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We investigate a model of turbulent magnetic reconnection introduced by (Higashimori,
Yokoi and Hoshino 2013 Phys. Rev. Lett. 110, 255001) and show that the classic
two-dimensional, steady-state Sweet–Parker and Petschek reconnection solutions are
supported. We present evidence that these are the only two steady-state reconnection
solutions, and we determine the criterion for their selection. Sweet–Parker reconnec-
tion occurs when there is no growth in turbulent energy, whereas Petschek reconnection
occurs when the current density in the reconnecting current sheet is able to surpass a crit-
ical value, allowing for the growth of turbulent energy that creates the diffusion region.
Further, we show that the Petschek solutions are self-similar, depending on the value
of the turbulent time scale, and produce a universal steady reconnection rate. The self-
consistent development of Petschek reconnection through turbulence, within the model,
is an example of fast and steady magnetic reconnection without an explicit need for the
collisionless terms in an extended Ohm’s law.

Keywords: MHD Turbulence

1. Introduction

Magnetic reconnection is a fundamental process of plasma physics. In astrophys-
ical applications, it plays a crucial role in many important phenomena, including
dynamo action, solar flares and the formation of coronal mass ejections. In lam-
inar and ideal magnetohydrodynamics (MHD), magnetic reconnection (hereafter,
reconnection) is not possible – Alfvén’s theorem constrains magnetic field lines to
behave as material lines. To bypass this constraint, extra (non-ideal) terms need to
be considered in Ohm’s law. It is from this perspective, as a deviation from ideal
MHD, that reconnection is often considered and has provided an excellent working
definition for applications, particularly in relation to the solar atmosphere (Pontin &
Priest 2022).

Many of the physical processes that are based on reconnection, e.g. solar flares, are
rapidly occurring events. Therefore, the reconnection associated with them is said to
be fast. This adjective needs to be understood relative to early work on reconnection,
which was based on either linear instabilities or (approximate) steady-state solutions
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(Priest & Forbes 2007). These theories result in reconnection rates that are too slow
to describe fast phenomena such as flares. As a result of this problem, a significant
research trend developed that moved in the direction of seeking faster reconnection
rates by considering the effects of extra physics (compared with resistive MHD)
through an extended Ohm’s law. The approach was exemplified by the Geophysical
Environment Modelling Magnetic Reconnection Challenge (Birn et al. 2001) – a
collection of works solving the same reconnection problem (null point reconnection
from the pinching of a current sheet) but with varying physical models. The main
result of this study was that, for the given problem, the reconnection rates of all
models are consistently faster than that of resistive MHD. This result, combined with
those of other works (e.g. Biskamp 1986; Ma & Bhattacharjee 1996; Uzdensky &
Kulsrud 2000; Malyshkin, Linde & Kulsrud 2005) has led to a general consensus that
a key element for achieving fast, X-point reconnection is the inclusion of collisionless
effects.

As well as the effects of microphysics, however, another fundamental property
of astrophysical plasmas, which has a strong effect on reconnection, is turbulence.
Indeed, it has been argued that turbulence is of more importance than the extra terms
of a generalised Ohm’s law (i.e. the collisionless and resistive terms) as such terms
are negligible compared with an inertial range electromotive force that is derived
from ideal MHD (Eyink 2015). There are now several descriptions of turbulent
magnetic (fast) reconnection, including field line meandering (such as the theory of
Lazarian & Vishniac (1999) and the simulations of Kowal et al. (2009)), the dynamic
formation of plasmoids (as described by Uzdensky, Loureiro & Schekochihin (2010)
and simulated by Loureiro et al. (2009)) and enhanced-transport modelling (e.g.
Higashimori, Yokoi & Hoshino 2013). We shall return to the latter of these shortly
as this approach will form the basis for this work.

Although reconnection is generally a three-dimensional (3-D) process, historically,
the categorisation of slow and fast reconnection has been based on a (laminar)
two-dimensional (2-D) set-up. The details of 2-D reconnection solutions have been
discussed at length elsewhere (e.g. Priest & Forbes 2007), so here, we only provide
some highlights that will be useful for our discussion later. Steady solutions of 2-D
reconnection follow either the Sweet–Parker (Parker 1957; Sweet 1958; Parker 1963)
or the Petschek (Petschek 1964) configuration. Whilst the former solution is found
for uniform resistive MHD, the latter is found when some extra physics or pertur-
bation leads to the localised enhancement of the diffusion region, created thanks
to what is often referred to as anomalous resistivity. For turbulent reconnection,
Higashimori et al. (2013) employ a Reynolds-averaged and renormalised enhanced-
transport turbulent MHD model. For 2-D reconnection in a current sheet, they
identify three solutions: a slow Sweet–Parker-like solution (denoted laminar recon-
nection), a fast Petschek-like solution (denoted turbulent reconnection) and a slower
diffusive solution (denoted turbulent diffusion). These three solutions were found (in
order) by increasing the turbulent time scale (which is a free parameter). In their
model, it is the turbulent energy and cross-helicity that are responsible for effectively
providing anomalous resistivity and, thus, enabling the onset of Petschek reconnec-
tion. Widmer, Büchner & Yokoi (2019) extended the model of Higashimori et al.
(2013) to include a model equation that determines the turbulent time scale, rather
than choosing it as a free parameter. In their simulations, they resolved only the
Petschek solution and concluded that the other two solutions are merely artefacts
of the choice of turbulent time scale. However, based only on the simulations of
Widmer et al. (2019) can the laminar and diffusive solutions found by Higashimori
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et al. (2013) really be cast aside or do they form part of a more general overall pic-
ture of the solution space of this model? Further, can the steady-state reconnection
solutions, that have formed the basis of much of the theory of 2-D reconnection, be
realised in this turbulent regime?

