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ABSTRACT

The subject of predicting outstanding claims on a porfolio of general insurance
policies is approached via the theory of hierarchical Bayesian linear models.
This is particularly appropriate since the chain ladder technique can be
expressed in the form of a linear model. The statistical methods which are
applied allow the practitioner to use different modelling assumptions from
those implied by a classical formulation, and to arrive at forecasts which have a
greater degree of inherent stability. The results can also be used for other linear
models. By using a statistical structure, a sound approach to the chain ladder
technique can be derived. The Bayesian results allow the input of collateral
information in a formal manner. Empirical Bayes results are derived which can
be interpreted as credibility estimates. The statistical assumptions which are
made in the modelling procedure are clearly set out and can be tested by the
practitioner. The results based on the statistical theory form one part of the
reserving procedure, and should be followed by expert interpretation and
analysis. An illustration of the use of Bayesian and empirical Bayes estimation
methods is given.

INTRODUCTION

This paper is concerned with forecasting outstanding claims using the chain
ladder model. The methods depend upon the fact (shown by KREMER (1982))
that the chain ladder technique is based upon a linear model. The particular
linear model which is implied by the chain ladder technique is that of a
two-way analysis of variance and it is this model that is main focus of this
paper. However, the methodology applies to any linear model which might be
used, for example a row-by-row model, and further details of the application of
other models may be found in VERRALL (1988). It should be emphasised here
that since the Bayes and empirical Bayes results in this paper are applied to the
chain ladder model, there will be no consideration of 'tail factors'.

The identification of the model underlying the chain ladder technique as a
linear model has made possible the application of statistical methods which
have put the estimation procedures within a rigorous framework: for example,
unbiased estimation of outstanding claims (and prediction intervals) has been
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218 R.J. VERRALL

considered in VERRALL (1989a). The usual method of estimating development
factors by calculating ratios of sums of cumulative claims down each column
can be regarded as a useful 'rough and ready' method, although the maximum
likelihood theorey (see VERRALL (1989b)) has the advantage that second
moments can also be found.

Since the chain ladder model is a linear model, the theory of hierarchical
linear models can be applied to obtain Bayes and empirical Bayes estimates.
The empirical Bayes estimates (which require no prior information) have useful
properties which can overcome some of the difficulties which practitioners may
encounter when using the chain ladder model. The empirical Bayes estimates
have a credibility theory interpretation, and it is interesting to note that de
VYLDER (1982) obtained credibility-type estimates by applying the linear
empirical Bayes theory directly to the chain ladder technique.

The methods in this paper will be applied, for illustrative purposes, to a
particular set of claims data. As this is an illustration of the methods, it does
not imply that it is a definitive analysis of the data: in particular no account is
taken of inflation.

1. THE CHAIN LADDER LINEAR MODEL

Assuming a triangular data set (without loss of generality) the cumulative
claims data, to which the chain ladder technique is applied, is

(1.1) {Cv: i= l , . . . , n ; j= l , . . . , n - i + l }

The differenced data, to which the analysis of variance model is applied, is

(1.2) {Zo: i= l , . . . , n ; j = 1, . . . , n - i + l }

where Z,-, = Cy-C , 7 _ ! j> 2

zn = c,,.
The chain ladder technique is based on the model

(1.3) E(C0) = XjQj-i y = 2 , . . . , « .

Xj is estimated by lj, where
n-j+l

(1.4)
i= 1

j+l

I Cij-
1=1

The expected ultimate loss, E(Cin), is estimated by multiplying the latest loss,
C,>n_,-+i, by the appropriate estimated k-values:

( «n
j=n-i+
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THE CHAIN LADDER MODEL 219

The chain ladder technique produces forecasts which have a row effect and a
column effect. The column effect is obviously due to the parameters
{Xy, j = 2, . . . ,«}. There is also a row effect since the estimate for each of the
rows depends not only on the parameters {A,-; j = 2,...,«}, but also on the
row being considered. C, n_,+ 1 can be interpreted is an estimate of the row
effect. This leads to consideration of other models which have row and column
effects, in particular the two-way analysis of variance. Assuming that the
incremental claims are positive, a natural assumption is that the data have a
log-normal distribution and this implies that a logarithmic transformation is
appropriate:

Yo = log Zo

Now if Yy is assumed to have a normal distribution, Zi} has a log-normal
distribution. The following model was shown by KREMER to be similar to the
chain ladder model:

(1.6)

where are assumed to be independent, identically
disturbances with mean zero and variance a1.

