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Abstract

Hidden Markov models (HMM:s) are popular for modeling complex, longitudinal data. Existing identifia-
bility theory for conventional HMM:s assume emission probabilities are constant over time and the Markov
chain governing transitions among the hidden states is irreducible, which are assumptions that may not
be applicable in all educational and psychological research settings. We generalize existing conditions on
homogeneous HMMs by considering heterogeneous HMMs with time-varying emission probabilities and
the potential for absorbing states. Researchers are investigating a family of models known as restricted
HMMs (RHMMs), which combine HMMs and restricted latent class models (RLCMs) to provide fine-
grained classification of educationally and psychologically relevant attribute profiles over time. These
RHMMs leverage the benefits of RLCMs and HMMs to understand changes in attribute profiles within
longitudinal designs. The identifiability of RHMM parameters is a critical issue for ensuring successful
applications and accurate statistical inference regarding factors that impact outcomes in intervention stud-
ies. We establish identifiability conditions for RHMMs. The new identifiability conditions for heterogeneous
HMMs and RHMM:s provide researchers insights for designing interventions. We discuss different types of
assessment designs and the implications for practice. We present an application of a heterogeneous HMM
to daily measures of positive and negative affect.

Keywords: cognitive diagnosis model; heterogeneous hidden Markov models; identifiability; restricted latent class models

1. Introduction

The increasing availability of data from online learning systems, wearables, and handheld devices pro-
vides researchers with new opportunities to track development, evaluate interventions, and recommend
content. These novel data structures often arrive as a multivariate time series that require methods to
diagnose and classify respondent outcomes in a longitudinal fashion. Hidden Markov models (HMMs)
provide a general framework for understanding changes in latent states over time. HMMs consist of
two components: (1) an emission matrix P that describes the distribution of observed responses given
latent states; and (2) a transition matrix A that governs the likelihood of transitioning between states
over two adjacent time points. HMMs are designed to relate an observed Y; € [q] with a hidden state
Z; € [r] for r < g where we use the notation [n] = {1,...,n} to denote the set of natural numbers from
1 to n € IN. Recent research (e.g., see Kaya & Leite, 2017; Li et al., 2016; Madison & Bradshaw, 2018a;
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Madison et al., 2024; Zhan et al., 2019; Zhang & Chang, 2020) adapted the HMM framework for the
diagnostic context with a class of models we refer to as restricted HMMs (RHMM:s), which map Y; onto
a more parsimonious collection of binary attributes, a; € {0,1}*. RHMMs combine features of cognitive
diagnosis models (CDMs; e.g., see de la Torre & Douglas, 2004; Junker & Sijtsma, 2001; Roussos et al.,
2007; Stout, 2002) and HMMs. Specifically, RHMMs define P according to a CDM to classify respondent
states at a given time as well as a first-order HMM to describe changes in latent states over time.

The combination of the classical HMM framework with CDM:s has the potential to advance learning
research and to identify interventions that accelerate learning (Ye et al., 2016). It is therefore critical
to understand technical details concerning the suitability of the HMM and RHMM frameworks
for educational and psychological research. There is extensive research exploring the necessary and
sufficient conditions for deploying CDMs (e.g., see Chen et al., 2015, 2020; Gu & Xu, 2021; Lju et al,,
2013; Xu, 2017; Xu & Shang, 2018) and several studies are dedicated to understanding the identifiability
of HMMs (Allman et al., 2009; Bonhomme et al., 2016), but there is less research available to guide
applications that combine CDMs and HMMs (Liu et al., 2023). RHMMs have features of both CDMs and
HMMs, so it is important to understand the assumptions of both components. Classical HMMs assume
constant emission and transition probabilities over time in addition to positive long-run, stationary
probabilities of residing in every state. The focus of this article is on relaxing the constant P and
positive long-run probability assumptions, so we consider a constant transition matrix, A, throughout
the remainder of this manuscript. It is important to understand the practical implications of these
two assumptions. The first assumption that P is constant over time implies that: (1) the support of
the observed indicators, Y;, and hidden states, Z;, does not change over time; and (2) the observed
Y; are parallel measurements in the sense that p(y: | z;) is constant across ¢. Accordingly, the constant
P assumption could be reasonable whenever researchers observe a common set of measurements over
time, such as settings that monitor health and well-being and public opinion with a fixed instrument.
However, there are no guarantees the constant P assumption is feasible in all settings especially when
the items change over time.

The second assumption deals with the stationary (long-run) probability of residing in the hidden
states, which is denoted by m e {m e R": n'1, = 1, m; > 0fori = 1,...,r} (i.e., the support for 7 is
the r-dimensional simplex). The second assumption requires that 7 > 0, where 0, is an r-vector of
zeros and “>” is interpreted as an element-wise inequality. We can write 7 as a limit involving the
initial distribution and the transition matrix. Specifically, the initial distribution is 7; where element
j corresponds with 71; = P(Z; = ). Iterating forward we find the distribution for time ¢ = 2, 72, to have
elements,

P(Z2=K) = Y P(Z = )P(Z = k| Z1 - ), W

j=1

which is more simply stated as 7y = 7{ Ay where Ay is the kth column of A. Consequently, 7, = 7] A
and iterating forward to time n implies that the distribution of Z, is 7, = 7] A"'. The long-run
distribution is 7" = lim,—, o 71; A”. The extent to which 7 > 0, is related to whether the Markov chain
is irreducible. A Markov chain is irreducible if it is possible to move from a given state j to every other
state k in finite time. The irreducibility assumption is violated (and 7 includes elements equal to 0)
whenever A includes absorbing states. For instance, state k is an absorbing state if P(Z; = j| Zi—1 =k) =0
for all j. The irreducibility assumption is satisfied in many content areas, but we can expect it to be
violated in educational studies that advance learning. That is, interventions are designed to facilitate
skill development toward the state of mastery, &« = 1x, which is an absorbing state whenever we believe
it is unlikely to unlearn skills. Whereas forgetting skills may occur over a longer horizon (e.g., summer
slide), the irreducibility assumption is generally untenable within shorter windows defined by typical
intervention studies (e.g., days, weeks, or months).

The union of CDMs and HMMs offers a powerful framework for providing fine-grained diagnostic
classifications, but care is needed to ensure foundational assumptions are consistent with application
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domains. RHMMSs have been applied to track changes in spatial rotation skills (Chen et al., 2018;
Wang et al., 2018; Yigit & Douglas, 2021), introductory probability (Liu et al., 2023), middle school
mathematics (Li et al., 2016), digital literacy (Liang et al., 2023), a cluster-randomized controlled trial
of mathematics for students with disabilities (Madison & Bradshaw, 2018b), and geometric sequences
(Chen & Culpepper, 2020). An important observation is that many applications have deployed RHMMs
that relax the constant P and 7 > 0, assumptions. For instance, prior research applied more general
RHMMs that include: (1) time-varying emission probabilities with {P,}/_;; and (2) the studies were
applied in educational contexts with transition matrices that include absorbing states. Consequently,
applied RHMM research has outpaced current theory related to the identifiability RHMM parameters.

RHMMs provide a useful framework for educational and psychological research. However, despite
the widespread application and investigation of RHMMs, there is less research available regarding how
to design intervention studies to ensure RHMM parameters are identified. Model identifiability is a
critical issue for statistical inference. In the context of intervention studies, researchers need assurance
that model parameters are identified in order to make claims about the effect of interventions on
development.

Prior research established conditions for identifying parameters of HMM:s to guide the design of
diagnostic interventions. Several studies explored identifiability conditions for the case of continuous
responses where Y; € R? for d > 0 (Gassiat et al., 2016; Gassiat et al., 2020; Gassiat & Rousseau,
2016). We consider discrete responses, so the identifiability conditions derived under the assumption
of continuous responses are not applicable for our case. There are several papers that explored the
identifiability of unrestricted HMMs with constant emission and transition matrices and an irreducible
transition matrix for discrete responses (Allman et al., 2009; Bonhomme et al., 2016; Cole, 2019;
David et al., 2024; Tune et al., 2013). Specifically, Cole (2019) describes a log-likelihood profile method
for establishing local identifiability of HMMs as well as a symbolic algebra strategy for establishing
global identifiability of HMMs. One limitation of Cole (2019) is the fact that “..for most HMMs the
exhaustive summary will be symbolically too complex for a symbolic algebra package to solve the
appropriate equations” (p. 117). A paper from the theoretical statistics literature (Bonhomme et al,,
2016) showed how to establish strict identifiability conditions for HMMs using results pertaining to
the simultaneous diagonalization problem. Specifically, Bonhomme et al. (2016) showed that HMMs
are strictly identified whenever rank(P) = rank(A) = r. Allman et al. (2009) proved that HMMs are
generically identifiable, which means that the non-identifiable parameter values reside in a measure
zero set of the larger parameter space, provided that researchers observe enough time points relative to
the number of observed response patterns and the number of hidden states. Tune et al. (2013) consider
an extension of Allman et al. (2009) by studying the identifiability of HMMs for a multiple observer
model, which in the context of psychometrics corresponds with a model that includes several items at
each time point. David et al. (2024) considers the identifiability of HMMs when external signals, such
as observed time-varying covariates, are available as predictors of both the hidden Z; and Y;. David
et al. (2024) show that when external signals are available that it is possible to establish conditions for
identifying parameters of HMMs with time-varying emission and transition matrices. Recently, Liu
et al. (2023) established identifiability conditions for RHMMs and showed that identification is closely
linked with properties of the emission and transition matrices.