The purpose of this work is to investigate the turbulent reconnection model (here-
after TRM) of Higashimori et al. (2013), in further detail, in order to develop a
better understanding of how fast and slow reconnection develops within this frame-
work and so address the points listed above. We perform two main tasks. First,
we describe some general properties of the TRM in relation to field line topology,
highlighting the role played by turbulence in changing the physics of reconnection
with respect to laminar MHD. Secondly, we investigate the reconnection solutions
described above and provide a detailed analysis for their selection. A corollary of this
work is to demonstrate how effectively fast reconnection can be generated without
the explicit need for the collisionless terms in a generalised Ohm’s law.

The layout of the paper is as follows. First, we introduce the TRM and summarise
its main properties. Secondly, we describe some general properties of the TRM
related to field line topology and reconnection. This is followed by a detailed study
of simulations of 2-D reconnection in a current sheet. In particular, we map out the
solution space of the TRM for this problem and identify how individual solutions
are selected. We then provide some theoretical justification of the simulation results
in relation to fast and steady reconnection. The paper ends with a summary and
short discussion.

2. The turbulent reconnection model

The TRM introduced in Higashimori et al. (2013) consists of a set of MHD
equations for mean fields together with one-point turbulent statistical quantities
representing the turbulent fluctuations. This approach provides a means of mod-
elling turbulent reconnection in systems for which large-scale and evolving structures
provide the free energy sources for the development of highly inhomogeneous
turbulence. The equations are derived using the two-scale direct-interaction approxi-
mation (TSDIA), for which detailed descriptions are presented in other works (e.g.
Yoshizawa 2013; Yokoi 2020; Mizerski, Yokoi & Brandenburg 2023). This clo-
sure scheme is for nonlinear inhomogeneous turbulence, for which it is assumed
that fields can be split into mean and fluctuating parts. A multiple scales analy-
sis is applied for large-scale inhomogeneities and closure is achieved by combining
this with the direct-interaction approximation. We will make use of the notation
for which a field f is split into a mean part and a fluctuating part as f = F + f ′,
where upper-case letters represent mean quantities and lower-case letters with primes
represent fluctuations of quantities. Here, F = 〈 f 〉, where 〈·〉 denotes an ensemble
average.

In terms of the mean magnetic field B and the mean velocity field U , the mean
field incompressible MHD equations are

∂U
∂t

+ (U · ∇)U = −∇P + (∇ × B) × B + 1

Re
∇2U, (2.1)

∂B
∂t

= ∇ × (U × B + EM ) + 1

Rm
∇2B, (2.2)

∇ · B = ∇ · U = 0, (2.3)
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where P is the mean pressure, Re is the Reynolds number, Rm is the magnetic
Reynolds number and EM is the electromotive force due to turbulent fluctuations.
These equations are non-dimensional, based on scaling U with the (mean field)
Alfvén speed UA. The scales for length L and the magnetic field B are based on
the initial current sheet thickness and field strength, respectively. The time scale is
L/UA, the Alfvén time scale.

The effects of turbulence enter into the model through the electomotive force
EM = 〈u′ × b′〉. We follow Higashimori et al. (2013) in ignoring the effects of turbu-
lent terms deriving from the momentum equation, which is in line with other theories
of turbulent reconnection (e.g. Lazarian & Vishniac 1999). While this choice can be
motivated by the fact that we are studying reconnection in a magnetically dominated
plasma, we can show a posteriori that the neglect of such terms is justified for the
application in this paper. This analysis is presented in the Appendix. Also, this choice
also allows us to compare more closely with previous work in this area (Higashimori
et al. 2013; Widmer et al. 2016a,b, 2019).

By means of the TSDIA approach, the electromotive force can be written in the
form

EM = αB − βJ + γ�, (2.4)

where J = ∇ × B and � = ∇ × U . The transport coefficients α, β and γ involve the
one-point turbulent statistical quantities, which can be expressed as

α = CατH, H = 〈
b′ · j′ − u′ · ω′〉 , (2.5)

β = CβτK, K = 〈
u′ · u′ + b′ · b′〉 , (2.6)

γ = Cγ τW , W = 〈
u′ · b′〉 . (2.7)

The TSDIA determines these transport coefficients by assuming the turbulent statis-
tics come from fully developed small-scale turbulence that decays over a turbulent
time scale τ . This time scale is a constant that is chosen depending on the applica-
tion. The model constants Cα , Cβ and Cγ are universal constants derived from the
TSDIA approach and have the values Cα = 0.01 and Cβ , Cγ = 0.3 (Higashimori et
al. 2013; Yokoi 2020).

The first transport coefficient, α, is related to the turbulent helicity of the system.
This term has received significant attention in dynamo studies in relation to the so-
called α-effect. Due to the symmetry of the reconnection problem that we will focus
on, the α term is negligible and, like in Higashimori et al. (2013), we ignore it.