The model is familiar as that of a two-way analysis of variance.
The linear model for the whole triangle is

distributed normal

(1.7) Y =

where Y_ is the vector of observations,
X is the design matrix,
/? is the parameter vector

and £ is an error vector with covariance matrix E.

The maximum likelihood estimates of the parameter /? are the solution, /?, of
the equation

^l.oj A L A p = A ZJ y

Suppose, for example, there are three years of data. Then

(1.9)

yn

=

1 0 0 0 0

1 0 0 1 0

1 1 0 0 0

1 0 0 0 1

1 1 0 1 0

1 0 1 0 0

h
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220 R.J. VERRALL

The form of the parameter vector and the design matrix are clear.
KREMER (1982) imposed the following restriction:

An alternative assumption is that a, = /?[ = 0, and it is this that is used in this
paper.

It can be shown that the representations of the chain ladder model are
equivalent (See, for example VERRALL (1989b)). KREMER considered the
parameter estimation using the actuarial development factor method in com-
mon use and showed that it is similar to the maximum likelihood method
applied to the additive model. The statistical methods allow a reassessment of
the chain ladder method, and the next section gives a summary of the theory of
hierarchical linear models, which can be used to derive Bayes and empirical
Bayes estimates.

Denoting the set of data already observed by D, the Bayes estimate of
outstanding claims for year of business / is

and the Bayes estimate of the variance is

Var (Z,j | D) + 2 £ Cov {Ztj, Zik \ D)

The Bayesian estimates are considered in more detail in VERRALL (1989C),
where the following lemma is proved. It is assumed in the lemma that variances
are known, although in a practical setting they have to be estimated. The
substitution of estimates can be justified in the same way as in Section 2.3
below.

Lemma

Suppose that Zkl has a lognormal distribution with parameters 9 and a, and
that the posterior distribution of 9, given D, is normal with mean m and
variance x2.

i.e. \ogZu\6 ~N(9,a2)

9\D ~ N(m,T2)

Suppose also that a2 and x2 are known. Then
h\Zk, D) - e

and Var(Zw|Z>) = elm+a2 + r2 (e"2 + z2-\)
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2. HIERARCHICAL LINEAR MODELS

Bayes estimates for the linear model were investigated by LINDLEY and
SMITH (1972) and also SMITH (1973). In the actuarial literature, the recent
paper by KLUGMAN (1989) has studied the use of hierarchical linear models in
a rating context. It has already been seen that many of the models commonly
used to analyse claims runoff triangles can be regarded as linear models, and
we now analyse these models from a Bayesian point of view. This analysis has
two purposes: firstly the practitioner may have some information, from other
data for example, which can be used to specify a prior distribution for the
parameters in the model and secondly the Bayesian analysis gives rise in a
natural way to estimators which have a credibility theory interpretation.

In the first case the prior distribution is set by the practitioner and the usual
prior-posterior analysis can be carried out. The models which we are using
assume normal.(really log-normal) distributions, and so it is only necessary to
specify the mean and variance of the prior distribution (which is also normal).
For example, if there is a lot evidence to suggest that the row parameters are all
0.1, a normal distribution with mean 0.1 and small variance can be used as
prior. If there is not much prior information, the prior variance can be set
larger. Indeed, in the limit, as the prior variance becomes large, we revert back
to ordinary maximum likelihood estimation of the parameters.

In the second case, we will be using empirical estimation of the prior
distributions. Thus the estimation will be empirical Bayes and we will assume
that certain of the parameters are exchangeable. The historical requirement
that credibility estimators be linear will also be satisfied in a generalised sense
and so we could claim to have credibility formulae. The situation has some
similarities with credibility estimators of risk premiums in that we can regard
the rows in a runoff triangle as a set of risks and proceed as BUHL-
MANN (1967)—see GOOVAERTS and HOOGSTAD (1987) for a full description of
Buhlmann's method. In the case of claims runoff triangles the rows contain
different numbers of elements, and there are also the column parameters to
contend with. This approach, starting from credibility premiums and working
through to a credibility theory for loss runoff triangles was suggested by DE
VYLDER (1982)—again see GOOVAERTS and HOOGSTAD (1987) for an exposi-
tion of the method. The present method starts from runoff triangles and
proceeds to credibility formulae via the linear models. One of the major
advantages of the linear model approach is that standard errors of the
estimates are also produced. Before considering the application of hierarchical
linear models to claims data, some results will be stated, their proof being
contained in LINDLEY and SMITH.