Existing research provides helpful guidelines for designing diagnostic intervention studies, but the
studies are limited by several critical assumptions. First, the five studies (Allman et al., 2009; Bonhomme
et al., 2016; Cole, 2019; Liu et al., 2023; Tune et al., 2013) assume constant emission and transition
matrices over time in addition to an irreducible transition process (i.e., > 0,). In contrast, we present
new conditions for identifying HMMs and RHMMs with heterogeneous P and we allow for the
possibility of absorbing states. Although the David et al. (2024) relaxes the assumption of constant P
and A matrices, their identifiability conditions assume the availability of external covariates that relate
to both hidden states and observed responses. In the context of psychometrics, David et al., 2024’
requirement for external signals to relate to both hidden states and observed responses is analogous to
educational and psychological researchers needing test-taker covariates that contribute to differential
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item functioning by relating to both the measurement and transition models. The novel theorems in
this article provide identifiability conditions without the need for external signals. Furthermore, David
etal. (2024) assumes a stationary process for the observed and hidden states. Consequently, David et al.
(2024) is not directly applicable in educational contexts as it requires external signals and assumes a
stationary process, which does not accommodate learning and absorbing states.

The purpose of this paper is to fill the theory-practice gap by offering new insights about the
identifiability of heterogeneous HMMs and RHMMs when P is time-varying and A includes absorbing
states. We therefore consider the case where the emission matrix changes with time (i.e., a time-
varying model). Furthermore, we discuss conditions for cases where the Markov chain both satisfies
and does not satisfy the irreducibility assumption. The remainder of this paper includes five sections.
The first section discusses identifiability conditions for an unrestricted heterogeneous HMM and the
second section focuses on the case of RHMMs. The third section discusses the implications of the
new identifiability conditions in terms of practical considerations for assessment design. The fourth
section presents a Bayesian approach for estimating the model parameters of the heterogeneous HMM,
a simulation study to demonstrate parameter recovery, and an application to a dataset concerning
respondents daily changes in positive and negative affect. The final section discusses the implications of
the results and directions for future research. Note that we include all proofs and technical details in the
appendix.

2. Unrestricted heterogeneous HMMs

We begin our discussion by focusing on the finite heterogeneous HMM framework where the emission
probabilities vary over time. The first subsection presents an overview of HMMs and the second
subsection delves further into the identifiability of heterogeneous HMMs with time-varying emission
matrices and includes two new theorems.

2.1. Overview

Consider an irreducible, aperiodic stationary Markov chain Z; € [r](t = 1,2,...,T), with a time-
invariant r x r transition matrix A, and a stationary distribution 7 such that 7;; > 0 and ¥.;_; 7 = 1.
We assume the the observed Y; € [g;] are conditionally independent given the hidden states. That is, we
assume P(Y,...,Yr|Z1,...,Zr) =1, P(Y:| Z;). Let P, denote the time-varying emission matrix with
dimension g x r and g; > r, which contains the conditional probabilities P(Y; = y; | Z = z;), where the
column entries are indexed by z; and rows correspond to observation patterns y;. We consider a first-
order Markov model for the latent Z;’s, which assumes that given Z;_1, Z; is conditionally independent
of past values for the hidden states, P(Z; | Zi-1,...,Z2,Z1) = P(Z: | Zs-1). The probability of transitioning
between states over time is governed by the transition matrix A. That is, the probability of transitioning
from state z;_; at time ¢ — 1 to state z; at time ¢ is P(Z; = z | Zi—1 = z:—1), which corresponds with row
zs—1 and column z; of A. Figure 1 presents a graph of an HMM where the transition matrix governs the
relationship among the hidden states and the observations are conditionally independent given the Z’s.

® ® ® 6@

Observed Variables
Figure 1. First-order hidden Markov model (HMM) with latent Z; underlying the observed Y; variables.
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2.2. Identifiability

We next discuss the identifiability of heterogeneous HMM:s. We first discuss conditions for establishing
strict identifiability to ensure a unique mapping between the parameter space and likelihood function.
We conclude this subsection by presenting weaker generic conditions that are needed for the non-
identifiable parameter values to reside within a measure zero set.

2.2.1. Strict identifiability

Identifiability is an important prerequisite of statistical parameter inference. A model is identifiable
if different values of model parameters corresponds to different probability distributions of observed
variables. Model identifiability ensures that its underlying parameters can be consistently estimated.

Let {P;}~, denote the T emission matrices. In the context of HMMs, we denote the parameter space
of (m,A,{P:} ) by

Q(m AP} ={(mA{P})) :me Q(n),Ac Q(A), P cQ(P,),t=1,2,...,T}. )

The parameter space for the stationary distribution is Q(7) = {m € [0,1]" : #'1, = 1}. The parameter
spaces for A and P are Q(A) = {A€[0,1]"": A1, =1,} and Q(P;) = {P; € [0,1]7": P[1,, = 1,}.

Definition 1 (Strict identifiability). The parameters (7,A,{P,},) € Q(m,A, {Pt}f:l) are identifiable
when

P(Y=Y|mA {Pi}o1) = P(Y=Y|#,A (P} 1)

if and only if (7,A,{P:}1—1) ~ (m, A, {P:}1-1),

where (7,A,{P;}L,) is another value from the parameter space Q(m,A,{P;}{_,) and “~” means two
parameter values are equivalent up to a permutation of hidden states.

The conditions shown in Assumption 1 are needed to establish the strict identifiability condition in
Theorem 1.

Assumption 1. Suppose for t € [T], Y; € [g¢] follows an HMM with hidden state Z; € {1,...,r}, time-
specific g; x r emission matrix P; > 0, time-invariant transition matrix, A, and stationary distribution
with 77 > 0, and T > 3 with parameters that satisfy

(a) rank(A) =r1;
(b) m.>0forallce[r];
(c) rankk(P;_y) = r, rankg (P;) = r and P; = Py, for some k€ (0,¢) and t € [2,T-1].

Remark 1. Assumption 1b requires a positive stationary distribution and excludes the possibility of
absorbing states. Assumption 1c involves a condition on the Kruskal rank of certain emission matrices.
The Kruskal rank of a matrix with r columns equals r if and only if the matrix has full column rank. See
Definition 13 in the Appendix A for additional details about the Kruskal rank.

We next present our Theorem related to identifiability of heterogeneous HMMs.

Theorem 1 (Strict identifiability for heterogeneous HMMs). Under Assumption I, then Py, ... ,Pr, A,
and 7 are identified, up to label-switching.

Proof can be found in Appendix A.

Remark 2. Theorem 1 still holds if we have a slightly different condition (¢) in Assumption 1 where
rankg (Pyyi) = 1, rankg (P;) =1, and P, = P, for some k€ (t,T] and t € [2,T—1].
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2.2.2. Generic identifiability

Theorem 1 established strict identifiability conditions for heterogeneous HMMs, which could be too
strong for practical data analysis. A weaker notion of identifiability is referred to as generic identifiabilty,
which was first introduced in Allman et al. (2009). Generic identifiability permits the presence of
certain exceptional parameter values for which strict identifiability does not apply; however, these
non-identifiable parameters must form a set with Lebesgue measure zero. Because the non-identifiable
parameters are confined to a measure zero set, one is unlikely to face identifiability problems in per-
forming inference. Therefore, generic identifiability is generally adequate for data analysis purposes. For
example, Allman et al. (2009) demonstrated that generic identifiability necessitates fewer consecutive
observed variables to fully determine the distribution of an HMM compared to strict identifiability. We
next discuss generic identifiability of heterogeneous HMMs.

Let S(m, A, {P;}{,) denote the set of non-identifiable parameters from Q(m,A,{P,},):

S(mA {P ) = {(mA{P}): P(Y=y|mA {P:} ) =P(Y=y |7 A{P} ;) for
some (,A,{P,}1) # (mA{P ), (m, A {P} 1)) e Q(m A {P:} L)),
(7_T7Aa{pt}tT=1) eﬂ(ﬂ7A>{Pt}tT=1)}' (3)

Definition 2 (Generic Identifiability). The parameter space Q(m,A, {P;}r, ) is generically identifiable,
if the Lebesgue measure of S(7,A, {P,}-,) with respect to parameter space Q(m,A,{P;}._,) is zero.

Theorem 2 (Generic Identifiability for Heterogeneous HMMs). For a heterogeneous HMM, the
parameter space Q(m, A, {P,}1~,) is generically identifiable up to label-switching if . > 0 for all ¢ € [r],
and

(@) Py =Py forte[2,T-1];
b) Tl qe2r q2r T gr>r

Proof is shown in Appendix B. The generic condition for heterogeneous HMMs is weaker than the
strict condition. Specifically, Theorem 2 imposes conditions on the dimensions of the emission matrices
and does not require that any particular emission matrix is full rank.