The remaining two transport coefficients, as shown by Higashimori et al. (2013),
do play an important role in reconnection. The β term is related to the turbulent
energy K and can be responsible for either enhancing or dissipating the mean mag-
netic field. The γ term is related to the turbulent cross-helicity W . Again, this term
can lead to the suppression or enhancement of the magnetic field but primarily deter-
mines the spatial structure of the turbulent energy. In particular for 2-D null point
reconnection, cross-helicity has a quadrupolar structure which helps to concentrate
the turbulent energy at the null point. Higashimori et al. (2013) showed that, without
cross-helicity, a slightly less-concentrated diffusion region forms, resulting in less flux
being reconnected compared with when cross-helicity is included in the model. In
the diffusion region, however, it is the turbulent energy K that dominates.

To complete the TRM, evolution equations are required for the one-point
turbulent statistical quantities K and W . These are derived to be
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∂K
∂t

+ U · ∇K = −EM · J + B · ∇W − εK, (2.8)

∂W
∂t

+ U · ∇W = −EM · � + B · ∇K − εW , (2.9)

where εK and εW are the dissipation terms of K and W , respectively. A model for
the turbulent dissipation is the final requirement. We adopt the same approach as
Higashimori et al. (2013) and model these quantities as

εK = K
τ
, εW = CW

W
τ
, (2.10)

where CW = 1.3 and τ is the time scale of turbulence. We adopt this approach in
order to investigate all possible solutions of the TRM and not only the solutions of
Widmer et al. (2019).

This presentation of the TRM equations mirrors that from Higashimori et al.
(2013) in all aspects but one. The mean field equations in Higashimori et al.
(2013) are compressible but they assume that the turbulence is incompressible
(the electromotive force (2.4) results from the TSDIA approach while assuming
incompressibility). We focus entirely on incompressible MHD at all scales.

3. Flux and field line conservation in the TRM

When discussing reconnection and topology in the context of the TRM, some care
is required. Unlike in laminar MHD, only the mean field quantities are described
explicitly. Thus, when we speak of reconnection in the TRM, it is reconnection of the
mean magnetic field and not the full (mean plus fluctuating) field that is described.
It is in this sense that we can speak of ideal reconnection, as turbulence can cause
the reconnection of mean field lines without the explicit need of imposed magnetic
diffusion. We now explore this in more detail by considering flux and field line
conservation (for the mean magnetic field).

3.1. Flux conservation
Alfvén’s celebrated result for ideal MHD (Alfvén 1942) shows that magnetic flux

is frozen into the flow and, as a consequence of this, field line topology is preserved
(field lines behave as material lines). For the TRM, there are similarities to this
situation, but also fundamental differences.

Let us assume that the mean velocity and magnetic fields are suitably smooth
(possessing as many derivatives as needed – a reasonable assumption for the mean
fields). Let C be a closed loop, with unit tangent vector t, that is (Lie-)transported
by the mean velocity U . Let the corresponding surface, bounded by C, be denoted
S and let the unit normal vector to this surface be denoted n. The mean magnetic
flux � through S is

�=
∫
S

B · n d2x.

It is not difficult to show that, with magnetic diffusion ignored,

d�
dt

=
∫
S

[
∂B
∂t

− ∇ × (U × B)

]
· n d2x

=
∮
C

EM · t dx,
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6 S. Stanish and D. MacTaggart

where the last line follows from an application of Stokes’ theorem. It is, therefore,
clear that the mean magnetic flux is conserved if the electromotive force has the form
EM = ∇φ, for some scalar function φ. In this situation, we have a modified form of
Alfvén’s theorem, although there are important physical differences. For simplicity,
let us consider the case of φ = const., i.e. EM = 0. Superficially, this choice seems
to satisfy flux conservation trivially, akin to removing magnetic diffusion from the
induction equation. However, on consideration of (2.4) for this case, namely

0 = αB − βJ + γ�, (3.1)

this situation is more complex. First, the trivial solution α = β = γ = 0 means that
there is no turbulence and we are back to laminar MHD. If the turbulent trans-
port coefficients are non-zero, however, equation (3.1) represents a dynamic balance
(Yokoi 2020). This means that, although the mean flux is conserved, it is not sim-
ply in a passive manner as for the magnetic field in laminar ideal MHD, in which
the full, rather than just the mean, magnetic flux is frozen into the flow. Instead,
turbulence acts continuously in a particular way (satisfying equation (3.1)) to con-
serve the mean flux. Thus, although the derivations of flux conservation in laminar
ideal MHD and mean flux conservation in the TRM are very similar, the underlying
physics of both is markedly different.

In general, the electromotive force is not likely to simply be zero or a potential
field (we will show such an example later), so the effects of turbulence will violate
Alfvén’s theorem for mean fields. Thus, the mean magnetic flux is not, in general,
conserved in the TRM.

3.2. Field line topology
For laminar ideal MHD, a corollary of Alfvén’s theorem is that the topology of

field lines is also conserved. Translating this result to the TRM, the condition for
the conservation of (mean) field line topology can be written as

∂B
∂t

− ∇ × (U × B) = λB,

for some scalar function λ (Stern 1966; Hornig & Schindler 1996). We thus have
more options for mean field line conservation than just setting EM = ∇φ, which
corresponds to setting λ= 0. In other words, the mean field line topology can be
conserved even if the mean flux is not. We now follow a standard approach (see,
for example, § 2.2 in Birn & Priest (2007) by Hornig) but applied to the mean fields.
Let us assume that there exists a velocity field V such that

∂B
∂t

= ∇ × (V × B).

