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Large Irredundant Sets in Operator Algebras

Clayton Suguio Hida and Piotr Koszmider

Abstract. A subsetX of a C*-algebraA is called irredundant if no A ∈ X belongs to the C*-subalgebra
of A generated by X ∖ {A}. Separable C*-algebras cannot have uncountable irredundant sets and
all members of many classes of nonseparable C*-algebras, e.g., inûnite dimensional von Neumann
algebras have irredundant sets of cardinality continuum.

here exists a considerable literature showing that the question whether every AF commutative
nonseparable C*-algebra has an uncountable irredundant set is sensitive to additional set-theoretic
axioms, and we investigate here the noncommutative case.

Assuming♢ (an additional axiom stronger than the continuum hypothesis), we prove that there is
an AF C*-subalgebra ofB(ℓ2) of density 2ω = ω1 with no nonseparable commutative C*-subalgebra
and with no uncountable irredundant set. On the other hand we also prove that it is consistent that
every discrete collection of operators inB(ℓ2) of cardinality continuum contains an irredundant sub-
collection of cardinality continuum.

Other partial results and more open problems are presented.

1 Introduction

Deûnition 1.1 Let A be a C*-algebra. A subset X ⊆ A is called irredundant if and
only if for every A ∈ X, the C*-subalgebra ofA generated byX∖{A} does not contain
A. We deûne

irr(A) ∶= sup{∣X∣ ∶ X is an irredundant set in A}.

Recall that the density of a C*-algebraA, denoted d(A), is the least cardinality of a
norm dense subset ofA; i.e.,A is separable if and only if d(A) is countable. It is easy
to see that irr(A) ≤ d(A) for every C*-algebra, as irredundant sets must be norm
discrete. When A is an inûnite dimensional C*-algebra, irr(A) is inûnite, becauseA
then contains an inûnite dimensional abelian C*-subalgebra ([41]), and locally com-
pact inûnite Hausdorò spaces contain pairwise disjoint inûnite collections of open
sets that yield inûnite irredundant sets (Proposition 3.12). In this article, we are inter-
ested in uncountable irredundant sets in (C*-subalgebras of) the algebraB(ℓ2) of all
linear bounded operators on a separable Hilbert space.

Irredundant sets have been considered in the context of other structures. For ex-
ample, a subset of a Boolean algebra is called irredundant if none of its elements be-
long to the Boolean subalgebra generated by the remaining elements. We call such
sets Boolean irredundant (Deûnition 3.8). In Banach spaces irredundant sets, i.e.,
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where no element belongs to the closed subspace spanned by the remaining elements
correspond exactly to biorthogonal systems ([20], see [30] for some comparisons be-
tween this type of notions). Examples of Boolean irredundant sets include indepen-
dent families, ideal independent families, or (almost) disjoint families, but there are
Boolean algebras of uncountable irredundance with no uncountable families of the
above-mentioned classes (see Remark 3.7). A collection (xα , x∗α)α<κ ⊆ B × B∗ of a
Banach space B is biorthogonal if x∗α(xα) = 1 and x∗α(xβ) = 0 for all α < β < κ.
As linear functionals on a C*-algebraA are not usually multiplicative, there are many
more biorthogonal systems than irredundant sets inA, one can even consistently have
a commutative C*-algebra C(K) with countable irredundance but with uncountable
biorthogonal systems ([9]).
Among ourmainmotivations are consistent constructions of uncountable Boolean

algebras with no uncountable irredundant sets. hey were ûrst obtained by Rubin
([46]) under the assumption of ♢1 and then by Kunen ([40]) under the continuum
hypothesis CH (improved further by Todorcevic to a b = ω1 construction from [51,
2.4]). Also some versions of the classical Ostaszewski construction assuming♢ from
[43] have these properties as further constructions assuming♣ from [20] as well as
forcing constructions from [6, 9, 29].

Some of the above constructions are of Boolean algebras and others of (locally)
compact Hausdorò totally disconnected spaces. Using the Stone duality, one trans-
lates one language to the other easily. he fact that the Kunen or Ostaszewski types
of constructions mentioned above correspond to superatomic Boolean algebras or
equivalently their Stone spaces are scattered spaces (every subset has a relative isolated
point) yields the equality between the Boolean irredundance of the Boolean algebra
and the irredundance of the commutative C*-algebra of continuous functions (Corol-
lary 3.10). In particular, the corresponding C(K)s have no uncountable irredundant
sets. In fact, the scatteredness can be exploited further to prove that the Banach spaces
C(K) have no uncountable biorthogonal systems [20, 40].

he ûrst question we considered was whether such phenomena can take place if
the C*-algebra is made considerably noncommutative. One of our main results is the
following theorem.

heorem 1.2 Assume ♢. here is a fully noncommutative nonseparable scattered
C*-algebra (of operators in B(ℓ2)) with no nonseparable commutative subalgebra and
with no uncountable irredundant set.