3. Heterogeneous restricted HMMs (RHMMs)

The previous section discussed identifiability of heterogeneous HMMs where the observed response and
hidden states are categorical random variables, the emission matrix P; is unrestricted, and the transition
matrix A corresponds with an irreducible and aperiodic first-order Markov process with stationary
distribution 7. The purpose of this section is to introduce new identifiability conditions for restricted
HMMs where restrictions are imposed upon the emission matrix. Accordingly, this section includes
three subsections. The first subsection includes a discussion that connects restrictions in the emission
matrix with popular diagnostic models. The second and third subsections focus on the identifiability of
RHMNMs for two types of models depending upon whether the transition matrix corresponds with an
irreducible process. Accordingly, the second subsection corresponds with the case where A is irreducible
with stationary distribution 7 and the third subsection presents identifiability conditions for the case
where A includes absorbing states.

3.1. Overview and definitions

This section considers the identifiability of the heterogeneous version of RHMMs, which include a
binary vector of latent attributes, & € {0,1}* as opposed to the Z € [r] in the previous section. The
hidden state for RHMMs at a given time ¢ consists of a binary profile &; and indicates whether a given
respondent possesses one of the 25 possible profiles for the K attributes. We next define a general model
for a categorical response Y € [¢].
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Definition 3 (Nominal diagnostic model; NDM). A general model for a categorical response Y € [¢]
is the NDM, which has an item response function of:

P(Y:m|¢x): qexp(tum(“)) 7 (4)
Yr=1 €xp (pmr (&)
where for m > 1,
K K
pm (&) = Bom+ Y Prm@k + Y, Prkrm @kt + -+ + Brakm | | ok (5)
k=1 k<k/ k=1

includes the main-effects and interaction-effects among the attributes. Note that the parameters for the
m =1 case satisfies oo = --- = B12...ko = 0 to identify the model.

K
Definition 4 (Structure matrix). Let d; € {0, 112" be a binary matrix such that the element in the
mth row and pth column &jpm = 1 if Bjpm is active and non-zero and djpm = 0 if Bjpm = 0 and inactive.

Remark 3. The NDM is designed for nominal data and there are numerous special cases for dichoto-
mous and polytomous response data. We refer readers to de la Torre & Douglas (2004) for a review
of popular dichotomous diagnostic models. For example, Chen et al. (2020) provide an overview
of how different configurations §; corresponds with different diagnostic models for the M; = 2 case.
Additionally, there are several studies on the development of polytomous diagnostic models (e.g., see
Culpepper, 2019; Fang et al., 2019; Ma & de la Torre, 2016).

An important feature for RHMM s is that we typically observe responses to multiple items at a given
point in time.

Definition 5 (Multi-item emission matrix). Suppose there are J total items. We let 6; be the M; x 2K
matrix of response probabilities such that element (1, c) denotes the probability of observing a response
of m on item j for members of class c. We let J; c [J] denote the subset of items administered at time .
Notice that the definition of J; allows for the possibility that different items are administered over
time. Accordingly, under the assumption that the {Y;};c7,’s are conditionally independent given a; the

0; where ® is a Khatri-Rao product of matrices (see

emission matrix for a given time ¢ is P; = ®j 7.9

Definition 8 in Appendix A).
We next present an example to demonstrate the previously defined components of the NDM.
Example 1. Suppose K =2 and M; = 3, so Y; € [3] and the M; x 4 matrix of response probabilities, ;, is,

Bor Oi11 O 031
0; =002 Oj12 02 U2 |. (6)
Bjos 013 O3 033

The M; x 4 matrix of regression coefficients is

Bjoo Bjro PBizo Pizo
B;=|Bjor Bir Pz B 7)
Bioz Bjrz Pizz Pizz

and the corresponding M; x 4 structure matrix &; is

Gjoo 810 80 O30
0 =| 8o dj11 Sp1 Iz |- (8)
Gjoz Sj12 0j2 Oj2

Note that ;50 = 0 and dj0 = 0 for all p to identify the model parameters and it is customary to include
intercepts in the model, which is imposed by the restrictions 8jo1 = 1 and §jo> = 1.
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3.2. Irreducible process with stationary distribution n

The purpose of this subsection is to establish the identifiability of RHMMSs with an irreducible and
aperiodic transition matrix A. We first discuss conditions for strict identifiability and then conclude
this subsection with results for generic identifiability.

It is important to note that there is a one-to-one mapping between the P;’s and the NDM 6 and 8
parameters. Therefore, RHMM parameters based upon the NDM are strictly identified whenever the
conditions in Assumption 1 for Theorem 1 are satisfied. However, verifying strict identifiability of the
NDM can be more cumbersome given there are many parameters and ways to construct the 5’s so
that the formed emission matrices have full column rank. Consequently, we first discuss conditions
for strictly identifying RHMM parameters for the special case of binary RHMMs prior to focusing on
generic identifiability for the more general setting.

Example 2 (Binary RHMMs). Suppose M; =2 for all j, so that Py is a 2191 % 2K matrix and B; and §; are

2K _vectors. The structure matrix in this setting for the items administered at time # is A, is a | 7;| x 2%
binary matrix with rows defined by the associated §; for j € J;. Accordingly, {A,} [, are the structure
matrices for the items forming {P,} /.

Assumption 2. Consider the conditions for the structure matrix, A, of binary RHMMs:

’ T
(a) A takes the form A = (DIT,A T) after row swapping, where A’ is any (|| - K) x 2X binary
matrix and D; takes the form

110...0...0
D, = DE{O,I}KXZKZD: 10 : ;
100...1...0

(b) For two classes of respondents, there exists at least one item in A, in which they have different
success probabilities.

Remark 4. Note that we use the convention that the first column of A corresponds to the intercept,
the next K columns the main-effects for the attributes, the next (12< ) columns the two-way interaction
effects, etc. The last column corresponds with the K-way interaction effect.

Corollary 1 (Strict identifiability of Binary RHMMs). Any parameter from Qa (71,A7 {ﬁt}tT:l) is
strictly identifiable up to label-switching, if:

(1) A satisfies Assumption (1a);

(2) m.>0forallc

(3) Py =Py, forsomete[2,T-1]; and

(4) A; and A satisfy Assumption (2a) for 0 < k < t.

Proof is shown in Appendix C.

Remark 5. Corollary 1 requires K simple structure items are administered in P; and P;_;. A weaker
condition is available by imposing restrictions on pairs of items as described by Culpepper (2023).

Assumption 3. Consider the conditions for the structure matrix, A, of binary RHMMs:

7 T
(a) A takesthe form A = (DIT,A T) after row swapping, where A’ is a (|.7| - K) x 2% binary matrix
and D is of the following form:
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LI DU
K S S

Dg: DG{O,I}KXZ :D= - . : ’
S

where * can be either 0 or 1.
(b) In A, each main-effect must appear at least once. There exists a j such that §j = 1 for any k =
1,2,....K.

Corollary 2 (Generic identifiability for binary RHMMs with 7 > 0,). The parameter space
Qa(m,A,{B,}=)) is generically identifiable up to label-switching, if:

(1) A;and Ay for 0 < k < t satisfy Assumption (3a); and
(2) Py =Py forsomete[2,T-1].

Proof can be found in Appendix D.

3.3. Identifiability for absorbing-state, multi-item HMM

The previously discussed classical HMM assumes that 7 is the long-run stationary distribution with the
requirement that all elements are non-zero, 7 > 0,. The requirement of non-zero elements of 7 implies
the absence of an absorbing state, which is inconsistent with the goals of education. That is, learning
interventions are designed to transition students into states with greater skills, knowledge, and abilities.
The purpose of this subsection is twofold. First, we present results for identifying parameters of multi-
item HMMs for the case where A includes absorbing states. Second, we present Corollaries that are
specific to the RHMM setting. We establish identifiability using Kruskal’s theorem for the uniqueness
of three-way arrays.

Suppose for t € [T], Y; € [g:] follows a multi-item HMM with hidden state Z; € [r], time-specific
q: % r emission matrices {P;};_;, time-invariant transition matrix, A, and an initial distribution with
71 > 0, two or more time points (i.e., T > 1) with P; = Py; * Py, where Py; and Py, are column-wise
stochastic matrices and * denotes a Khatri-Rao product, which is a column-wise Kronecker product
(see Definition 8 in Appendix A for more details).

Remark 6. An important component of the absorbing state HMM is that the emission matrix for the
first time point can be written as a Khatri-Rao product of two emission matrices. This assumption
implies that there are two responses at time ¢ = 1 with Y7 = (Y11,Y12) such that Y;; and Y, are
conditionally independent given Z;.

A first step for using Kruskal’s theorem to establish parameters of the absorbing state RHMM are
identified is to write the model as a three-way array. Specifically, we condition the observed responses

on Z],
P(Yy,...,Yr|Z1) = P(Yn | Z0)P(Y12 | Z0)P(Ya,..., Y1 | Z1)
=Pu*Pu*Bg 1, ©)
where By, s the (q2g3--qr) x r emission matrix for Ya, ..., Yr given Z; (see Definition 9 and Equation

A4 in Appendix A for more details). We write the marginal distribution, M, of Y1,...,Yr in the three-
way array representation as

M = [M1,M3,M;3] = [PuDy, . P12, B(1 711] = D mup11,1 ® P12, ® by, 1,15 (10)
=1
where Dy, = diag(m11,...,m1r), 7y is the Ith element of the initial distribution 1, and p1; 5, p12,;> and

by, 1),1 are the Ith column of Pyy, P12, and By 77, respectively.
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Theorem 3 (Strict identifiability for heterogeneous, multi-Item HMM with absorbing states). The
parameters m, A, and {P,}, of a multi-Item HMM with absorbing states are strictly identifiable up to
label-switching if:

(1) A satisfies Assumption (1a);
(2) mc>0forallc
(3) rankg(P11) > 2, rankk (P12) =1, and P1; = P,.