That is, the mean magnetic flux is frozen into the flow determined by V . The ideal
and mean induction equation for a general electromotive force is

∂B
∂t

= ∇ × (U × B) − ∇ × EM ,

where we assume no dynamic balance. Equating these two induction equations, it is
clear that

∇ × [(U − V ) × B] = ∇ × EM .
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If we write W = U − V , then for the electromotive force to preserve the mean field
line topology, it must have the form

EM = W × B + ∇φ. (3.2)

The individual parts of EM in (2.4) do not have the form of the first or second terms
on the right-hand side of (3.2). Therefore, in general, the effect of turbulence is to
not preserve mean field line topology but to cause reconnection. In particular, the
mathematical form of the term related to the turbulent energy in (2.4) is very similar
to that of the non-ideal term of resistive MHD (magnetic diffusion), even though the
physics represented by the two terms is different. Thus, in general, turbulence leads
to the reconnection of mean field lines.

These general theoretical considerations imply that reconnection in the TRM
depends on the dominance of one or more of the terms that compose the electro-
motive force. The efficiency of reconnection depends on how well |EM | of sufficient
size can be localised, similar to the localisation of magnetic diffusion at magnetic
topological boundaries (e.g. separators and null points) for reconnection in laminar
resistive MHD. We thus have a mathematical correspondence between laminar and
turbulent reconnection, even if the equations represent different physics. This sug-
gests that for the phenomena of laminar reconnection can find turbulent analogues
within the context of the TRM. We now investigate this claim for 2-D steady-state
reconnection in a current sheet.

4. Current sheet reconnection
4.1. Set-up

We solve the TRM equations numerically using the method of lines solver
Bout++ (Dudson et al. 2009), a semi-discrete simulation framework that solves
systems of partial differential equations in general curvilinear coordinates. In our
simulations, we discretise the spatial coordinates (z, x) into a Nz × Nx uniform mesh
in a simulation domain of (non-dimensional) size Lz × Lx (the z-direction is horizon-
tal and the x-direction is vertical). We solve the momentum and induction equations
in stream-function form, so the full system of equations is

∂

∂t
∇2φ =

{
∇2φ, φ

}
+

{
ψ,∇2ψ

}
+ 1

Re
∇4φ, (4.1)

∂

∂t
ψ = {ψ, φ} +

(
CβτK + 1

Rm

)
∇2ψ − Cγ τW∇2φ, (4.2)

∂

∂t
K = {K, φ} + {ψ,W } + CβτK

[
∇2ψ

]2 − Cγ τW∇2ψ∇2φ

− K
τ

− χ∇4K, (4.3)

∂

∂t
W = {W , φ} + {ψ,K} + CβτK∇2ψ∇2φ − Cγ τW

[
∇2φ

]2

− CW
W
τ

− χ∇4W , (4.4)

where U = ∇ × (φey) and B = ∇ × (ψey). We have included hyper-diffusivity on the
turbulent quantities for stability with a hyper-diffusion coefficient of χ = 10−7. The
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8 S. Stanish and D. MacTaggart

curly braces are Poisson brackets defined as

{A, B} = ∂A
∂x
∂B
∂z

− ∂B
∂x
∂A
∂z

.

The brackets are discretised via Arawaka’s method (Arakawa 1966) while the
laplacian terms are solved by second-order central differences. This reduces the
entire problem to a system of ordinary differential equations that are then integrated
in time via the implicit pvode scheme, a backwards differencing method (Byrne &
Hindmarsh 1999). The initial form of the magnetic field in all simulations takes the
form of a Harris current sheet

B0 = tanh
(
π

x
δ

)
ez, (4.5)

where δ is the half-thickness of the current sheet. There is no initial flow and the
initial turbulent energy is set to K0 = Kmin, the smallest value the turbulent energy
can take in the simulations. We set this minimum value to Kmin = 10−8, which is
as small as floating point precision allows. The initial condition for K0 = Kmin then
corresponds to a laminar current sheet.

The turbulent time scale is determined as in Higashimori et al. (2013), in which
we first consider the dominant balance of terms in the steady-state form of (2.8). If
J0 is the initial current density and J0 represents its magnitude at the centre of the
current sheet, for a steady state we have

τ0 ≈ 1√
CβJ0

. (4.6)

The turbulent time scale is varied from its steady-state value by rescaling as τ = Cτ τ0.
We will make use of the scale factor Cτ later when characterising reconnection
solutions.

In the following simulations, the current sheet (half-)thickness is set as δ = 1.
Unless otherwise specified, the lengths of the domain are, Lx = 10 and Lz = 80. Our
simulations are run at a resolution of 1024 × 2048 with periodic boundary conditions
in the z-direction and perfectly conducting, no-slip conditions in the x-direction. The
background Reynolds numbers (fluid and magnetic) are both set to 5 × 104.

To perturb the current sheet, we introduce a mix of modes that leads to recon-
nection at the centre of the domain. In terms of the magnetic flux function, the
perturbation has the form

φ0 = 1

1000
exp [ − 100x2]

13∑
n=1

1

n
cos (nz).

This expression is designed to produce a small-amplitude perturbation that is limited
to near the centre of the current sheet.