2.1. Bayesian estimation for linear models: two stage models

The linear model, described above can be written

(2.1) z\§
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222 R.J. VERRALL

where j is a data vector of length n,
/? is a parameter vector of length p,
X is an (n x p) design matrix

and L is an (« x n) dispersion matrix.

For a Bayesian formulation we need a prior distribution on the parameter
vector £*. In view of what is to come later in this section we will call this a
second stage prior distribution. The second stage prior distribution is

where #! is a vector of hyperparameters of length px,
Ai is a (pxP\) matrix

and Cx is a (p x /?) dispersion matrix.

In a straightforward Bayesian analysis, A} is an identity matrix, Q_, contains the
prior estimates of the parameters and Cx is taken as a diagonal matrix with
variances inversely proportional to the believed accuracy of the estimates.

Lemma

The posterior distribution of the parameters is

(2.2) 0\y~N(Bb,B)

where

(2.3) B~l = X l

and

(2.4) b = X'Z

The Bayes estimate of £* (assuming a quadratic loss function) is the posterior
mean, /?, which is the solution of

using the normal equations (1.8). /? is the maximum likelihood estimate of /?.
Then

(2.5) 1 = {X1 E~lX+C;lyx[X' E~y Xl + C^ Axd_x]

Equation (2.5) shows that the Bayes estimate is a weighted average of the
maximum likelihood estimate, ^ , and the prior mean, Ax0^y, with weights
depending on the precision of each. It can be written in the usual way as a
credibility formula:
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THE CHAIN LADDER MODEL 223

where z = (X'E~' X+ C[')"' X'E~l X and can be interpreted as a credibility
factor.

As C\ ' -> 0, z -> 1 and the estimate is based entirely on the data: the
estimate is the maximum likelihood estimate.

2.2. Bayesian estimation for linear models: three stage models

In order to get an empirical Bayes formula, it is necessary to have a further
prior distribution. The reason for this, and the way in which it is used will
become clear in Section 3.

We define a prior distribution for a vector of hyperparameters:

(2.6) 9l\e2^N(A2d2,C2)

where 02
 ls a /^-dimensional vector

A2 is a (/?, x/?2)-dimensional matrix
C2 is a (/?, x/7,)-dimensional matrix.

We now have the following lemma:

Lemma

Suppose that

PX
lxj02 ~N(A20_2,Ci)

Then the posterior distribution of /? is

(2.7) 0\i,9_2~N(Dd,D)

where

(2.8) D~l = X' Z~x X+[CX + AxC2A\Yl

and

(2.9) d = X'Z-ly + [Cl + AlC2A\ylAlA2e_2

Again, it can be seen that the Bayesian estimate (the posterior mean) is a
weighted average of the maximum likelihood estimate and the prior mean:

(2.10) l = [X'T"1 A-+(C, + AxC2A\yl]~l[X'E~lX£_+{CX + AxC2A\yxAlA26_2]

This can be viewed as a credibility formula with credibility factor

[X1 E~lX+{CX + AlC2A\yxYl X'E'1 X
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224 R.J. VERRALL

It can be seen that the weight given to the maximum likelihood estimate
depends on X'E~l X, which is the inverse of the dispersion matrix of /? and the
weight given to the prior mean depends on its dispersion matrix.

When the three-stage Bayesian model is used, a vague third-stage prior
distributon will be used. In other words, C2~' will always be 0. In this case, the
results are as given by the following lemma:

Lemma

Suppose

and C2
l --

Then the

where

(2.11)

and

= 0.

posterior

AT1 = x

yJP.

/ ) i /)
(7 i j (7 T

distribution

fill'

'E-'X+C,-

of

- /

I _

N{A2B_

HDodo

C^AX

X)
i . C , )

,D0)

(A- r~x A \~x A' C~
1 1 1 1 / I 1

(2.12) do = X'E~]y

This is the form which we will use for empirical Bayes estimation of the
parameters. These estimators have an interpretation in credibility theory
similar to the estimators used in premium setting by BUHLMANN. The
credibility interpretation will be left until we consider the models which are
used for claims analysis.