Proof is shown in Appendix E.
We reparameterize the multi-item HMM as a RHMM by replacing Z; € [r] with the latent attribute
profile a; € {0,1}X.

Example 3 (Binary RHMM:s with Absorbing States). Suppose M; = 2 for all j, so that P is a 2l oK
matrix and §; and A; are 2K-vectors. A11, A1z, {A;}151 are the structure matrices for the items forming
P11, P1z, and {P;}+>1, respectively.

We next apply Theorem 3 to establish a corollary for the identifiability of binary RHMMs.

Corollary 3 (Strict identifiability of binary RHMMs with absorbing states). Any parameter from
Qa(m1,A, {ﬂt}tT:l) is strictly identifiable up to label-switching if:

(1) A satisfies Assumption (1a);

(2) mc>0forallc

(3) P12 =Py and

(4) Ay satisfies Assumption (2a), and A1 satisfies Assumption (2b).

Proof can be found in Appendix F.

Remark 7. Corollary 3 relies upon Assumption (2a), which requires that K simple structure items are
administered in P1». Note that a version of Corollary 3 is possible such that strict identifiability can be
achieved with weaker conditions imposed upon on pairs of items, or dyad (e.g., see Culpepper, 2023).

Corollary 4 (Generic identifiability for binary RHMMs with absorbing states). The parameter space
Qa(m,A,{B,}2)) is generically identifiable up to label-switching, if

(1) Ay satisfies Assumption (3a) and Ay, satisfies (3b); and
(2) P1a=P; forsomete[2,T-1].

Proof can be found in Appendix G.

Remark 8. Corollaries 1, 2, 3, and 4 are focused on the case of binary response data, but these results
can be easily extended to more general response models using existing results. For instance, we can
extend Corollaries 1 and 3 to the case of nominal response RHMM:s by replacing condition (4) with
the conditions for the A structure in Liu and Culpepper (2024 Theorem 1). Moreover, we can establish
generic identifiability for a nominal response RHMM by replacing (1) in Corollaries 2 and 4 with the
conditions for the A structure in Liu and Culpepper (2024, Theorem 2).

4. Practical considerations for assessment design

The purpose of this section is to provide a summary of the aforementioned results for practitioners
who design assessments within the HMM or RHMM frameworks. Figure 2 includes a flowchart of the
relevant decision points for deciding upon which results to use as a guide for designing studies.

The flowchart includes four layers of decision points. The first decision at the top of the flowchart
requires practitioners to decide whether the emission matrix will be constant over time. An important
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Figure 2. Flowchart of identifiability results for different types of hidden Markov models.
Note: The boxes with dotted borders and italicized text indicate conditions from existing research whereas the bold boxes indicate
conditions established in this paper.

factor for determining whether P; changes with time is the extent to which researchers can administer
an instrument over time that has invariant response probabilities. The instrument for an invariant P
may manifest differently for various contexts. In the case of mental health assessment, the instrument
might include one or more standard items regarding patients mood or mental state. In the context of
education, the instrument could consist of a collection of common items or parallel items, which require
mastery of the same mental processes. If a parallel item design is deployed it is critical that the number
of items and the number of response options on these items are also constant over time. In general, we
should expect the emission matrices to differ in cases where different items are administered over time.

After deciding upon whether the constant emission matrix assumption is feasible researchers then
move to the second layer of flowchart to (2a) if the assumption is feasible or (2b) if the emission matrix
is likely to vary over time. In the case of a constant emission matrix, we direct researchers to results in
previously published papers. For instance, Allman et al. (2009) and Bonhomme et al. (2016) provide
results for conventional HMMs that deploy an unstructured emission matrix and Y. Liu et al. (2023)
discuss conditions for identifying parameters of RHMMSs. One important detail to recognize is that
although Allman et al. (2009) and Bonhomme et al. (2016) describe a conventional HMM with one item
per time period, their results can be applied to an emission matrix formed as a Khatri-Rao product of
item emission matrices (e.g., see Definition 5).

If the answer to the constant emission matrix question at the first decision point is “no” the flowchart
proceeds to question (2b), which deals with whether the Markov chain that governs transitions among
hidden states is irreducible. As noted above, an irreducible Markov chain is one where it is possible
to reach any state from every other state in a finite number of moves. In other words, this decision
point forces researchers to grapple with the way they anticipate their phenomenon of interest to change
over time. A Markov chain is irreducible if there are no absorbing states, so, researchers interested in
designing assessments to study learning would likely answer “no” and continue to (3b). In other cases,
researchers may expect respondents to move freely among states and it would be appropriate in these
settings to proceed along the “yes” path of the flowchart to (3a).

Decision point (3a) is focused on whether the irreducible Markov chain is coupled with structure
in the emission probabilities. If structure is present, the emission probabilities can be modeled as an
RHMM and researchers could use binary, polytomous, or nominal restricted models for the emission
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response probabilities. Figure 2 indicates that the appropriate identifiability results to guide assessment
design in this case are stated in Corollaries 1 and 2 and Remark 8. More specifically, RHMM:s for binary
data require two conditions on the emission probabilities and latent structure. First, there must be at
least one pair of adjacent time points with parallel items to ensure the emission matrices are equal (e.g.,
condition (3) of Corollary 1 and condition (2) of Corollary 2). Second, the latent structure as described
by A must also satisfy conditions to ensure the minimum number of full rank emission matrices.
Strict identifiability requires simple structure items as described in Assumption (2a) whereas generic
identifiability requires the weaker condition presented in Assumption (3a).

If the answer of (3a) is “no,” the model is a heterogeneous HMM with time-varying emission matrices.
Accordingly, Theorems 1 and 2 present the appropriate conditions for designing identifiable assessment
designs. Specifically, researchers that deploy unrestricted emission matrices need to administer one pair
of parallel items and care is needed to ensure at least two emission matrices are full rank. One way
to satisfy the parallel items assumption is to administer the same item on two adjacent time periods.
Theorem 2 shows that heterogeneous HMMs are almost surely identified if the number of response
options of the items over time satisfy certain inequalities (e.g., see condition (b)). For instance, the
parallel item should be chosen so that the number of response options exceeds the number of hidden
states. Furthermore, the product of the number of item response options administered prior to and after
the parallel item must also exceed the number of classes.

Decision point (3b) focuses on whether multiple items are administered over time for the reducible
Markov chain. The flowchart in Figure 2 shows that there are currently no known identifiability
conditions for the case when the answer to (3b) is “no” and only a single item is administered over
time.

If multiple items are administered, the flowchart directs us to our last decision point, which is
whether there is structure in the response patterns of the multiple items. An answer of “no” implies
the emission probabilities are unstructured, so that Theorem 3 includes the appropriate conditions for
identifying the model parameters. An important feature of the conditions for the reducible Markov
chain case is that conditions must be imposed upon emission probabilities from the first two time
points as well as the initial distribution 7;. In particular, the emission matrix from the first time
point must consist of two booklets of items, say B; and B,. In the case of heterogeneous HMMs, the
model parameters will be strictly identified if the hidden states have distinct response probabilities in
the emission matrix formed by B; and the emission matrix constructed by B, is full rank. Another
requirement is that booklet B, must also be administered at the second time point in order to identify the
transition matrix. Also, the initial distribution 77; must be strictly positive. This means that practitioners
need to collect a representative sample from the population so that respondents are drawn from every
hidden state. In the educational context, the assumption that 7, is strictly positive corresponds with
ensuring the study consists of students with all types of skill profiles.

Finally, given the case at decision point (4), if the items include structure in their response
probabilities the model is an RHMM and Corollaries 3 and 4 and Remark 8 provide guidelines for
designing an identifiable assessment. The primary distinction between this case and the results discussed
in Theorem 3 is that the Kruskal rank conditions for the emission matrices are replaced with conditions
on the A’s. Satisfying the conditions in Assumption 2 guarantees strict identifiability for binary response
RHMMs whereas the conditions in Assumption 3 are needed to generically, or almost surely, identify
the binary RHMM parameters. Remark 8 discusses how previous research on the identifiability of more
general nominal models can be integrated into our framework to understand the required conditions
for the A’s.

5. Methods and empirical analyses

This section discusses issues related to the estimation and application heterogeneous HMMs. The first
subsection presents a Bayesian model and full conditional distributions for a Gibbs sampling algorithm.
The second subsection presents results from a simulation study to demonstrate that satisfying the
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identifiability conditions produces a consistent estimator. The final subsection presents an application
with measures of positive and negative affect.