4.2. Reconnection rates
In order to determine whether or not a particular reconnection solution is fast, we

need to determine the rate of reconnection. There are various ways to measure
the reconnection rate but the standard method, particularly for 2-D reconnec-
tion, is to measure the Alfvén Mach number at the edge of the current sheet,
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FIGURE 1. A representation of the identification of the diffusion region. The central figure shows
a picture of the current density magnitude J for a simulation with Cτ = 1. The left panel shows
in inflow velocity across the centre of the sheet and the bottom panel displays the magnitude of
ηeff . The dotted lines correspond to where we identify the boundaries of the diffusion region to
be, as described in the main text.

Min := Ux,in/UA,in. Theories of steady-state reconnection provide expressions for the
reconnection rate based on particular scalings of the diffusion region. For example,
in the Sweet–Parker scaling for resistive MHD, the reconnection rate is given by

Min ∼ 1√
Rm

= √
η, (4.7)

where we introduce the η-notation for the constant background magnetic diffusion
coefficient, in order to simplify notation later.

In our simulations, the size and shape of the diffusion region depends on the dom-
inant physics controlling it, and we will describe this in more detail later. However,
for the practical identification of the diffusion region’s boundaries, we identify char-
acteristics that apply to all the turbulent solutions under study. The height of the
diffusion region is determined by the rapid change in the mean velocity, as shown in
figure 1. For the width, we select the range in which the effective magnetic diffusiv-
ity ηeff is more than twice the average over the entire length of the current sheet. In
order to define the effective magnetic diffusivity, we combine the effects of magnetic
diffusion and turbulent energy from the electromotive force to identify

ηeff = η+ CβτK. (4.8)

This quantity can be derived by expanding the induction equation (2.2) using (2.4)
and (2.6) and ignoring the contribution of cross-helicity, which is small in the diffu-
sion region. It is clear from figure 1 that this approach selects a reasonable choice
for the width of the diffusion region.

Since we solve an initial value problem, we never produce a perfect steady state
(and so, in all later discussion, the term steady state refers to quasi-steady state,
for which there is weak decay with time). In practice, this means that the diffusion
region changes in size by a small amount as the total magnetic flux is depleted over
time. Thus, all of our reconnection measurements are based on an average of the
five closest grid cells to the diffusion region boundary.
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FIGURE 2. This figure shows the reconnection rate Min for various values of Cτ .

Figure 2 shows the reconnection rate of the TRM over time for various values of
the turbulent time scale factor Cτ (equivalent to considering different τ ). What is
clear is that, for values of Cτ large enough, the reconnection rate evolves to a unique
steady rate just below the fast rate of Min ≈ 0.1 (Cassak, Liu & Shay 2017). For lower
values of Cτ the steady-state reconnection rate remains low, typically less than 0.01.
Remarkably, for this complex system, there are only two general types of steady
reconnection solution. To justify the existence of these two steady solutions, we will
identify the critical balances that lead to their formation. Before this, however, we
now present an overview of the nature of all reconnection solutions.

4.3. Overview of all solutions
As mentioned earlier, it has been reported that three distinct reconnection solu-

tions exist for the TRM model: laminar reconnection, turbulent reconnection and
turbulent diffusion. Here we show that only the first two of these solutions are dis-
tinct, with the third solution (turbulent diffusion) revealing itself as a version of
the second (turbulent reconnection) on a long time scale. Representations of these
solutions are displayed in figure 3.

Focussing on each solution in turn, figures 3(a) and 3(b) display initial and late
times of laminar reconnection. This solution is laminar in the context of the TRM as
there is no growth of turbulent energy K (to be discussed in more detail shortly) and
the current sheet evolves to the classic Sweet–Parker scenario of resistive MHD.

For the other solutions, shown in figures 3(c–f ), respectively, the form of recon-
nection is governed by turbulence. Comparing the early phases in (c) and (e), the
solution with large Cτ has led to a much thicker and diffuse current sheet. The
initial reconnection rate for this Cτ = 2.5 case is much smaller than that of the
Cτ = 1 case on the time scale which the latter develops fast reconnection (see
figure 2). This slower reconnection has been previously described as turbulent dif-
fusion (Higashimori et al. 2013). However, if the solution is allowed to evolve to
much later times, it develops the same fast reconnection as for smaller Cτ (turbulent
reconnection) cases.
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FIGURE 3. Maps of the current density magnitude J displaying different phases of the recon-
nection solutions for different values of Cτ . The images on the left (a, c, e) depict an early stage
of reconnection, before significant deformation of the current sheet. The images on the right (b,
d, f ) depict when steady-state reconnection has been established. Note that we have zoomed in
on the diffusion region so x ∈ [ − 2.5, 2.5]. The domain for the Cτ = 2.5 case has been extended
to Lz = 160 while retaining the same resolution so that a steady state can be achieved before the
outflow impinges upon the boundary.

The magnetic field of the fast turbulent reconnection solutions follows the struc-
ture of Petschek reconnection, as opposed to laminar Sweet–Parker reconnection.
As is clear from figures 3(d) and 3(f ), the diffusion region is localised in the centre of
the domain with four thin current layers

1
emanating diagonally outwards. Beyond

this visual inspection, we also present evidence that the localised diffusion region
behaves approximately like a Sweet–Parker region with a local reconnection rate

Min ∼ Rm−1/2
eff ,

where the localised magnetic Reynolds number at the diffusion region is Rmdiff =
LUA, in/ηeff (e.g. Baty, Priest & Forbes 2006). Table 1 shows a close match for the
Sweet–Parker scaling across a range of Cτ .