2.3. Variance estimation

In the preceding sections it has been assumed that the variances and covar-
iances are known. This can be an unrealistic assumption: for example, when
using an empirical Bayes approach, the dispersion matrix of y_ |/? is not known.
It is thus necessary to have a method of estimating the variance-covariance
matrices. Unfortunately, the usual procedure of putting a prior on the
variances and integrating does not lead to tractable solutions and it is necessary
to make a simplifying approximation.

Following LINDLEY and SMITH (1972), the modes of the joint distribution
are used to estimate the parameters and the variances. Of course, since normal
distributions are being used, this gives the same estimators for the parameters
as already derived. It also produces variance estimates which are functions of
the parameter estimates. An iterative procedure is used, iterating between the
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THE CHAIN LADDER MODEL 225

parameter estimates assuming that the variances are known and the variance
estimates assuming the parameters are known. Each case is different and the
procedure will be described in each of the applications. Convergence is not
found to cause any problems.

3. APPLICATION OF HIERARCHICAL LINEAR MODELS TO
THE CHAIN LADDER MODEL

The chain ladder model can be considered as a linear model and the results of
Section 2 applied. The results consist of two parts: Bayesian and empirical
Bayes theory, corresponding to two and three-stage linear models.

3.1. Bayesian estimation for the chain ladder linear model

If there is some prior information, it may be possible to quantify this as a
distribution which can then be used in a prior-posterior analysis.

Suppose that the prior information is quantified in the following prior
distribution on £:

(3.1) £|0, ~ #(,4,0!, C,)

A situation which may occur is that there are similar sets of data available
which give information on the individual parameters. In this case Ax can be
taken as an identity matrix, the prior estimates can be put into 0, and their
variances into C|. In many cases C\ will be a diagonal matrix of variances,
although it is not necessary that the covariances are zero. In this case, the prior
distribution becomes:

(3.2) £ | 0 ,

Assuming that the errors are independent, E = a2 /„ where /„ is a square
identity matrix of dimension (n x «).

From the lemma in Section 2.1 it can be seen that the Bayes estimate of the
parameter vector is the solution, /?, of

(3.3) ((j~2

and the variance-covariance matrix of the estimates is

(3.4) Var(£) = [a~2 X'X+C[l]~l

The equation for /? can be written as a credibility formula:

(3.5) £ = zi+(l-z)0,

where z = (o~2 X' X+C[ ' ) " ' a~2X'X can be considered as a credibility
factor.

It is interesting to note that the credibility factor has been generalised into a
credibility matrix, since z is a (p x/>) matrix. There will be subtle dependence of
the elements in the Bayes estimator /? on each of the elements in the maximum
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likelihood estimator. It is not possible to write a credibility formula separately
for each factor in the form

a,- = z

To estimate the variance a2, the modal procedure described is used. The
estimate of a2 is s2, where

(3.6) s2 = (y

Thus the equations which give the Bayes estimates are (3.3), with a1 replaced
by s2, and (3.6).

The procedure begins with s2 = 0 and iterates between the solutions of

and

3.2. Empirical Bayes estimates for the chain ladder linear model

The previous section described the use of a two-stage conventional Bayesian
model to analyse claims data. This section uses the three-stage Bayesian model
described in Section 2.2 to derived empirical Bayes estimates for the analysis of
variance (chain ladder) model. This method uses an improper prior distribution
at the third stage for the row parameters and improper priors at the second
stage for the overall mean and the column parameters. This means that for the
overall mean and the column parameters the same assumptions are made as for
the maximum likelihood estimators.

The row parameters are assumed to be independent samples from a common
distribution—of course, they are unobservable, but this is the underlying
assumption. A similar assumption is made in credibility theory. When pre-
miums are calculated using credibility theory, a risk parameter is assigned to
each risk and these are assumed to be independently, identically distributed.
The set of risks is known as a collective, and the distribution from which the
risk parameters is drawn is known as the structure of the collective. The
situation in the claims reserving case is similar for the row parameters, but is
complicated by the column parameters. The estimators produced will combine
information from each row with information from the triangle as a whole. The
prior distribution (i.e. the second stage distribution) is estimated from the data,
and hence the estimators have an empirical Bayes interpretation.