5.1. Bayesian model for heterogeneous HMM

This subsection discusses a Bayesian model for the multi-item, heterogeneous HMM. Let 6; denote
the m; x r emission matrix for item j € [J] with (6;)m,c denoting the probability of a response of m for
members of latent state c. We let Z;; denote the set of items administered at time j and J;; = |Z| the
number of administered items. The conditional likelihood function for the response of individual i to
item j at time ¢ is a categorical distribution such that

Yisj | zir, 0 ~ categorical ( (Oj)y,tj,zﬂ ) . (11)

We assume the random variables within the J;-vector of responses for individual i at time t, Y;; € {0,1}%,
are conditionally independent given Z;;. Accordingly, the likelihood of the responses for individual i at
time t given the value of the hidden state and item parameters is

p(Yir | zit,®;) = H (6)y,2:5 (12)

j€Zi

where @; denotes the emission matrices for the administered items at time ¢. We consider independent
categorical prior distributions for the hidden states. Specifically, the prior for respondent i is:

categorical(7r ) t=1

Categorical((A)Zu—hl’ s 7(A)Zi,r—1:’)7 t>1 (13)

Zit | Zijg-1,m1,A ~ {

where (A),¢ =P(Zi =" | Zi -1 = ¢). We consider independent Dirichlet priors for the initial distribu-
tion, the columns of the item emission matrices, and the rows of transition matrices as

1 ~ Dirichlet, (do) (14)
((0j)1,57...,(0j)mj,c) ~Dirichletmj (d@) (15)
((A)¢1,-..,(A)¢r) ~ Dirichlet, (da), (16)

where do, dg, and d, are constants and W ~ Dirichlet; with density function

1

k
By L1 (17)

j=1

p(w) =

where B(d) denotes the multivariate beta function.

We deploy a Gibbs sampling algorithm to approximate the posterior distribution. Specifically, we
sequentially sample the hidden states, initial distribution, item emission matrices, and transition matrix
from the associated full conditional distributions. The full conditional distribution for the hidden state
for individual 7 at time t is a categorical distribution, Zj | zi t-1,2i,1+1,71,0¢, A ~ categorical (7 ), where
element c € 1,7 of 7y is

(Hjeliz (gj)}'u]rc) (m)e (A)c,ziz

t=1
S (e, 0y ) (e (A,
) ez, (8)y.c ) (A)z; o yoc (Aercy 1o
Tlite = (e Oy ) Ao By 1<t<T. (18)
ZI:I(HJGI,';(ol)h‘r]’”)(A)zi,r—lv‘ (A)"Zi,wl
(Theziy 0y, ) (A)z, 1y e T

Z::l (HjeIiT (oj )mywﬁ) (A)Zx', T-1-¢

The full conditional distributions for the initial distribution 7, the columns of the item emission
matrices, and the rows of the transition matrix are independent Dirichlet distributions. That is,
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71 | z11,. .. ,2m ~ Dirichlet, (n; +d;) where the cth element of #; is the number of individuals residing
in state c at time { = 1,

n
(nl)C:ZH‘(zﬂ =C). (19)
i=1
The full conditional conditional distribution for the cth column of the emission matrix for item j is

((Oj)l,c; e ,(Oj)mﬁc) | z,Y ~ Dirichletmj (ngjc + dg), (20)

where z and Y denote the values of the hidden states and observed responses for all individuals across
time points and the kth element of ng;. is the number of respondents who reside in state ¢ and select
option k on item j over time,

(ngjc)k:iiﬂ(zit:c)ﬂ(jeIi,,yitj:k). (21)
The full conditional distribution for the cth row of A is
((A)¢1,--.,(A)er) |z~ Dirichlet,(nac +da). (22)
The ’th element of ny, is the number of respondents who transition from state c to state ¢’ over time,
n T-1
(nac)e =Y. > Wz = c,zipn1 = ). (23)

i=1 t=1

5.2. Simulation study

We conducted a simulation study to demonstrate that enforcing the identifiability conditions produces a
consistent estimator for the parameters of the heterogeneous HMM. In particular, we focus our attention
to the case of the multi-item, heterogeneous HMM. Theorem 3 states that the heterogeneous HMM is
identified if: (1) rank(A) = r; (2) mic > 0 for c € [r]; and (3) an item administered at time ¢ = 1 has a full
rank emission matrix and is also administered at time t = 2. We simulated data using r = 3 hidden states
and J = 4 items administered over T = 4 time points. We simulated we responses for items 1 and 2 at
time one, item 2 at time 2, item 3 at time three, and item 4 at time four. Item 2 is administered at times 1
and 2 in order to satisfy condition (3) of Theorem 3. A full column rank emission matrix was specified
for the first item as

0.70 0.05 0.05
0.10 0.10 0.05

6, =10.10 0.70 0.10 . (24)
0.05 0.10 0.10
0.05 0.05 0.70

We specified distinct emission matrices for items 2 through 4 by permuting the columns of ;. That
is, 6, was constructed as columns (3,2,1), 85 as columns (1,3,2), and 04 as columns (2,3,1). The data
generating value for the transition matrix was

0.7 0.2 0.1
A=103040.3]{. (25)
0.1 0.2 0.7

The data generating value for the initial distribution was 7; = (0.375,0.250,0.375). The data generating
transition matrix is full rank and the initial distribution has strictly positive elements, which implies
that the data generating parameters satisfy conditions (1) and (2) of Theorem 3.

We simulated data for six conditions with samples sizes of n = 250, 500, 1,000, 2,000, 4,000, and 8,000.
We replicated each condition 500 times and computed the mean square error (MSE) for the elements of
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Table 1. Average MSE of the elements of ®, A, and 7; where
MSE was computed from 500 replications

n (¢ A T

250 0.0091 0.0065 0.0029
500 0.0047 0.0035 0.0021
1,000 0.0023 0.0017 0.0014
2,000 0.0012 0.0008 0.0006
4,000 0.0007 0.0004 0.0003
8,000 0.0005 0.0003 0.0002

Emission Matrices Transition Matrix
0.12 O O
0.010

0.10

0.008
O

=
0.006 O
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=
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Figure 3. Boxplots of simulated MSE for elements of the emission and transition matrices by sample size.

the four emission matrices, the transition matrix, and the initial distribution. We found evidence using
the Gelman-Rubin Rhat statistics of acceptable convergence using a chain length of 5,000 and a burn-in
of 1,000.

Table 1 and Figure 3 show that the parameter MSE decreases as the sample size increases. Table 1
reports the average MSE for the elements of ®, A, and ;. The average MSE for the elements of the
emission matrices equaled 0.0091 for a sample size of 250 and declined with sample size to the value
of 0.0005 for #n = 8,000. The average MSE for the elements of A and 7; demonstrate a similar pattern.
Figure 3 provides more detailed information by presenting boxplots of the MSEs of the 60 elements of
the item emission matrices and the nine element of the transition matrix by sample size. Figure 3 shows
evidence of consistency in the estimation of B and A given that the MSEs decline for all elements as the
sample size increases.

5.3. Application

Researchers are increasingly interested in developing tools to understand the dynamics of positive and
negative affect, mood, and depression (Loossens et al., 2021) and recent research deployed HMM:s to
study changes in mood and depression (Jiang et al., 2022; Mildiner Moraga et al., 2024). Accordingly,
we consider an application involving a dataset of the ten-item Positive and Negative Affect Schedule
(PANAS; Shui et al., 2021). The dataset includes # = 142 respondents who were surveyed six times a day
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for five consecutive days for a maximum of 30 observations over time. Participants reported ratings on
a five-point scale with anchor endpoints for the value of “1” as “not at all” to a value of “5” to indicate
“extremely” for the following item stems: upset, hostile, alert, ashamed, inspired, nervous, determined,
attentive, afraid, and active.

Previous research found evidence that responses to mood measures, such as the PANAS, are subject
to time-of-day effects where mood changes systematically over the course of a day (Egloff et al., 1995).
One implication could be that the psychometric properties of the PANAS items are a function of the
time-of-day. Consequently, applying a homogeneous HMM to the PANAS response data may be too
restrictive. It is therefore justified to evaluate the relative fit of a homogeneous and heterogeneous HMM
to determine whether the emission matrix changes with the time of day.

An important contribution of our article is that our new identifiability theory provides the necessary
insight for evaluating the extent to which emission matrices differ within a day. That is, we provide
researchers with identifiability conditions for comparing of two identified versions of the homogeneous
and heterogeneous HMMs. Therefore our application to the PANAS dataset compares the relative fit of
a homogeneous and heterogeneous HMM.

There were instances in the PANAS data where respondents missed one of the six daily data
collections. A complete dataset would include 4,260 person by time-of-day by day responses (i.e.,
142 x 6 x 5). The PANAS dataset included 3,789 responses, which implies that participants missed a total
0f471 data collections (i.e., 11.1% of the total observations). For the purposes of demonstration, we treat
the missing response data as missing at random and impute the hidden state for the missing observations
within the Gibbs sampling algorithm. Specifically, the hidden states for the missing observations is
imputed by sampling Z;; from Equation 18 by replacing the likelihood portion of the probability with
the value of one.

We deployed the heterogeneous HMM with r = 3 by specifying a distinct emission matrix for the
time-of-day (i.e., there were six different emission matrices). We used a Jeffreys’ prior for the columns
of the item emission matrices and the rows of the transition matrix. Specifically, the columns of the item
emission matrices were distributed as Dirichlets(15/2) where 15 is a vector of five ones and the rows of
the transition matrix as Dirichlets (13/2). We generated starting values for the item emission matrices
and initial distribution 7; by applying the K-means algorithm to the 3,789 x 10 matrix of observed items
responses.