In summary, the TRM supports two steady-state reconnection solutions, a slow
and laminar Sweet–Parker solution and a fast and turbulent Petschek solution. We
now consider how these solutions are selected.

1Although slow-mode shocks feature in the standard description of Petschek reconnection, we describe these
as current layers since we are solving the incompressible MHD equations.
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Cτ 0.5 1.0 1.5 2.0
Min 0.092 ± 0.003 0.089 ± 0.002 0.090 ± 0.002 0.090 ± 0.001
Rm−1/2

eff 0.079 ± 0.001 0.089 ± 0.001 0.096 ± 0.001 0.094 ± 0.001

TABLE 1. A comparison of the Mach number at the edge of the diffusion region, Min, and
the Sweet–Parker reconnection rate in the diffusion region, Rm−1/2

eff , for a range of values of
Cτ . The values are taken from a time average starting at tsim = tend − 40 and proceeding to the
end of the simulation, tsim = tend . The error bars come from the error in measuring the inflow

region across five grid cells of the boundary, as mentioned in the main text.

4.4. Critical current balances
The two steady-state reconnection solutions are due to intrinsic balances within

the system. In searching for these balances, there are two key physical elements to
consider. First, the inclusion of a constant background magnetic diffusivity η leads
to a natural length scale. In a steady-state current sheet, the classical Sweet–Parker
scaling provides an estimate of the current sheet thickness as δ ∼ η1/2. This estimate
provides a lower length scale that can be reached by the system in a steady state
when the presence of turbulence is absent. For our purposes, it will be useful to
provide an estimate of the current density magnitude at the reconnecting X-point.
Under the Sweet–Parker scaling this quantity can be approximated as

Jη ∼ Bin

η1/2
, (4.9)

where Bin is the magnitude of the magnetic field at either of the upper or lower
edges of the diffusion region.

For a mean steady state with turbulence, we look again to (2.8). Similar to the
derivation of (4.6), and now combining this with the expression τ = Cτ τ0, we arrive
at the following estimate for the magnitude of the current density at the centre of
the diffusion region

Jc = Jτ ∼ J0

Cτ
, (4.10)

where Jτ is the critical current density (this is made clear below). In order to examine
the relevance of the estimates given in (4.9) and (4.10), we first consider how the
magnitude of the current density at the centre of the diffusion region, denoted Jc,
relates to these quantities. Figure 4 displays the temporal development of Jc and Kc
(the value of K at the centre of the diffusion region) for different values of Cτ . The
value of J0/Cτ is displayed for each case as a horizontal dashed line.

Figure 4(a) displays a case of Sweet–Parker reconnection (Cτ = 0.1). The current
density Jc increases until shortly after t = 50 and then decreases at a slow rate (this is
the quasi-steady Sweet–Parker solution). There is no growth in the turbulent energy
Kc. One feature that is clear from this figure is that Jc < Jτ for the entire evolution.
In figure 4(b), however, which displays a case of Petschek reconnection (Cτ = 0.5),
Jc breaks through the Jτ barrier. As the current density grows, it eventually (shortly
after t = 20 for this case) becomes strong enough to generate turbulent energy Kc
(see 2.8). The current density reaches a maximum value and then drops rapidly to
a value just above Jτ . Co-temporal with this rapid decrease, the turbulent energy
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FIGURE 4. Time evolutions of Jc amd Kc for different values of Cτ . For each case, the value of
Jτ is represented by a dashed line.

Kc rises rapidly until holding an approximately steady value. Beyond t ≈ 30, both
Jc and Kc are approximately steady (this is the quasi-steady Petscheck solution).
In figure 4(c), we again have a case of Petschek reconnection (Cτ = 1.5), but the
difference to the previous case is that Jc � Jτ for the entire evolution. Here, the
current density is strong enough to cause Kc to increase from the initial condition.
Later, the behaviour of Jc and Kc is qualitativly similar to the Cτ = 0.5 case, i.e. both
achieve quasi-steady values with Jc resting just above Jτ . What the cases in figure 4
show is that Jτ provides a critical barrier for the selection of a Petschek solution. If
Jc can become larger than Jτ , then turbulent energy can be produced and a steady
state can form with Jτ acting as a lower boundary for the current density at the
centre of the diffusion region.

Figure 5 displays the relationship of the average the critical current balances Jη
and Jτ as a function of Cτ , once a steady state has been reached. There is clearly an
excellent match between the simulation values of Jc, Jη and Jτ . For Cτ � 0.2, Jc ≈ Jτ
and the turbulent energy reaches an approximately constant value of 0.1. These are
all Petschek solutions. For Cτ � 0.2, Jτ is not reached and Jc ≈ Jη. These are all
Sweet–Parker solutions.

4.5. Self-similarity of turbulent petschek solutions
We have shown that for turbulent Petschek solutions, the steady reconnection

rate is Min ≈ 0.1 with Jc ≈ Jη. Since Jτ ∝ 1/τ , this suggests a self-similarity for the
turbulent Petschek solutions, all depending on the turbulent time scale. For example,
compare the solutions displayed in figures 3(d) and 3(e). The latter has a value of
Jc 2.5 times less than that of the former. However, it is clear that the size of the
diffusion region of the latter is greater than the former. Based on Jτ , we can estimate
the thickness of the diffusion region to be

δ ∼ CτBin

J0
. (4.11)

Figure 6 displays how the diffusion region thickness δ varies as a function of Bin
for three different values of Cτ . For each case, a line of best fit is plotted over
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FIGURE 5. A representation of the steady-state values of Jc and Kc for a range of Cτ . The solid
line shows the critical current selection min (Jτ , Jη), which identifies the selection of either
Sweet–Parker or Petschek solutions.