The linear model for the chain ladder method is

(3.7) y\£~N(Xp,a2I)

and the constraint <X\ = fi\ = 0 will be used.
The errors have been assumed to be independently, identically distributed. X

is as defined in the first section.
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THE CHAIN LADDER MODEL 227

As in credibility theory, a structure is put onto the row parameters
a2, a3,. . . , a,: they are assumed to be independent observations from a
common distribution. For the overall mean, /u, and the column parameters
/?2, &,. . . , /?, , the same distributional assumptions as for ordinary maximum
likelihood estimation will be used. Thus at the second stage

(3.8)

§\ w, 6, i ~ N

1 0

0 0

0 1 0

! 0 1

0

0

:

••. o

0 1

w

e

. - 2and take o^ 2 -» 0 and Op -
In terms of equation (3.1),

0.

ai

w

e

t,

and A, =

1

0

0

:

:

0

0

1

1

1

0

:

...

0

0

l

0

:

••. o
0 1

6 is the mean of the common distribution of the row parameters a2, . . . , a,.
Although the assumptions on the estimation of /u and p2, • • •, Pt

 a r e the same
as for the maximum likelihood estimation, the estimators produced will not be
the same because of the treatment of the row parameters.

A vague prior distribution (a third-stage distribution) is used for 8.' Since
G~2 -» 0 and Op2 -* 0, a third-stage distribution is not needed for w and
£2,.. . , £,. Hence a combination of two-stage and three-stage models is used.
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Theorem

If y\0~ N(X£,o2I)

where /? = (ji, a2, . . . , a,,j?2, ...,0,)'
and fl\w,0,£~N(A\9.\,Cx).

AX,Q_X,C\ are given above, a~2 = 0, af2 = 0 and a vague prior at the third
stage is used.

Then the Bayes estimates of /?, /?, is given by

(3.9)

a~2X'X + T - 2 r - 2

a.

a.

0

where a. =
t-\ 1=2

and has a credibility interpretation.
The proof of this theorem is given in the appendix.
It can be seen that the empirical Bayes estimates of the row parameters are in

the general form of credibility estimates: they are the weighted average of the
maximum likelihood estimates and the (weighted) average of the estimates
from all the rows. The situation is complicated by the fact that X' X is not a
diagonal or block-diagonal matrix, so that the estimation of n, /?2 , . . . , /?,
involves the estimates of <x2,..., a, and vice versa. This is entirely natural since
changing the estimates of the row parameters obviously forces changes in the
other estimates. However, it can be seen that the form of the estimates is the
same as the form of credibility estimates. They are the weighted average of the
maximum likelihood estimates and the (weighted) average of the estimates to
which the credibility theory type assumptions have been applied. The weights
depend on the precision of the estimates.

As before, the variances a2 and aI are replaced by modal estimates s2 and
si, which are given by
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(3.10) , 2 _

n + v + 2

(3.11)

where v, A, va and Aa are set by the prior distribution of the variances. The
derivation of these formulae, and the discussion of the prior parameter values
is given in LINDLEY and SMITH (1972).

Again, the estimates are obtained by iterating between (3.9) and (3.10),
(3.11). This is illustrated in the example.

The empirical Bayes assumptions could also be applied to the column
parameters, although this is of little practical use.

4. EXAMPLE

For illustration purposes, a set of data is now analysed using the methods in
this paper. This is an example of the way in which these methods can be
applied, but it is not implied that this is a complete analysis of the data, or that
the models used are optimal. The data is taken from a paper by TAYLOR and
ASHE (1983) and consists of claims from a portfolio of general insurance
policies (the source of the data is not specified).

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948

352118 884021 933894 1183289 445745 320996 527804 266172 425046

926219 1016654 750816 146923 495992 280405

776189 1562400 272482 352053 206286

769488 504851 470639

805037 705960

290507 1001799

310608 1108250

443160

396132

991983

847498

693190

937085

440832 847631

359480 1061648 1443370

376686 986608

344014

1131398 1063269

with exposure factors

610 721 697 621 600 552 543 503 525 420

The exposures for each year of business are divided into the claims data
before the analysis is carried out.
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The example is divided into 3 sections. The first analyses the data asssuming
no prior information, the second uses a prior distribution and a Bayesian
analysis and the last uses the empirical Bayes estimation method.