Proof Apply heorems 2.12 and 6.2. ∎

Here scattered C*-algebras are the noncommutative analogues of the scattered lo-
cally compact spaces. he condition of being fully noncommutative means that these
algebras are “maximally noncommutative” among scattered algebras. hese notions
are reviewed in Section 2.1.

1♢ is an additional axiom (introduced by R. Jensen), which is true in the universe of constructible sets.
It says that there is a sequence (Sα)α<ω1 that “predicts” all subsets of ω1 in the sense that for any X ⊆ ω1
the set {α < ω1 ∶X ∩ α = Sα} meets every closed and unbounded subset of ω1 ; for details see [25] or [33].
Recently,♢ has been successfully applied in the context of nonseparable C*-algebras by Akemann, Farah,
Hirshberg, and Weaver [3, 4, 16]. We will not use the♢ axiom directly, but will apply its consequence
from heorem 2.12, which was developed by S. Todorcevic in [54].
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Another motivation for our project was the result of Todorcevic ([52, 53]) that as-
suming Martin’s axiom MA and the negation of the CH, every uncountable Boolean
algebra contains an uncountable irredundant set. Here the following main question
remains open.

Question 1.3 Is it consistent that every nonseparable (AF, scattered) C*-algebra
(of operators in B(ℓ2)) contains an uncountable irredundant set?

It should be added that even the commutative general case is open, since the re-
sult of Todorcevic provides uncountable irredundant sets in C(K)s only for Ks totally
disconnected, and there can be nonmetrizable compact spaces with no totally discon-
nected nonmetrizable compact subspace and similar examples (see [31]). So it is nat-
ural to initially restrict the attention in the noncommutative problem to C*-algebras
corresponding to totally disconnected spaces, namely to approximately ûnite dimen-
sional C*-algebras (AF), i.e., where there is a dense subset that is the union of a
directed family of ûnite dimensional C*-subalgebras (see [17] for diverse notions of
approximate ûnite-dimensionality in the nonseparable context). Another natural nar-
rowing of the question is to consider only the scattered C*-algebras, since one of the
conditions equivalent to being scattered for a C*-algebra of density ω1 is that each
of its C*-subalgebras is AF. Attempting to answer Question 1.3, we obtained several
results that shed some light on it. Let us discuss them below.

If A is AF C*-algebra of density equal to the ûrst uncountable cardinal ω1, then it
can be written as A = ⋃α<ω1 Aξ where Aξ ⊆ Aξ′ for all ξ < ξ′ < ω1 and each Aξ is
separable andAF. It follows from the result ofhiel in [48] (cf. [42,49]) that eachAξ is
singly generated by one element Aξ ∈ Aξ . Hence, in the set {Aξ ∶ ξ < ω1} irredundant
subsets are at most singletons. So there is no chance to extract (possibly using some
additional forcing axioms) an uncountable irredundant set from an arbitrary norm
discrete set of cardinality ω1 of operators in B(ℓ2).

he AF hypothesis nevertheless allows us to avoid sets of operators as above.
Namely, if A = ⋃D∈DAD , where all ADs are ûnite-dimensional and AD ⊆ AD′

whenever D ≤ D′ for D ∈ D and (D, ≤) is directed, then given any norm discrete
{Aξ ∶ ξ < ω1} ⊆ ⋃D∈DAD , which exists by the nonseparability of A, for every ûnite
F ⊆ ω1 the set

XF = {ξ < ω1 ∶Aξ ∈ AF}

is a ûnite superset of F, whereAF is the C*-subalgebra generated by {Aη ∶η ∈ F}. So,
the search for an uncountable irredundant set among {Aξ ∶ ξ < ω1} is equivalent to
the search for an uncountable X ⊆ ω1 such that XF ∩ X = F for every F ⊆ X.

However, this combinatorial problem for a general function from ûnite subsets of
ω1 to themselves has a negative solution.2 Nevertheless, passing to the second un-
countable cardinal ω2 allows for the following very general consistency result, which
is a consequence of heorem 3.20.