FIGURE 6. Diffusion region thicknesses δ, as a function of Bin, for three values of Cτ . Crosses
are determined from simulations and lines of best fit are overplotted on the points of each case.
The gradients of these lines follow the estimate in (4.11). The discrete steps in the data are due to
the resolution. In the x-direction the resolution is �x ≈ 0.01 so, as the sheet decreases in width,
δ decreases in integer multiples of �x.

the points determined from the simulations. The gradient of each line is Cτ /J0,
confirming the estimate in (4.11). Thus, the self-similarity of the turbulent Petschek
solutions have diffusion region thicknesses and current densities scaling with τ and
1/τ , respectively. The solutions are self-similar, with the turbulent time scale acting
as the fundamental scaling parameter.

4.6. Theoretical justification of the steady Petschek reconnection rate
Through the simulations described above, we have shown that a universal steady

Petschek reconnection rate is possible and that different Petschek solutions are
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self-similar. We now provide some basic theoretical justification that a universal
Petschek rate is a natural consequence of some standard balances combined with
the behaviour of the turbulent energy at the null point.

First, let the localised diffusion region have a thickness and width denoted by δ and
L respectively. Let Uin denote the inflow speed, Uout denote the outflow speed and
Kc denote the turbulent energy at the null point, as before. From mass conservation,
it follows that

UinL ∼ Uoutδ. (4.12)

Looking now to the momentum equation, balancing inertia with tension produces

Uout ∼ UA. (4.13)

In the induction equation, it is the turbulent diffusivity βc ∼ CβτKc, which is
important for reconnection. In the steady state, we have the balance

Uin ∼ βc

δ
∼ CβτKc

δ
. (4.14)

Two more relations are required to determine the five independent variables, and
these can be found by considering the behaviour of turbulence in the diffusion
region. Close to the null point, the cross-helicity effects can be ignored. Further,
from (4.6) and (4.10), the critical current density can be written as Jτ = 1/(

√
Cβτ ).

Combining these properties, it is a straightforward consequence that

∂K
∂t

+ (U · ∇)K ∼ CβτK(J2 − J2
τ ). (4.15)

At the null (and stagnation) point, we have that J = Jτ , which we have confirmed
numerically. From this fact, scaling (4.11) was derived and can also be written as

δ ∼ Bin

Jτ
∼

√
CβτBin. (4.16)

Close to the null point, the right-hand side of (4.15) may be ignored, and the turbu-
lent energy is simply advected by the flow. At larger distances, J � Jτ , representing
the decay of turbulent energy. Given that the turbulent energy plays a controlling
role in the definition of the diffusion region (βc ∝ Kc), the distance that an Alfvénic
flow (for fast reconnection) travels in a decay time can be described as

L ∼ UAτ . (4.17)

Putting all of this information together, the dominant scalings for steady Petschek
reconnection can be written as the following five relations:

L ∼ UAτ, δ ∼
√

CβτBin, Uin ∼
√

CβUA, Uout ∼ UA, Kc ∼ U2
A. (4.18)

Thus, it follows that the steady Petschek reconnection rate is

Min = Uin

UA
∼

√
Cβ . (4.19)

Since Cβ is a universal constant, it follows that the steady rate in (4.19) is also
universal, matching qualitatively the behaviour found numerically.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825000261
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.162, on 31 Jul 2025 at 19:37:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000261
https://www.cambridge.org/core


16 S. Stanish and D. MacTaggart

FIGURE 7. The behaviour of Min as a function of the (given) parameter Cβ . Note that Cγ = Cβ
for each case. Here, Cτ = 1.

Although Cβ is not formally a variable but rather a fixed universal property of
turbulence within the framework of Higashimori et al. (2013), we may vary Cβ
to test scaling (4.19) . We can confirm that, as suggested by (4.19), Min follows
approximately the above scaling. This feature is displayed in figure 7 by considering
‘high’ values of Cβ , i.e. O(0.3), and ‘low’ values, i.e. O(0.01 − 0.1).

Given the simplicity of the above scaling argument (i.e. purely local, ignoring
the internal diffusion region structure, ignoring W , etc.), the agreement shown in
figure 7 is reasonable. Although the cross-helicity W is missing from the scaling
argument, it does play a role in figure 7 as, for each case, Cγ = Cβ . Since both of
these parameters represent properties of MHD turbulence, they need to be varied
together.

5. Summary and discussion

In this work, we have investigated the TRM of Higashimori et al. (2013) in order
to provide a deeper insight into the nature of the reconnection solutions it supports.
First, we have described what reconnection means within the context of the TRM.
Secondly, we have shown that the TRM supports steady-state Sweet–Parker and
Petschek reconnection. Sweet–Parker reconnection corresponds to laminar recon-
nection, when no turbulent energy develops, and behaves as in laminar resistive
MHD. Petschek reconnection develops when a critical current density, based on the
turbulent time scale, is reached, allowing for the growth of turbulent energy. The
localisation of this turbulent energy concentrates the anomalous resistivity within
the diffusion region. We show that there is a self-similarity between the turbulent
Petschek solutions, based on the turbulent time scale. The steady Petschek recon-
nection rate is shown to be universal, i.e. not dependent on any variables of the
system like η, and this can also be argued from the consideration of basic balances
within the main equations combined with the behaviour of the turbulent energy near
the null point. In this model, fast and steady reconnection can occur without the
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explicit need for collisionless terms in Ohm’s law. Indeed, the fastest reconnection
generated, made possible by turbulence, is a phenomenon of ideal MHD.

