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Abstract

One of the oldest outstanding problems in dynamical algebraic combinatorics is the following conjecture of

P. Cameron and D. Fon-Der-Flaass (1995): consider a plane partition P in an 0 × 1 × 2 box B. Let Ψ(%) denote the

smallest plane partition containing the minimal elements of B − %. Then if ? = 0 + 1 + 2 − 1 is prime, Cameron

and Fon-Der-Flaass conjectured that the cardinality of the Ψ-orbit of P is always a multiple of p.

This conjecture was established for ? ≫ 0 by Cameron and Fon-Der-Flaass (1995) and for slightly smaller

values of p in work of K. Dilks, J. Striker and the second author (2017). Our main theorem specializes to prove this

conjecture in full generality.
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1. Introduction

The relatively young field of dynamical algebraic combinatorics studies dynamical properties of actions

on various fundamental objects of algebraic combinatorics. For example, alternating sign matrices,

plane partitions, root systems and Young tableaux all carry combinatorially natural cyclic group actions.

In dynamical algebraic combinatorics, we are interested in establishing features of the resulting orbit

structures, such as cyclic sieving phenomena [RSW04], homomesies [PR15], periodicities and resonance

phenomena [DPS17]. For an excellent survey of the area, see [Str17].

One of the most studied actions in dynamical algebraic combinatorics is called rowmotion. Rowmo-

tion can be defined as an action on the order ideals of any finite poset P. Interesting dynamical properties

appear when P is chosen to be a poset of significance in algebraic combinatorics. While much of the

literature on dynamical algebraic combinatorics dates from the past 15 or so years, rowmotion has older

roots; it first appeared in 1974 through independent work of P. Duchet [Duc74] (in a special case) and

of A. Brouwer and A. Schrijver [BS74] (in full generality).
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One of the oldest open problems in dynamical algebraic combinatorics has been a 1995 conjecture

of P. Cameron and D. Fon-Der-Flaass [CFDF95] on the periodicity of rowmotion for plane partitions.

The main goal of this paper is to prove their conjecture, which we now recall.

Fix positive integers 0, 1, 2 ∈ Z+ and consider plane partitions sitting inside a rectangular 0 × 1 × 2

box. We identify this box with the poset B0,1,2 = a × b × c that is the product of three chains, and

identify plane partitions in this box with order ideals of the poset B0,1,2 .

We write � (P) for the set of all order ideals of a poset P. Given � ∈ � (P), define Ψ(�) to be the order

ideal generated by the minimal elements of the complementary order filter P − �. Following [SW12],

we refer to the operator Ψ as rowmotion. It is straightforward to see that the action of Ψ is reversible,

so it permutes the elements of � (P) and partitions them into disjoint orbits. For a general poset P, these

orbits tend to be large and without discernible structure. However, for special posets P, intricate structure

has been discovered (for various such results, see, e.g., [AST13, BS74, CFDF95, MP18, Pan09, PR15,

RS13, SW12, Vor19]).

Cameron and Fon-Der-Flaass [CFDF95] made the following periodicity conjecture for rowmotion

on the poset B0,1,2:

Conjecture 1.1 ([CFDF95]). Suppose ? = 0 + 1 + 2 − 1 is prime. Then the cardinality of every Ψ-orbit

of � (B0,1,2) is a multiple of ?.

Remark 1.2. Conjecture 1.1 proposes a special kind of resonance in the sense of [DPS17]. That is,

while the Ψ-orbit cardinalities remain unknown, they all ‘resonate with the frequency ?,’ being all of

the form ℎ? for some positive integers ℎ. It would be very interesting to understand the values ℎ that

appear. Experimentally, there appears to be a strong bias toward odd values of ℎ. We currently have no

explanation for this phenomenon, nor do we have good upper bounds on the values ℎ.

Our main result is the following, which implies Conjecture 1.1:

Theorem 1.3. Let : be the cardinality of any Ψ-orbit of � (B0,1,2). Then

gcd(:, 0 + 1 + 2 − 1) > 1.