2It is enough to take XF to be of the form Y ∩ [(max F) + 1], where Y ∈ µ is of minimal rank that
contains F and where µ is an (ω, ω1)-cardinal as in [32]. his µ is originally due to Velleman ([55]). A
positive result for general functions is that given n ∈ N and a function ϕ from ûnite subsets of the n-
th uncountable cardinal ωn into countable subsets of ωn , there is an n-element set X ⊆ ωn such that
ξ /∈ ϕ(X ∖ {ξ}) for any ξ ∈ X. In particular, this gives that any norm discrete subset of cardinality ωn in
any C*-algebra has an irredundant subset of cardinality n.
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heorem 1.4 It is consistent that 2ω = ω2 and for every norm discrete collection of
operators (Aξ ∶ ξ < ω2) in B(ℓ2), there is a subset X ⊆ ω2 of cardinality ω2 such that
(Aξ ∶ ξ ∈ X) is irredundant.

his is not a mere consequence of B(ℓ2) having density ω2, because by a result
of Brech and Koszmider [8], it is consistent that there exists a commutative
C*-subalgebra of ℓ∞ of density 2ω = ω2 with no uncountable irredundant set. he
cardinal ω2 in heorem 1.4 can be replaced by any regular cardinal bigger than ω1,
but it is not known if the result of [8] can be generalized to bigger cardinals than ω2.
Combining heorems 1.4 and 1.2 and knowing that♢ implies CH, we obtain the fol-
lowing corollary.

Corollary 1.5 It is independent of ZFC whether there is a norm discrete collection of
operators (projections) (Aξ ∶ ξ < 2ω) in B(ℓ2) with no uncountable (of cardinality 2ω)
irredundant subcollection of size 2ω .

It is independent of ZFC whether there is C*-subalgebra ofB(ℓ2) of density 2ω with
no uncountable (of size 2ω) irredundant set.

he commutative results mentioned above are in fact most o�en of topological
nature, where the compactHausdorò space under the consideration is the Stone space
KA of a Boolean algebra A. For example, the reason the above-mentioned Boolean
algebras have countable irredundance is that the spread3 of KA × KA is countable, as
the ûnite powers of thementioned KAs are hereditarily separable. Namely, in general,
we have irr(A) ≤ s(KA × KA), which was ûrst noted in [23] and easily follows from
the characterization of irredundant sets in the commutative case (Lemma 3.4). Also,
the Urysohn Lemma gives the inequality s(K) ≤ irr(C(K)) for any locally compact
Hausdorò K. his argument cannot be transferred to the noncommutative setting,
since noncommutative versions of the Urysohn Lemma are not so general (for the
noncommutative Urysohn Lemma, see [2]). hat is, for constructing an irredundant
set of cardinality κ in a C*-algebra A it is enough to construct a sequence of states
(τα ∶α < κ) and a sequence of positive elements (Aα ∶α < κ) ofA such that τα(Aα) >
0 for all α < κ and τα(Aβ) = 0 for all distinct α, β < κ (Lemma 3.14); however,
a weak∗ discrete set of pure states does not produce the elements Aα as above due
to the lack of the Urysohn Lemma for nonorthogonal closed projections. In fact,
assuming the Proper Forcing Axiom, PFA, every nonseparable scattered C*-algebra
has an uncountable weak∗ discrete set of pure states (Corollary 3.17), but this does
not help us in the scattered case in constructing an uncountable irredundant set and
answering Question 1.3 in the positive.
A bolder approach toQuestion 1.3 would be to try to answer the following question

in the positive.

Question 1.6 Is it consistent (with MA and the negation of CH) that every nonsep-
arable scattered (or even AF) C*-algebra has a nonseparable commutative subalgebra
in one of its quotients?

3he spread of a topological space K, denoted by s(K), is the supremum of the cardinalities of discrete
subspaces of K.
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Note that the class of scattered C*-algebras is closed under quotients and subalge-
bras and every locally compact scattered Hausdorò space is totally disconnected, so
a positive answer to the question above and the MA result of Todorcevic mentioned
above would give a positive answer to Question 1.3 in the scattered case.

KnownZFC examples of nonseparable C*-algebras with no nonseparable commu-
tative subalgebras are the reduced group C*-algebra of an uncountable free group as
shown by Popa in [45] and the algebras of Akemann andDoner as shown in [7]. How-
ever, the former is not AF (and has an uncountable irredundant set corresponding to
the free generators of the group), and the latter has a nonseparable commutative quo-
tient c0(ω1) (which also has an obvious uncountable irredundant set). Perhaps the
algebra of [19] could provide a negative answer to Question 1.6.