We found evidence of convergence using the Gelman-Rubin Rhat statistics by approximating the
posterior distribution for both the homogeneous and heterogeneous HMMs by discarding the first
10,000 of 50,000 draws as burn-in. We computed the WAIC (Watanabe & Opper, 2010) for both models
in order to evaluate relative fit of the homogeneous and heterogeneous HMMs. The WAIC was smallest
for the homogeneous HMM with a value of 85813 versus 86301, which supports the conclusion that
PANAS item-level emission matrices were constant over the course of the day.

Figure 4 presents posterior means of the item emission matrices as pie charts of the response
probabilities for the ten items and three hidden states. Figure 4 provides evidence that members of
state one report more extreme responses to every item. In contrast, the results in Figure 4 suggest
that respondents within state two were more optimistic and tended to report lower levels on negative
affect items. Additionally, members of state two were more likely to report being inspired, determined,
attentive, and active. Finally, members in state three are similar to those in state two in terms of reporting
less negative affect. However, members of state three reported lower levels of characteristics such as
inspired, determined, and attentive than members of state two.

The posterior mean for the transition matrix was

0.829 0.095 0.076
A=10.116 0.741 0.143|. (26)
0.135 0.180 0.686

The estimated transition matrix provides evidence that respondents were more likely to remain in their
current state. For instance, respondents within the first state had an 82.9% chance of remaining in state
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Figure 4. Pie charts of item by class emission probabilities for the PANAS dataset.
Note: The anchor labels were 1 = “not at all” and 5 = “extremely.”

one and only had an 9.5% and 7.6% chance of transitioning to states two and three, respectively. In
contrast, members of the optimistic state two had a 74.1% chance to remain optimistic, an 11.6% chance
to transition into state one, and a 14.3% chance to transition into state three. Finally, members of state
three had a 68.6% chance to remain in state three, a 13.5% chance to transition into state one, and an
18.0% chance to transition into the more optimistic state two.

6. Discussion

We presented new theory for designing assessments within the HMM and RHMM frameworks. Our
results provide practitioners with new insights for creating assessment systems for monitoring student
learning and changes in mental health. We extended existing identifiability theory by relaxing the
constant emission matrix and irreducibility assumptions. Our results accordingly provide practitioners
with guidelines for designing more flexible assessments that are grounded in assumptions that are more
likely met in applied settings.

There are several directions for future research. First, we noted in the flowchart in Figure 2 that there
are no known identifiability conditions for the time-varying emission matrix case when the Markov
chain is reducible and a single item is administered over time. The challenge with this setting is the need
to discover a technique to establish identifiability without using the forward projection properties in
Lemma 2 of Appendix A derived from the stationarity assumption.

Second, we proposed a Bayesian approach for approximating parameters of the heterogeneous
HMM and there are opportunities to extend the algorithm to the case of heterogeneous RHMMs.
That is, researchers could consider using Bayesian variable selection methods to impose structure on
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the emission matrix (e.g., see Balamuta & Culpepper, 2022; Chen et al., 2020; Culpepper & Balamuta,
2023; Jimenez et al., 2023). We established identifiability conditions up to label-switching. One potential
challenge with using the Bayesian framework to estimate model parameters is that MCMC algorithms
might experience within-chain label-switching, which would impact parameter estimates based on
posterior means. Although we did not find evidence of within-chain label-switching in our simulation
study or application, within-chain label-switching should be carefully investigated. In cases where
within-chain label-switching occurs, researchers should use or modify existing relabeling algorithms
(e.g., see Chung, 2019; Erosheva & Curtis, 2017) to permute samples from the posterior distribution.

Third, researchers are also interested in settings where there are attribute hierarchies (e.g., see Chen
& Wang, 2023; Tu et al., 2019). In the educational context, attribute hierarchies arise in cases where
some attributes can only be mastered after mastery of others. For instance, suppose K = 3, learning is
an absorbing state, and the attributes follow a linear hierarchy where students must first learn attribute
1, then attribute 2, and finally attribute 3. The flowchart in Figure 2 indicates that Corollaries 3 and 4
are the relevant conditions for this setting and a requirement is that the initial distribution 7, is strictly
positive. However, in the case of a linear attribute structure we would expect some elements of 7, to be
zero. For instance, probabilities involving mastery of the second and third attribute without mastery of
the first would be zero (e.g., P(a1 = 0,02 = 1,a3 = 0), P(a1 = 0,02 = 0,03 = 1), and P(a; = 0,02 = 1,
a3 = 1)) in addition to probabilities such as P(a; = 0,a2 = 0,a3 = 1) and P(a; = 1,2 = 0,3 = 1).
Our identifiability results can be extended to allow for attribute hierarchies. For instance, Gu & Xu
(2023) studied identifiability of restricted latent class models in the presence of attribute hierarchies
and their results could be incorporated to establish identifiability conditions for RHMMSs when attribute
hierarchies exist.

In conclusion, diagnostic models provide researchers with powerful tools for tracking changes in
attributes. The increasing availability of longitudinal data will provide researchers the opportunity to
leverage information to infer interventions that enhance outcomes. The results we shared in this article
will provide researchers with the tools to harness the wealth information available in modern studies.
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Appendix

A. Proof of Theorem 1

The goal of this appendix is to prove Theorem 1. To establish the result we need to understand properties of emission and
transition matrices. The first subsection reviews several definitions and results pertaining to emission and transition matrices.
Furthermore, we write the heterogeneous HMM as a three-way array using properties of forward- and backward-projection
rules. The second subsection discusses backward and forward projections for homogeneous HMMs and then extends these
results to the case of heterogeneous emission matrices. Once we are able to write the heterogeneous HMM as a three-way array
we use Kruskal’s theorem for the uniqueness of three-way arrays to complete the proof. Accordingly, the third shows how we
can write the heterogeneous HMM as a three-way array and applies Kruskal’s theorem.

A.1. Properties of emission and transition matrices

We start with by introducing some basic terminology for emission and transition matrices.

Definition 6 (Stochastic matrices). A n x m matrix M with non-negative entries is column-wise stochastic if 1; M = 1], and
row-wise stochastic if M1,, = 1,, where for n € N, 1, is an n-vector of ones.

Remark 9. The emission matrix P; is a column-wise g; x r stochastic matrix and the transition matrix A is a row-wise r x r
stochastic matrix.

Lemma 1 (Properties of irreducible, aperiodic stochastic matrices). If A is an r x r transition matrix for an irreducible and
aperiodic Markov chain then A" = 7 for > 0,.

Proof. See Stirzaker (2003, p. 416). O

A.2. Forward and backward projections

We follow previous strategies by writing the HMM as a special case of a mixture model using forward and backward projection
rules.
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Lemma 2 (Bonhomme etal., 2016). Let Y; € [q] be a random response conditioned on Z; € [r] with probabilities specified in the
q x r emission matrix P and stationary distribution, > 0,. Then, the first-order Markovian assumption implies that the emission
matrix for:

1. Y, given Z;_y is PAT (backward projection); and
2. Y, given Zsy1 is PD,AD" where D, = diag(m, ..., n,) (forward projection).

Remark 10. Note that A = D,AD;! arises in the distribution for Y; given Z;.; because P(Y; | Zi+1) = X0_ P(Y: | Zi = 2)P(Z; =
Z | Zi+1) requires the conditional distribution of Z; given Z,. Consequently, A is the matrix of probabilities governing
transitions from Z; to Z;.

We next present notation that is essential for constructing the joint distribution of observed responses conditioned upon
a common collection of latent states. In particular, our results make use of specialized matrix products, such as the Kronecker
and Khatri-Rao products.

Definition 7. The Kronecker product two matrices A € R"*" and B € IRP*4, is denoted by

anuB - a;,B
A®B=| : -~ i |, (A1)
amlB amnB

Definition 8. The Khatri-Rao matrix product (i.e., a column-wise Kronecker product) of two matrices A = (ay, ... ,a,) e R™*"
and B = (by,...,b,) e R™", is denoted by

A*Bz(a1®b1,...,ar®b,). (A2)

We present an example showing how to use the Khatri-Rao product can be used to express the emission matrix for two
independent responses.

Example 4. Suppose there are two items, Y; € [g1] and Y € [g] such that the responses are conditionally independent given
Z. The conditional probability for a particular response pattern for Y, and Y, is P(Y1 = j,Y2 = k| Z = z) = pizjpax. We let
piz = (Piz1, - - - ,Piz,q,) " denote a g;-vector of probabilities for Y; given Z = z. Also, define P; = (pi1, ..., pir) as the g; x r matrix
of response probabilities across the r classes. Therefore, the conditional independence assumption implies that the gig, x r
matrix of response probabilities for Y; and Y3 is P, = Py % P,.

We present a two additional examples to demonstrate how to use the forward and backward projection rules and the
Khatri-Rao product to write the emission matrix for the responses of two adjacent time points.