Our results extend those of Higashimori et al. (2013) in three ways. First, we show
that steady-state reconnection solutions are possible, as described above. Secondly,
we show that a slowly reconnecting solution, previously identified as turbulent diffu-
sion, is actually just the early stage of a solution of fast turbulent reconnection that
takes longer to evolve. Thirdly, we identify the criterion for solution selection based
on a critical current balance.

In relation to the affirmation of Widmer et al. (2019) that, in their terminology,
turbulent diffusion and laminar reconnection solutions are artefacts of choosing a
constant turbulent time scale, we would suggest an alternative interpretation. We
have already shown that turbulent diffusion is just an early stage of turbulent recon-
nection. However, for the laminar solution, we have shown that this develops when
the magnitude of the maximum current density in the current sheet fails to reach
a critical value based on the turbulent time scale. Therefore, there is a clear physi-
cal explanation for laminar Sweet–Parker reconnection. However, the inclusion of a
model equation for turbulent dissipation may only have access to a specific region
of the full solution space and, thus, miss the Sweet–Parker solutions. Further, the
inherent instability of Sweet–Parker current sheets (e.g. Loureiro, Schekochihin &
Cowley 2007; Pucci & Velli 2014; MacTaggart 2020) may lead to a dynamical
evolution in practice, rather than a steady state. This topic would need to be inves-
tigated further to confirm if steady Sweet–Parker solutions can be categorically
excluded.

As mentioned in the Introduction, there are several methods of modelling tur-
bulent reconnection. The approach adopted here is particularly useful for modelling
turbulence in large systems for which it may not be possible to resolve turbulent fluc-
tuations as in the direct numerical simulations of Kowal et al. (2009) and Loureiro
et al. (2009). Despite the differences in the modelling approaches, however, the
most important result is that each approach produces fast turbulence-driven MHD
reconnection that in laminar MHD is only possible with the inclusion of an extended
Ohm’s law (e.g. Birn et al. 2001) or by imposing some localised anomalous resistivity
(e.g. Baty et al. 2006).

The critical scalings that we have found allow for the size of the diffusion region
region to be estimated a priori. For example, when deciding on the resolution to
be used in a simulation, the estimate (4.11) could be used to make sure that the
diffusion region is adequately resolved. The sizes of the Petschek diffusion regions
are typically thicker than the laminar Sweet–Parker sheets.
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Appendix A. The neglect of turbulence terms related to the Reynolds–Maxwell stress
tensor

In this work, we have followed Higashimori et al. (2013) in neglecting the influence
of turbulence due to terms from the momentum equation. Although this has been
justified on the grounds that we are considering a magnetically dominated plasma,
we now provide evidence to justify the neglect of these terms in this study.

First, if we were to write out the full mean momentum equation, we would have

∂U
∂t

+ (U · ∇)U = −∇ · R − ∇P + (∇ × B) × B + 1

Re
∇2U, (A.1)

where the new term, compared with (2.1), is the divergence of R = 〈u′ ⊗ u′ − b′ ⊗
b′〉, the Reynolds–Maxwell stress tensor. It is through this term that the effects of
turbulence enter the momentum equation. After a considerable amount of algebra,
the application of the TSDIA approach (e.g Yokoi 2020) leads to the, leading order,
representation of the Reynolds–Maxwell stress term as

−∇ · R = ∇ · (νKS − νMM) ,

where νK = 7
5β, νM = 7

5γ and the remaining tensors are defined as

S = ∇U + (∇U)T, M = ∇B + (∇B)T.

For the reconnection problem considered in this work, figure 8 displays the typical
magnitudes of the forces at work.
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FIGURE 8. The magnitude of the Reynolds–Maxwell term, the Lorenz force, advection and
diffusion in the momentum equation both across (left) and along (right) the diffusion region. In
both cases, the effect of the Reynolds–Maxwell stress is small with respect to the other terms
across the diffusion region. Here, Cτ = 1 and tsim = 63.

FIGURE 9. The magnitudes of the Reynolds–Maxwell and turbulent electromotive force pro-
duction terms in the turbulent energy equation both across (left) and along (right) the diffusion
region. In both cases, the size of the production term due to the Reynolds–Maxwell stress is
much less than that due to the electromotive force. As above, Cτ = 1 and tsim = 63.

It is clear from figure 8 that the Reynolds–Maxwell stress does not play a dominant
role in the force balances during the steady reconnection phase.

More directly related to the turbulent reconnection is the production of the tur-
bulent energy K. If we include the effects from the Reynolds–Maxwell stress tensor,
equation (2.8) becomes

∂K
∂t

+ U · ∇K = −R : ∇U − EM · J + B · ∇W − εK . (A.2)

The new term in the above equation does not play a significant role in the production
of turbulent energy, as indicated in figure 9.

The results displayed here are typical throughout the period of steady reconnec-
tion. We stress, however, that this approximation is suitable for the configuration
that we study here. This may not be the case in general and these terms may need
to be considered when modelling more complex magnetic field configurations.
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