Previous work has succeeded in establishing Conjecture 1.1 only for very small and very large values

of 2. The case 2 = 1 was established earlier by Brouwer and Schrijver [BS74] and the case 2 = 2 by

Cameron and Fon-Der-Flaass [CFDF95]. (Indeed, in these ‘small 2’ cases the size of every Ψ-orbit is

exactly ?.) Cameron and Fon-Der-Flaass [CFDF95] also established the ‘large 2’ case 2 > 01−0−1+1.

This bound was later improved to

2 >
201 − 2

3
− 0 − 1 + 2

in [DPS17, Theorem 4.13].

Our superficially short proof of Theorem 1.3 and Conjecture 1.1 is uniform and does not rely on

any of these previous partial results. Nonetheless, we are heavily indebted to previous work that was

not available when Cameron and Fon-Der-Flaass first made their conjecture. Explicitly, our proof calls

upon some of the main results of [DPS17] and [Pec17]. In a deeper sense, our proof builds as well on

technology and theorems developed previously in various other papers [Pec14, SW12, TY09, TY11].

More specifically, in Section 2 we use the results of [DPS17] to translate Theorem 1.3 into an

equivalent statement about the combinatorics of  -promotion on increasing tableaux.  -promotion

was first studied in [Pec14] as an outgrowth of the combinatorics of  -theoretic Schubert calculus

for Grassmannians introduced in [TY09], and has since been studied in several purely combinato-

rial contexts. In Section 3 we then prove this translated conjecture, relying on the main theorem

of [Pec17].
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2. Reformulation in terms of increasing tableaux

Our first step in proving Theorem 1.3 is to use the results of [DPS17] to translate it into an equivalent

statement regarding different combinatorics. First, we recall the definitions of increasing tableaux and

the  -promotion operator on them.

We write 0× 1 to denote the grid of boxes with 0 rows and 1 columns. Equivalently, this is the Young

diagram of the partition with 0 parts all of size 1. Index the boxes of 0 × 1 as in a matrix, so the box

(1, 2) is the box in the second column from the left in the top row. For a box b in 0 × 1, we write b
→ for

the box immediately right of b, b
↓ for the box immediately below b, etc. A short ribbon in 0 × 1 is an

edge-connected subset of boxes with at most two in any row or column.

An increasing tableau of shape 0 × 1 is a filling ) of the boxes of 0 × 1 with positive integers,

so that rows strictly increase from left to right and columns strictly increase from top to bottom. That

is, for every box b, we have ) (b) < ) (b→) and ) (b) < ) (b↓). We write Inc(0 × 1) for the set of all

increasing tableaux of shape 0 × 1 and Inc@ (0 × 1) for the finite subset with entries at most @. Note that

in an increasing tableau, if we look at the set of boxes containing either 8 or 8 + 1, the edge-connected

components of this set are all short ribbons.

Example 2.1. An increasing tableau of shape 3 × 6 is

) =
1 2 3 5 6 10

2 4 5 8 9 11

6 7 9 10 13 17

∈ Inc17(3 × 6).

Note that not every number from 1 to 17 need appear. Note also that, for example, the boxes labeled 4

and 5 make up two short ribbons, while the boxes labeled 1 and 2 make up a single short ribbon.

Following [BS16], we say that ) ∈ Inc(0 × 1) is minimal if we have

◦ ) (1, 1) = 1,

◦ ) (b→) = ) (b) + 1 (for all b not in the rightmost column) and

◦ ) (b↓) = ) (b) + 1 (for all b not in the bottom row).

Note that there is a unique minimal tableau "0×1 of each shape 0 × 1, and that "0×1 is the unique

element of Inc0+1−1(0 × 1). Moreover, Inc@ (0 × 1) is empty if @ < 0 + 1 − 1.