Example 5. Suppose Yr_; and Y7 follow a first-order HMM with emission matrices Pr_; and Pr, respectively, and transition
matrix A. Lemma 2. 1 implies that the emission matrix of Yr given Zr_; is PrAT. Note that Y7_; and Y7y are conditionally
independent given Zy_,, so the emission matrix for the combined response patterns for Yr_; and Yy given Zr_; is Pr—; *
(PrAT).

Example 6. Let Y; and Y; be the first two observations of a first-order HMM with emission matrices P; and P», respectively,
and transition matrix A. Lemma 2.2 implies that the emission matrix of Y} given Z; is P;A. The HMM structure implies that
Y, and Y, are conditionally independent given Z,, so the emission matrix for the combined response patterns is P,AxP,.

We will apply the backward and forward projection rules to an arbitrary number of time points, so we introduce notation
to represent these emission matrices.

Definition 9. Let the backward projected distribution of Y41,...,Yr given Z; be defined as B, 1] The distribution for
Yert,..., Yr given Zyy is By, 13-

Definition 10. The forward projected distribution of Yi,...,Y;—; given Z; is denoted as F[y,;) and the distribution of
Yi,..., Y1 given Z;_; is denoted as F[y ;3.

As demonstrated by Allman et al. and Bonhomme et al., we can generalize the expressions in Examples 5 and 6 and write
the emission matrix for several observations from the future or the past conditional on a common time Z; for 1 <t < T.

Example 7. Under the HMM structure, we can apply the backward projection rule to derive the conditional distribution of
Yi41,..., Y given Z;. For instance, the conditional distribution of Yr_5, Y7_1, YT given Zr_; is

Bpr_a, 17 = P(Yr—2 | Z1—2)P(Y7_1, Y7 | Z1—2) = Pr_s % (B[r_1,1]AT)
= PT—Z * (PT—I * PTAT)AT. (A3)
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Applying the identity recursively implies that the distribution of Y;41,...,Yr given Z; is,
B(,17 =B, 1A = (Prr # (--Proa + (Proy x PrAT)AT-) AT. (A4)
Similarly, the conditional distribution of Y1, Y, and Y3 given Z; is
F(1,3) = P(Y1,Y2 | Z5)P(Y3 | Z5) = F(1p)A %P3 = (P1A % Py) A % Ps. (A5)
A recursive application of the forward projection rule implies that the distribution of Y1,...,Y;_; given Z; is,
Fri, =P A = (((P1A*P))A* Py )A P, )A. (A6)

The forward and backward projected emission matrices rely upon the Khatri-Rao product. The following Lemma presents
identities for Khatri-Rao products that will help us to understand properties of forward and backward project emission
matrices.

Lemma 3 (Khatri & Rao, 1968). Let R and S are matrices of order m x p and nx q, and U and V are matrices of order p x r and
gxr.

(a) Mixed product property
(R@S)(U+V) = (RU) # (SV). (A7)

(b) Let all of the column vectors of V corresponding to independent column vectors of U be non-null. Then rank(U V) >
rank(U). Similarly, if all the column vectors of U corresponding to independent column vectors of V are non-null, then
rank(U % V) > rank(V).

The next proposition establishes several important results about forward and backward projected emission matrices.
Proposition 1 (Properties of stochastic matrices). Consider the following properties of stochastic matrices:

1. IfAis an r x r row-wise stochastic matrix that is irreducible and aperiodic then 17 D,AD;' =17.
2. Backward and forward projection recursive identities:

(@) Bi,17 = (Pear # B, 1) AT

(b) Fpy,1) = (F[l,z) *Pr)A.

3. By, 1] and Fy 141y are column-wise stochastic matrices.

Proof. Observe that (1) is established using the property in Lemma 1 of an irreducible, aperiodic A that A7 = 7 and the fact
that 17D, = #7. We obtain (2a) because B, 1] = B[r1,7]AT = (Ps41 * B(r41,77)AT and Yy is conditionally independent
of Yy42,...,Yr given Z;,,. Similarly, part (2b) stems from F[; 1.1y = F[; ;jA = (F[1,1) * Pr)A, because Y1,...,Y,_; and Y, are
conditionally independent given Z;.

For (3), we note that the elements of B(, 11 and F ;) are products of non-negative elements, so all that remains to show is

that the columns sum to one. We proceed with the recursion in 2a for t < T Let 1&7 n= an® lgt 7] with I(TT_L 1= 17 ,s0it
isa (1'[]7:,+l q,-)—vector of ones. Applying Lemma 3 recursively implies 1-(rt, B =1 Similarly, fort > 1, l[le ;isa (1'[]:11 q,-)—
vector of ones. Recursively applying Lemma 3 with I[TM) = 1[T1,¢_1) ®1;  and 1{1,2) =1, implies that IEIJ)F[I”) =1,. O
We next introduce collapsing properties of backward and forward projected emission matrices.
Definition 11. Let Z 4 = {x|x € Z,x € A} denote the set of integers also in set .4, and let
@zl fIato
Ia 1 ifZ4=0
Example 8. Given Z 4 = (m,n], we have
- et Ly, ifm<n.
Za 1 ifm>n
Proposition 2 (Collapsing property). There exists constant collapsing matrices Cg, [1, ),k and Cg, (¢, 1],k Stich that,
(1) CB, (t,T],kB(r,T] = PH_k(AT)kaT 0<k<T-tand
T T
Co, (1,17, = 1 rkm1] ©Lgen © Ly 17 (A8)
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() Cr,11,0,kFp1,0 = P, (A) for0<k<tand

Cr, 1,0,k = 1{1,:—k) I, ® 1-[rt—k+1,t)' (A9)

Proof. We define these constant matrices recursively. For part (1), we note that the collapsing matrix can be written

recursively as Cp, (1, 17,k = quM ® Cp, (141,17, for t,t+1,...;t + k=2, where Cp (11, 77,% = 1-(rt+1,t+k—l] ®l,,, ® 1(t+k p and
then CB,(t+k—1,T],k Iqu ® 1(t+k 7
Applying Lemma 3 and (2a) of Proposition 1 implies the first step of the recursion yields:
Cs, (1, 71.4B (1,11 = (13, ®Cp, 141,77,k ) (Pr+1 * B(r,17) A
= (15, Prs1 * Cp, 1, 17.4B 141,17 ) A
= (1] % Cp (141,17.4Bre1,17) A
= Cg, (1+1,71,kBe+1,11AT - (A10)
Iterating forward, we can get
k-1
Cs, (1, 17,kB (1, 17 = Ca, (k1,17 6B kot 1 (A7) (A11)
Then using (2a) and (3) of Proposition 1, we find
T\k=1 T AT\k-1
Cs, (141, 17,kB k1,17 (AT) (IM ®1(, T]) (Pesk * Bk 17) AT (A7)
k
= (I%+k Progx 1(t+k,T]B(t+va]) (AT)
k
(P17 (A7)
k
=Pk (AT) . (A12)

The proof for part (2) follows in a similar fashion, but in the opposite order. That is, we let Cp, [1 0,k = Cp[1,e-1),k ® 1]
fort—k+2,...,t—1,t, where Cg [y 1), k—1[| “ k)®Iq,k®1 ,and then Cp [y t—g41),k = 1],
in the recursion is,

qe-1

®1,,_, . The first step

[t—k+1,t-1) [1,t=k)

Cr.01,0.4F 01,0 = (Cr, e,k @15, ) (Fruen) #Prot) A
= (Cr, (1,1-1),kFp1,1-1) * 1;71[’:—1);\
( F,[1,0-1),kF[1,1-1) * er)A
=Cr, 1,-1),kF[1, - 1)A (A13)

Iterating back we find,

Cr, 11, t-k+1), k1,1~ k+1) A ( [1,t-k) I, k) (F[lyt—k) *Pt—k)A(A)k_l
( [k Fin k) * Lo Pre k) (A)k
(7
=P,

«Piy) (A)"

«(A)" (A14)

A.3. Three-way arrays

Allman et al. (2009) proved the identifiability of time homogeneous HMMs using Kruskal’s theorem for the uniqueness of
three-way arrays (Kruskal, 1976, 1977). We next define a three-way array.

Definition 12 (Three-way array). Let T = [T}, T,,T3] be a three-way array where each T; has r columns with T defined as

,
T=[T,T,Ts] Ztll®t21®t31, (A15)

where t; is column [ of T; for i = 1,2,3.

The next example shows that heterogeneous HMMSs with, time-varying emission probabilities can be written more
generally as a three-way array.
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Example 9 (Heterogeneous HMMs as a three-way array). We write the heterogeneous HMM model for Yi,...,Y:1,Y,
Yi41,. .., Y7 asathree-way array by conditioning on Z;. As shown by Allman et al. (2009), the HMM conditional independence
assumption and the requirement that 7 > 0, for the forward-propogation rule in Lemma 2 implies that,

P(Y17~ v Y, Y Yo, Y | Zt) = P(Y17~ s Y ‘ZI)P(Yt ‘ Zt)P(Yt+19" Y7 | Zt)
= F[l,t) * P[ *B(t, T]- (A16)

We can write Equation A16 as a three-way array as shown in Definition 12. Let M represent the marginal distribution of
Y1,...,Yr and define M; = F[l’[) as the emission matrix for Y1,...,Y;—; given Z;, M, = P;D;, is a rescaling of the emission
matrix for Y; given Z;, and M3 = B, 1) is the emission matrix for Yi1,...,Yr given Z;. Accordingly, the three-way array
representation for Equation A16 given in Definition 12 is

M = [M;,My,M3] = [F[; ),P:D, B, 171 = Y miff1, 1), ® Pri ®@b(s 79, (A17)
=1

where 7 is element [ of the stationary distribution 7, and f, 1,1, ps,1, and b, 17,; are I-th column of Fpy ;y, P, and By 17,
respectively.