4.1. No prior information

In order to assess the affect of the prior assumptions, it is useful to have the
results of a Bayesian analysis when no prior information is used, and these are
given in this example. The parameter estimates are the same as those obtained
from a maximum likelihood analysis, and are given in Table 1.

TABLE 1

Estimate Standard error

Overall mean
Row parameters

Column parameters

6.106
0.194
0.149
0.153
0.299
0.412
0.508
0.673
0.495
0.602
0.911
0.939
0.965
0.383

-0.005
-0.118
-0.439
-0.054
-1.393

0.165
0.161
0.168
0.176
0.186
0.198
0.214
0.239
0.281
0.379
0.161
0.168
0.176
0.186
0.198
0.214
0.239
0.281
0.379

The standard errors are obtained from the estimates of the variance-
covariance matrix of the parameter estimates:

where a2 is the estimate of the residual variance. For this example,
<72 = 0.116.

Since the data is in the form of a triangle (there are the same number of rows
and columns) and the matrix X is based on the design, the standard errors are
the same for each row and column parameter.

The following table shows the Bayesian estimates of total outstanding claims
for each year of business, together with the Bayesian estimate of the standard
error of these.
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where 0t =

0
0.3
0.3

0.3
0

0

and C, =

0.05

0.05

and L is large (in the limit, infinite).
The assumption is that there no prior information on the overall mean and

the column parameters, and hence the same distribution is used as would be
used for maximum likelihood analysis for these parameters. This distribution is
a vague prior in which the variance is very large indicating that there is no
prior knowledge. The prior distribution of the row parameters, not being vague
and hence different from the maximum likelihood analysis, affects the estimates
of these parameters and has consequences for the estimates of the other
parameters.

The Bayes estimates of the parameters and their standard errors are shown
in Table 3.

These parameter estimates can be compared with estimates when there is no
prior knowledge assumed, given in Table 1. Perhaps it is easier to see how the
prior assumptions have affected the estimates by looking at Figures 1 and 2.
These show plots of the Bayes estimates of the row and column parameters
with and without prior information.

The situation is complicated by the interaction of the parameter estimates
and the effect of the Bayes prior distribution is not, in general, straightforward.
It can be seen from the plot of the row parameters, Figure 1, that the general
effect is to draw these estimates towards the prior mean: these estimates
certainly show less variation, and the row parameter estimates are a lot lower.
The variation of the column parameters (looking at Fig. 2) remain about the
same, but their values have altered slightly. This is entirely due to the change of
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TABLE 3

233

Estimate

With prior No prior

Standard error of Bayes
estimate with prior

Overall mean
Row parameters

Column parameters

6.178
0.202
0.168
0.172
0.276
0.349
0.400
0.475
0.360
0.367
0.893
0.910
0.915
0.318
0.081
0.201
0.520
0.129
1.465

6.106
0.194
0.149
0.153
0.299
0.412
0.508
0.673
0.495
0.602
0.911
0.939
0.965
0.383

-0.005
-0.118
-0.439
-0.054
- 1.393

0.125
0.120
0.123
0.127
0.133
0.139
0.147
0.157
0.172
0.192
0.161
0.168
0.175
0.184
0.196
0.212
0.236
0.277
0.370

xio~1

3.

1.

RON PARAMETERS

x Least Squares

o Bayes

FIGURE 1.
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-10.

-15.

COLUMN PARAMETERS

Least Squares

o Bayes

i
FIGURE 2.

io l a

prior assumptions on the row parameters and the interaction between the row
and column parameters. The estimates of the overall mean has changed for the
same reason.

It can also be seen, by comparing Tables 3 and 1 that the standard errors of
the parameter estimates have been reduced. This is due to the extra prior
information, and is an example of the usual property of Bayes estimates.