We now recall the definition of  -promotion on increasing tableaux. Let ) ∈ Inc@ (0 × 1). Consider

the short ribbons consisting of the boxes labeled 1 and 2. Say a short ribbon is trivial if it consists

of a single box and nontrivial otherwise. For each trivial short ribbon we do nothing, while for each

nontrivial short ribbon we swap the labels 1 and 2. The result is generally not an increasing tableau, but

nonetheless consider the short ribbons in it consisting of the boxes labeled 1 and 3 and repeat this process,

successively swapping the pairs of labels (1, 4), (1, 5), . . . , (1, @) in nontrivial short ribbons. Note that

if the box in position (1, 1) originally had label 1, then label 1 finally appears only in position (0, 1). To

finish, decrement the label in each box by 1, and replace any resulting 0 label by @. The result is now an

increasing tableau in Inc@ (0×1), the  -promotion of) . See Example 2.3 for an example of this process.

We will abuse notation by also denoting the  -promotion of ) by Ψ()), as there can be no confusion

with rowmotion of plane partitions. We write Ψ•()) to denote the Ψ-orbit of the increasing tableau ) .

Remark 2.2. Increasing tableaux are a special case of the more classically studied semistan-

dard tableaux, and  -promotion shares features with the promotion for semistandard tableaux of

M.-P. Schützenberger [Sch72]; however, promotion of semistandard tableaux does not preserve the sub-

set of increasing tableaux, and  -promotion does not coincide with promotion.

Example 2.3. Starting with the tableau ) ∈ Inc9(4 × 4) shown here, we illustrate the process of

computing its  -promotion Ψ()). At each step, trivial short ribbons are shown in light grey and

nontrivial short ribbons are shown in darker grey.
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) =
1 2 4 5

2 3 5 6

4 5 7 8

5 6 8 9

→ 2 1 4 5

1 3 5 6

4 5 7 8

5 6 8 9

→ 2 3 4 5

3 1 5 6

4 5 7 8

5 6 8 9

→ 2 3 4 5

3 1 5 6

4 5 7 8

5 6 8 9

→ 2 3 4 5

3 5 1 6

4 1 7 8

5 6 8 9

→ 2 3 4 5

3 5 6 1

4 6 7 8

5 1 8 9

→ 2 3 4 5

3 5 6 1

4 6 7 8

5 1 8 9

→ 2 3 4 5

3 5 6 8

4 6 7 1

5 8 1 9

→ 2 3 4 5

3 5 6 8

4 6 7 9

5 8 9 1

→ 1 2 3 4

2 4 5 7

3 5 6 8

4 7 8 9

= Ψ())

By [DPS17, Theorem 4.4], there is a Ψ-equivariant bijection between the sets � (B0,1,2) and

Inc0+1+2−1(0 × 1). Hence, to prove Theorem 1.3 and Conjecture 1.1, it is sufficient to establish the

following:

Theorem 2.4. Let @ > 0 + 1 − 1 and suppose the Ψ-orbit of ) ∈ Inc@ (0 × 1) has cardinality : . Then

gcd(:, @) > 1.

Remark 2.5. The hypothesis @ > 0 + 1 − 1 in Theorem 2.4 is necessary merely to exclude the minimal

tableau "0×1 , corresponding under the Ψ-equivariant bijection of [DPS17] to the empty plane partition

in the degenerate 0 × 1 × 0 box. Obviously, these objects have Ψ-orbits of size 1.

3. Proof of Theorem 2.4

Let @ ≥ 0 + 1 − 1 and fix ) ∈ Inc@ (0 × 1). Suppose |Ψ•()) | = : and gcd(:, @) = 1. We aim to show

that ) is minimal, so @ = 0 + 1 − 1.

The frame of the shape 0 × 1 is the set Frame(0 × 1) consisting of those boxes in the first or last

column, or first or last row, of 0×1. The frame Frame(*) of the tableau* ∈ Inc@ (0×1) is the restriction

of the filling* to Frame(0 × 1).