he reason our algebra from heorem 1.2 does not contain a nonseparable com-
mutative C*-subalgebra is that, given any discrete sequence of projections in a certain
dense subalgebra, there are two of them that have maximal commutator equal to 1/2
(the fact that 1/2 is themaximal value is proved in [47]). However, in such an arbitrary
sequence there are also two projections that almost commute (seeheorem 6.2), so in
this sense our algebra is quite random; that is, no pattern repeats on any uncountable
norm discrete subset of elements. In fact, such behaviour is already sensitive to in-
ûnitary combinatorics beyond ZFC determined by♢ and the Open Coloring Axiom,
(OCA),4 namely, we have the following theorem.

heorem 1.7 Assume OCA. For every 0 < ε < 1/2 among any sequence of operators
(Aξ ∶ ξ < ω1) in B(ℓ2) there is an uncountable X ⊆ ω1 such that
● for every distinct ξ1 , ξ2 ∈ X we have [Aξ1 ,Aξ2] > 1/2 − ε, or
● for every ξ1 , ξ2 ∈ X we have [Aξ1 ,Aξ2] < ε.
However, assuming♢ there is a scattered C*-algebraA ⊆ B(ℓ2) (it is in particular AF)
such that for every 0 < ε < 1/2 among any discrete sequence of projections (Pξ ∶ ξ < ω1)

in A

● there are ξ1 < ξ2 < ω1 such that [Pξ1 , Pξ2] > 1/2 − ε,
● there are ξ1 < ξ2 < ω1 such that [Pξ1 , Pξ2] < ε.

Proof Apply Corollary 4.6 andheorem 6.2 ∎

Another natural question related to uncountable irredundant sets in general
C*-algebras is the following.

Question 1.8
(i) Is it true that d(A) ≤ 2irr(A) holds for every C*-algebra (every C*-algebra of

type I)?
(ii) Can there be arbitrarily large C*-algebras with no uncountable irredundant sets?

his is motivated by a Boolean result of McKenzie (see [28, 4.2.3]), which says
that a Boolean algebra has a dense subalgebra not bigger than its irredundance. his
result was generalized by Hida [24] to all commutative C*-algebras, which implies

4For the statement of OCA, see Deûnition 4.4.
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that d(A) ≤ 2irr(A) holds for commutative A. We prove this inequality answering
Question 1.8 for scattered C*-algebras in heorem 3.18.

In Section 2 we review scattered C*-algebras and construction schemes, which
provide an elegant framework to deal with some constructions using ♢ recently in-
troduced by Todorcevic in [54]. It has been applied in several functional analytic,
topological and combinatorial contexts in [36, 37, 54]. In Section 3 we prove basic
facts concerning irredundant sets in commutative and noncommutative settings. In
Section 4 we prove the OCA part ofheorem 1.7. Section 5 is devoted to deûning and
investigating the partial order of ûnite dimensional approximations to our algebra
from heorem 1.2. In the ûnal Section 6 we use the appropriate construction schemes
described in Section 2 to construct the algebra from heorem 1.2.

he notation and terminology of this paper should be standard; however, it draws
from diverse parts of mathematics like Boolean algebras, operator theory, set-theory,
logic, and general topology. When in doubt one could refer to textbooks like [14, 25,
28, 33, 39]. In particular, by an embedding (isomorphism onto its image) we mean
a ∗-monomorphism (∗-isomorphism) of C∗-algebras that is not necessarily unital;
ℓ2(X) denotes the Hilbert space of square summable complex functions deûned
on a set X; B(ℓ2(X)) denotes the C*-algebra of all bounded operators on ℓ2(X);
ℓ2 = ℓ2(N); ⟨ ⋅ , ⋅ ⟩ denotes the scalar product;A+ denotes the set of positive elements
of a C*-algebraA; 1A denotes the unit ofA and Ã the unitization ofA; BA∗ denotes
the dual ball of the algebra A; [A, B] = AB − BA for A, B ∈ B(ℓ2); Mn denotes the
C*-algebra of n × n matrices for n ∈ N; C(K) denotes the C*-algebra of complex
valued continuous functions on a compact K and C0(X) the C*-algebra of complex
valued continuous functions vanishing at inûnity on a locally compact X; χU denotes
the characteristic function of a set U ; Clop(K) denotes the family of clopen subsets
of a space K; ωn denotes the n-th uncountable cardinal for n ∈ N; [X]n denotes the
family of all n-element subsets of a set X; [X]<ω denotes the family of all ûnite subsets
of a set X; X < Y means that x < y for all x ∈ X and y ∈ Y where X ,Y are sets of
ordinals.

2 Preliminaries

2.1 Scattered C*-algebras

he reason that scattered C*-algebras play an important role in our investigation of
irredundant sets is that in such algebras irredundant sets can easily be replaced by ir-
redundant sets of projections (Proposition 3.3); in particular, the Boolean results pass
to the C*-algebraic ones (Corollary 3.10). Moreover, all commutative results culmi-
nate around the scattered case, which seems most basic.