The row totals and their standard errors are given in the following table:

TABLE 4

Bayesian estimates

With prior N o prior

Standard error

with prior

111748
489893
669724
1058206
1425252
2060499
3117315
3886838
3923530

110927
482157
660810
1090752
1530532
2310959
3806976
4452396
5066116

60516
191702
207990
282991
348013
482661
745547
936372
982585

The Bayesian estimate of overall total outstanding claims is 16743004 and
the Bayesian estimate of the standard error of total outstanding claims is
1995669.
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These can be compared with the results for the analysis in which no prior
information is assumed. Looking first at the standard errors of the estimates of
outstanding claims for each year of business, it can be seen that these have
been quite considerably reduced. This is because the prior information (which
was fairly precise) gave tight estimates of the parameters. The effect of the
prior estimates on the estimates of outstanding claims is clear: the estimates of
the total outstanding claims for the later rows have been drawn down due to
the effect of the prior mean.

4.3. Empirical Bayes assumptions on the row parameters

To illustrate the effect of the assumptions made in the empirical Bayes theory,
namely that the row parameters are independent observations from a common
distribution, the TAYLOR and ASHE data is reanalysed in this example.

The estimates of the parameters and their standard errors are shown in
Table 5:

TABLE 5

Overall mean
Row parameters

Column parameters

Empirical

Bayes
estimate

6.157
0.225
0.193
0.198
0.300
0.371
0.421
0.493
0.383
0.391
0.893
0.911
0.915
0.319

-0.080
-0.199
-0.515
-0.120
-1.444

No prior
estimate

6.106
0.194
0.149
0.153
0.299
0.412
0.508
0.673
0.495
0.602
0.911
0.939
0.965
0.383

-0.005
-0.118
-0.439
-0.054
-1.393

Standard error
of Bayes estimate

0.131
0.124
0.129
0.133
0.138
0.144
0.150
0.159
0.170
0.185
0.128
0.133
0.139
0.147
0.156
0.170
0.190
0.224
0.306

The estimate of the variance of the row parameter distribution is 0.0289.
The empirical Bayes assumptions have been applied to the row parameters

only. The effect of these assumptions is that the row parameters have been
drawn towards a central point (a weighted average). The lower row parameter
estimates have increased, while the higher ones have decreased. This can be
seen more clearly from the following graph (Fig. 3) which shows a plot of the
maximum likelihood and empirical Bayes estimates of the row parameters.
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X10"1

3.

1.

RON PARAMETERS

x Least Squares

o Empirical Bayes

12

FIGURE 3.

Table 6 shows the row totals and their standard errors. For comparison
purposes, the Bayes estimates with no prior assumptions (from Table 2) are
also given.

The empirical Bayes estimate of total outstanding claims is 16280338 and the
estimate of the standard error of total outstanding claims is 1313997.

The empirical Bayes standard errors are lower than the estimates with no
prior information.

The estimates of total outstanding claims for the later rows have been quite
considerably reduced, reflecting the reduction in the estimates of the row

TABLE 6

Empirical Bayes
estimates

109448
479568
655656
1033109
1388261
2002772
3018896
3780759
3811869

Bayes
no prior

110927
482157
660810
1090752
1530532
2310959
3806976
4452396
5066116

Empirical Bayes
standard error

46963
148617
162104
220459
270730
374041
572899
720836
752593
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parameters. The empirical Bayes procedure has thus given less weight to the
estimates of the parameters from the later years: it has allowed that the rise in
the maximum likelihood parameter estimates from row to row may be due to
random variation. As more data becomes available, and there is more evidence
in favour of either of these possibilities, this may, or may not, be revised.

5. CONCLUSIONS

The use of linear models to forecast outstanding claims enables the practitioner
to apply results from statistical theory and hence arrive at a sound approach
which retains the basic structure of the chain ladder model. Two estimation
methods have been given here, which will be useful in different circumstances.
Bayesian estimation allows the structured input of prior information, while
empirical Bayes estimation allows more connection to be made between the
factors in the model. The estimates are inherently more stable than those
produced by a maximum likelihood analysis (or an analysis in which no prior
information is assumed). An example which demonstrates the stability of the
estimates is given in VERRALL (1989C).

It should be emphasised again that the method in this paper can be applied
to any loglinear model, not just the chain ladder linear model which is the
specific subject of this paper.

The incremental claims are assumed to be positive: the treatment of negative
values is the subject of further research. A simple first approach is to add a
suitable constant to the data: this is often sufficient.

The information obtained from a statistical analysis can be of use in the
claims reserving process, although it has to be emphasised that this is only one
part of the procedure: the practitioner will take into account other factors
(such as inflation) and use his own skill and judgement.