Definition 13. For a matrix M, the Kruskal rank of M, rankx (M), is the largest number I such that every set of I rows in M
are linearly independent (e.g., see Allman et al., 2009).

Theorem 4 (Kruskal, 1976, 1977). Consider the three-way array in Definition 12. If
rankg (Ty) + rankg (T2 ) + rankg (T3) > 2r +2
then T uniquely determines T1, T, and T3 up to label-switching and rescaling of the columns.
The proof also requires knowledge about the rank of project of matrices, so we present an existing result in the next Lemma.
Lemma 4 (Rank of matrix product). If A € R™" and B € R"™* and rank(B) = n then rank(AB) = rank(A).

The following proposition establishes the uniqueness of the three emission matrices and stationary distribution for the
heterogeneous HMM in Example 9.

Proposition 3. Consider the three-way array representation of the marginal distribution M shown in Example 9. Under
Assumption 1, M1, My, and M3 are uniquely identified up to label-switching.

Proof. In Equation A17, we decompose the marginal distribution of Y1,. .., Yy into three tensors M, My, and M3. According
to Proposition 1, we have M; = F[1,1), M2 = P:Dy, and M = B, 17 Note that (b) implies rank(D) = r, so Lemma 4 implies
that rank(P;D;) = rank(P;). Therefore, (c) implies that rankx (My) = r.

Applying property (b) of Lemma 3 implies that rank(P;41 * B(;41,17) = rank(Ps41) since all columns in By 1) are
nonzero. Given rank(Pr41) = r, we can conclude that rankx (M3) = r. We note that M; = Fpy ;). We can repeatedly apply
(2b) of Proposition 1 to imply that

= (((F[l,z—k) * Pt—k)A‘“)A * Pt—l)A'

Part (b) of Lemma 3 implies rankk (F[y ;—xy * Pi_x) > rank(P;_i) because the columns of F[; ,_xy are non-null. Recall
(c) implies that rankg (P;—x) = 1, so mnkK(F[1 t—k) * Pr_x) = r. Recall that Fp; ,_ ] = Fp1,ik) * Py, s0 Lemma 4 implies
rankg (Fy, ;- k]A) = r, because rank(A) = r. The fact that Fry—ke1) = Foe- k]A implies rank (Fy,—r41)) = . We can
continue sequentially in this fashion to show that ranki ((F[y,i—ks1) * Progs1 )A) =1, rankg ((Fri,—k+2) * Pre ki2)A) =1y,
rankg ((F[1,¢—1) * Pr—1)A) = r, which implies rankx (M, ) =r.

Now we have rankg (M) + rankg (M2 ) + rankg (M3 ) > 2r + 2, then by Theorem 4, tensors M, Mz, and M3 are uniquely
identified. O

Remark 11. Note that Proposition 3 states that the parameters are identifiable up to label-switching, but not rescaling of the
columns as stated in Theorem 4. The reason for this is that M is a column-wise stochastic matrix, so the restriction that the
columns sum to one eliminate the possibility of arbitrary rescalings. For instance, let D, be a diagonal matrix with positive
scalars and M, = MD;. The requirement that 17M; = 1] for a column-wise stochastic matrix implies that D, = I,..

Now we are able to complete the proof for Theorem 1. Given Assumption 1, by Proposition 3, M, M, and M3 are uniquely
identified. Next we need to show that parameters 7, A, and P; for all ¢ can also be identified, i.e., M; = M;, M, = My, and
M; = M; if and only if P, = P, for all £, A = A, and 7 = #. Notice that M, = M, implies P;D, = P,D,.. Pre-multiplying by 17
on both sides implies that 77 = 77 and then P; = P,. Given P; = Py, 1, Py = Pyyy follows. According to (1) of Proposition 2, we
have Cp, (;,77,kMs = Pryx (AT ). Given M3 = M and let k = 1 we get P, 1 AT = P.+1AT, then A = A holds. Now for all k > 1, we
have P, (AT)¥ = Pry, (AT)X, then rank(A) = r implies Pryy = Py for all k > 1. Similarly, applying (2) of Proposition 2 we
have Cg,[1, 1), kM1 = P,_;(A)*. Given M, =M, A = A, m=1, and rank(A) = r, then P,_y = P,_; follows for all 0 < k < ¢. Thus,
HMM parameters are all identified, this completes the proof.
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B. Proof of Theorem 2

We extend the notation for the Khatri-Rao product for two matrices to the case with an arbitrary collection of matrices.

Definition 14. The Khatri-Rao matrix product of #n matrices U; = (uj, .. .,u;) € R%*" for i € [n] is denoted by
n n n
@Ui:(®ui1,...,®ufr). (A18)
i=1 i=1 i=1

Remark 12. Note the product in Definition 14 produces a (]'[]?;1 q,v) X r matrix.

Example 10. Suppose there are m items, Y; € [g;] for i € [m], such that the responses are conditionally independent given Z.
The conditional probability for a particular response pattern Y1,..., Y, isP(Y1 =j1,..., Y =jim | Z=2) = [1, Piz,j,- Therefore,
the conditional independence assumption implies that the Khatri-Rao product can be used to form the q1q---qmm x r matrix
of response probabilities for Y1,...,Y,, as

m
Piwm = @ P (A19)
i=1

Lemma 5 (Allman et al., 2009, Lemma 13). Let U; e R%*’, g =[] g;, and U = @Ll U,. Then for generic U;’s, rankg (U) =
rank(U) = min(q,7).

Using Lemma 5, we can establish our Theorem for the generic identifiability of heterogeneous HMMs.

We first need to show that M, M, and M3 from Equation A17 generically satisfy Kruskal’s theorem. For generic choice of
A =1,, these M; and M; reduce to My = Py P, %+ * P,_;, M, = P,D,, and M3 = P,;1 % --- * P1. The P,’s are stochastic matrices
so we can express them as P; = U;D; where D is a diagonal matrix of non-zero scalars defined so that the columns sum to one.
Recall that both the rank and Kruskal rank are unaffected by multiplying columns by nonzero scalars, so we can apply Lemma
5 to a Khatri-Rao product of Py, ..., Pr. Therefore, by applying Lemma 5, we have rankx (M, ) = rankx (M) = rankg (M3) =r,
and then Theorem 4 generically holds. Thus by Theorem 4, from the joint distribution of the heterogeneous HMM for generic
A, M, M; and M; are uniquely determined up to permutations of hidden states.

By employing a similar proof technique as in Theorem 1, and transition matrix A is generically of rank r, we can then
unravel My, M, and M3 to identify the heterogeneous HMM parameters Py, ...,Pr, A, and 7.

C. Proof of Corollary 1

The proof follows by recalling Chen et al. (2020) showed that if A; and A;_y are of the form (D],AT)T with D € D, then
ranky (P;) = rankg (P;_x) = 2K, so the conditions in Assumption 1 are satisfied and Theorem 1 can be applied, which proves
the corollary.

D. Proof of Corollary 2

Chen et al. (2020, Theorem 1) establishes that the condition (1) ensures that the column-rank of P; and P;_ are generically
2K Also, A is generically full rank, so the conditions for Assumption 1 hold generically and Theorem 1 can be applied, which
completes the proof.

E. Proof of Theorem 3
The proof follows closely to the proof of Theorem 1 with an exception being the condition that rankk (P11) > 2. First, note that

P, = P, and rankg (P12) = r imply that rankK(B(l,T]) = r. Consequently,
rankg (P11Dy, ) + rankg (P12) + rankg (B(I’T]) >2(r+1), (A20)

so the M, M,, and M3 defined in Equation 10 are unique. The uniqueness of M; implies that P;; Dy, is uniquely determined.
Pre-multiplying P11 Dy, by 1 implies that ; is unique, so that Py, is also uniquely determined. The uniqueness of M, directly
implies Py, is identified. As described in the proof of Theorem 1, the uniqueness of P1, and M3 together imply that terms
making up B(;, 7] can be unraveled so that {P;}; and A are identified.
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F. Proof of Corollary 3

The proof follows by recalling Chen et al. (2020) showed thatif A;; = (D7, AT )T with D; e Dand Ay, satisfies Assumption (2b)
then rankk (P12) = 2K and rankg Py, > 2, respectively. The conditions of Theorem 3 are satisfied, which proves the corollary.

G. Proof of Corollary 4

Chen et al. (2020, Theorem 1) establishes that the condition (1) ensures that the column-rank of Py, is generically full rank
and Py; has a Kruskal rank of at least two. Also, A is generically full rank, so the conditions in Theorem 3 generically hold,
which completes the proof.

Cite this article: Liu, Y. and Culpepper, S. (2025). Designing Learning Intervention Studies: Identifiability of Heterogeneous
Hidden Markov Models. Psychometrika, 1258-1283. https://doi.org/10.1017/psy.2025.10024
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