Example 3.1. For ) as in Example 2.3, the frame consists of the boxes shaded in light grey here:

1 2 4 5

2 3 5 6

4 5 7 8

5 6 8 9

Consider the cyclic group �: = 〈k〉 of order : . Define an action of �: on Ψ•()) by k ·* = Ψ(*)

for all * ∈ Ψ•()). Since : and @ are relatively prime, the group element k@ also generates �: . Hence,

every* ∈ Ψ•()) is of the form Ψ<@ ()) for some positive integer < ∈ Z+.

By [Pec17, Theorem 2], we have Frame(*) = Frame(Ψ@ (*)) for all tableaux* ∈ Inc@ (0×1). Hence,

by the observation of the previous paragraph, we have Frame(*) = Frame()) for every * ∈ Ψ•()). In

particular, Frame()) = Frame(Ψ())).

The condition Frame()) = Frame(Ψ())) turns out to be very strict. Indeed, Proposition 3.2 implies

that ) is therefore a minimal tableau and @ = 0 + 1 − 1, completing the proof of Theorem 2.4. �
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Proposition 3.2. Suppose + ∈ Incℓ (0 × 1) satisfies Frame(+) = Frame(Ψ(+)). Then + is minimal and

ℓ = 0 + 1 − 1.

Before proving this proposition, we need a few more definitions. Let + ∈ Incℓ (0 × 1). Following

[DPS17], we define the flow path of + to be the set of pairs {b, b′} of adjacent boxes of + such that b

and b
′ are at some point part of the same nontrivial short ribbon during the application of  -promotion

to + . We define the stream-bed of + to be the union of the flow path – that is, the set of all boxes b

appearing in any pair {b, b′} of the flow path of + . (Warning: In [Pec14], the term ‘flow path’ was used

to refer to what we here call a ‘stream-bed.’) Observe that if b ≠ (1, 1) is in the stream-bed of + , then

either {b←, b} or {b↑, b} is in the flow path of+ . Similarly observe that if b ≠ (0, 1) is in the stream-bed

of + , then either {b, b→} or {b, b↓} is in the flow path of + .

Example 3.3. Let ) be as in Example 2.3. Then its stream-bed is the union of all the dark-grey short

ribbons in all the tableaux illustrated there.

1 2 4 5

2 3 5 6

4 5 7 8

5 6 8 9

Proof of Proposition 3.2. We have + (1, 1) = 1, for otherwise we would have Ψ(+) (1, 1) = + (1, 1) − 1,

contradicting Frame(+) = Frame(Ψ(+)). For any tableau , ∈ Incℓ (0 × 1) with, (1, 1) = 1, we have

Ψ(,) (0, 1) = ℓ. Hence, by Frame(+) = Frame(Ψ(+)), we also have + (0, 1) = ℓ.

Consider b ∈ Frame(0×1). If b is not in the stream-bed of+ , then Ψ(+) (b) = + (b)−1, contradicting

Frame(+) = Frame(Ψ(+)). Hence, every box of Frame(0 × 1) must be in the stream-bed of + .

Consider {b, b→} in the top row of + . Since b
→ is in the stream-bed of + , the pair {b, b→} must be

in the flow path of + . Hence Ψ(+) (b) = + (b→) − 1. But by assumption, Ψ(+) (b) = + (b), so we have

+ (b→) = + (b) + 1. Similarly, we have + (b↓) = + (b) + 1 for b in the leftmost column of + .

Consider {b, b→} in the bottom row of + . Since b is in the stream-bed of + , the pair {b, b→} must be

in the flow path of + . Thus again we have + (b→) = + (b) + 1. Similarly, we have + (b↓) = + (b) + 1 for

b in the rightmost column of + .

Therefore, the entries of + increase consecutively around Frame(0 × 1) from upper left to lower

right. In particular, the largest entry of + must be 0 + 1 − 1. But we have already determined that this

largest entry is ℓ in position (0, 1). Hence, ℓ = 0 + 1 − 1, and + is the minimal tableau "0×1 . �
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