1)n)

d[·]←− H2m+2n−2p+1(X × (C∗)n, |Z| ∪ In
X),

394

https://doi.org/10.1112/S0010437X05001867 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001867


The Abel–Jacobi map for higher Chow groups

where the second map sends π∗ω ∧ d[Ωn] 
→ ω, and the group on the right-hand side we take to
be represented by forms pulling back to 0 along |Z|. If ω ∈ Γ(Fm−p+1Ω2m−2p+n+1

X∞ ) is (d-)closed
then π∗ω ∧ Ωn is of type Fm+n−p+1 (whereas dimC Z = m + n− p), and so gives a lift of ω to the
right-hand side; therefore we write (β̃∨)−1ω = π∗ω ∧ Ωn. So (∗) is just

lim
ε→0

∫
Γε

π∗
1ω ∧ π∗

2Ω
n,

identifying Ψp,n(ω) with the AJ for relative cycles ∈ Zp(�n
X , ∂�n

X) as described in § 5. We
already know this equates with Φp,n(Z) (or AJ (Z)) by Proposition 5.1. This completes the proof
of Theorem 7.1.

Remark. A few words need to be said regarding the ‘limε→0’. The ‘relative quasiprojective variety’

(∗∗) (X × (C∗)n, |Z| ∪ In
X)

is Poincaré-dual to (U, ∂U); here these two play roles analogous to those played, respectively, by
(X, |Z|) and (X \ |Z|) in § 3. We need to be able to pair forms on (∗∗) [which pull back to 0 along
|Z|∪In

X but have poles along ∂�n
X ] with topological cycles there; this is the reason for using limits of

chains to compute homology (the integrals only make sense as a limit). Furthermore this needs to be
done in such a way that coboundaries and topological cycles (respectively cocycles and topological
boundaries) pair to zero; referring to § 5, the fact that

lim
ε→0

∫
Wε

π∗
�

{
Ωn

Rn

}
∧ π∗

Xα = 0 for any C∞-form α

ensures that this condition is met (as far as needed for the arguments here).
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