REFERENCES

BUHLMANN, H. (1967) Experience Rating and credibility. ASTIN Bulletin, Vol. 4, No. 3, 199-207.
GOOVAERTS and HOOGSTAD (1987) Credibility Theory. Surveys of Actuarial Studies, No. 4.
KLUGMAN, S. (1989) Credibility for Classification Ratemaking via the Hierarchical Normal Linear
Model. Proc. of Casualty Actuarial Society, Vol. 74, 272-321.
KREMER, E. (1982) IBNR-Claims and the Two-Way Model of ANOVA. Scand. Act. J., Vol. 1,
47-55.
LINDLEY D. V. and SMITH, A. F.M. (1972) Bayes Estimates for the Linear Model (with Discussion)
JRSS, Series B, Vol. 34, No. 1, 1-41.
SMITH, A.F.M. (1973) A General Bayesian Linear Model. JRSS, Series B, Vol. 35, No. 1,
67-75.
TAYLOR, G.C. and ASHE, F. R. (1983) Second Moments of Estimates of Outstanding Claims. J. of
Econometrics, Vol. 23, 37-61.
VERRALL, R. J. (1988) Bayesian Linear Models and the Claims Run-off Triangle. Actuarial Research
Paper, No. 7, The City University, London.
VERRALL, R.J. (1989a) On the Unbiased Estimation of Reserves from Loglinear Models. Insurance:
Mathematics and Economics, to appear.

https://doi.org/10.2143/AST.20.2.2005444 Published online by Cambridge University Press

https://doi.org/10.2143/AST.20.2.2005444


238 R.J. VERRALL

VERRALL, R.J. (1989b) Chain Ladder and Maximum Likelihood. Under review.
VERRALL, R.J. (1989c) A State Space Representation of the Chain Ladder Linear Model.
Applications of Mathematics in Insurance, Finance and Accounting Work; joint meeting of the
Institute and Faculty of Actuaries and the Institute of Mathematics and its Applications. Journal of
the Institute of Actuaries, Vol. 116, Part. I l l , 589-610.
DE VYLDER, F. (1982) Estimation of IBNR claims by Credibility Theory. Insurance: Mathematics
and Economics, 1, 35—40.

R.J. VERRALL
Department of Actuarial Science and Statistics, City University,
Northampton Square
London EC1V OHB

https://doi.org/10.2143/AST.20.2.2005444 Published online by Cambridge University Press

https://doi.org/10.2143/AST.20.2.2005444


THE CHAIN LADDER MODEL 239

APPENDIX
PROOF OF THEOREM IN SECTION 3.2

The posterior distribution of fl\y_ is given by the second lemma in
Section 2.2:

where

(Ai)

and

(A.2)

P\y~N(Dodo,Do)

= o~2 x1 x+c;1 -C\x AX{A\C

(A3) C?A =

r-2

r-2

r-2

r-2

a
-2

1

0
;

0

0

0

1

1

1

0

i

...

0

0

1

0
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r-2
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(A5) r-2

r-2

1

(M)"'... (M

Using (A3) and (A5):

(A6)

r -2

r-2

r-2

r-2

r-2

r-2

r-2

r-2

r-2
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r-2

(A7)

where /„ is a square (n x n) matrix, all of whose elements are 1
and /„ is an (n x n) identity matrix.

Substituting (A7) into (Al) and (A2) gives the Bayes posterior mean, /?, as
the solution of

(A8)/

a~2X'X +

r-2

r-2

r -2

r-2

I =

Now putting <rA
 2 = 0 and

(A9)/

^ 2 = 0:

0

(T"z

a-2X'X+

0

I f t h e i n d i v i d u a l B a y e s s o l u t i o n s a r e c a l l e d £ , a 2 , . . . , a , , / ? i , . . . , / ? , , t h e n

(A10) £ = ( & a 2 , . . . , a , , & , . . . , f t ) '
There should be no confusion between the vector of parameters /? and the
column parameters fi2, •••,fii which are components of /?.
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Equation (A9) can be rewritten as

0

243

(All) a~2X'X + r-2

where a. =
t—\ ,

Hence

(A12) o2X'X +

r-2

0

\ 0

a.

a.

0

0

a
-2

0

a.

a.

0
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