Recall that a topological space is called scattered if it does not contain any perfect
subset, in other words, if each (closed) nonempty subset has a relative isolated point.
he phenomena related to the scatteredness were analysed by Cantor, which resulted
in the notion of the Cantor–Bendixson derivative of a topological space ([14]). he
Boolean algebramanifestation of these phenomenawas discovered byMostowski and
Tarski in [38] as what is today known as superatomic Boolean algebras. he impor-
tance of the class of Banach spaces of the form C(K), where K is scattered, already
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implicitly known in the thirties, was ûrst systematically revealed in [44]. Its gener-
alization, Asplund Banach spaces, started to play an important role in Banach space
theory in the sixties. It was Jensen [26] who ûrst deûned a scattered C∗-algebra, but
they were considered earlier by Tomiyama [50] and Wojtaszczyk [56]. A recent sur-
vey [18] underlines the links of scattered C*-algebras with its Boolean algebraic and
commutative predecessors. Recall that a projection p in a C*-algebra is called mini-
mal if and only if pAp = Cp; i.e., minimal projections generalize isolated points. he
∗-subalgebra ofA generated by theminimal projections ofAwill be denoted IAt(A).
We have the following observation from [18].

Proposition 2.1 Suppose that A is a C∗-algebra.
(i) IAt(A) is an ideal ofA.
(ii) IAt(A) is isomorphic to a subalgebra of the algebraK(H) of all compact opera-

tors on a Hilbert spaceH.
(iii) IAt(A) contains all ideals of A that are isomorphic to a subalgebra ofK(H) for

some Hilbert spaceH.
(iv) if an ideal I ⊆ A is essential and isomorphic to a subalgebra of K(H) for some

Hilbert spaceH, then I = IAt(A).

A selected list of conditions equivalent to being scattered and relevant to our paper
is given below. Any of these conditions can be taken as the deûnition of a scattered
algebra.

heorem 2.2 ([18,26,27,34,35,50,56]) Suppose thatA is a C∗-algebra. he following
conditions are equivalent:
(i) Every non-zero ∗-homomorphic image ofA has a minimal projection.
(ii) here is an ordinal ht(A) and a continuous increasing sequence of closed ideals

(IAtα (A))α≤ht(A) called the Cantor–Bendixson composition series forA such that
I0 = {0}, Iht(A) = A and

IAt(A/IAtα (A)) = {[a]IAtα (A) ∶a ∈ IAtα+1(A)},

for every α < ht(A).
(iii) Every non-zero subalgebra ofA has a minimal projection.
(iv) Every non-zero subalgebra has a projection.
(v) Every subalgebra ofA has real rank zero.
(vi) A does not contain a copy of the C∗-algebra

C0((0, 1]) = { f ∈ C((0, 1])∶ lim
x→0

f (x) = 0} .

(vii) he spectrum of every self-adjoint element is countable.

Deûnition 2.3 ([18]) A scattered C*-algebra is called thin-tall if and only if ht(A)

from heorem 2.2(ii) is equal ω1 and IAtα+1(A)/IAtα (A) is separable for each α < ω1.

In the nonseparable context we are especially interested in condition (ii), which
was introduced in [18] and gives an essential composition series corresponding to the
Cantor–Bendixson derivative. A scattered C*-algebra is called fully noncommutative
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if and only if for all α < ht(A) the algebra IAt(A/Iα) is ∗-isomorphic to the algebra
of all compact operators on a Hilbert space. We have the following two observations
from [18].

Proposition 2.4 Suppose that A is a scattered C∗-algebra. he following are equiva-
lent:
(i) A is fully noncommutative;
(ii) the ideals ofA form a chain;
(iii) the centers of the multiplier algebras of any quotient ofA are all trivial.

Proposition 2.5 Every scattered C∗-algebra A is atomic, i.e., the ideal IAt(A) is
essential.

Recall that in a topological space a sequence of points {xξ ∶ ξ < κ} is called right-
separated (resp. le�-separated) if and only if xξ /∈ {xη ∶η > ξ} for all ξ < κ (resp.
xξ /∈ {xη ∶η < ξ} for all ξ < κ). Le� and right separated sequences play an important
role in commutative set-theoretic topology, because a regular space is hereditarily
Lindelöf (resp. hereditarily separable) if it has no uncountable right-separated (resp.
le�-separated) sequences. Additional axioms like ♢, CH, MA, PFA5 have substan-
tial impact on the existence of right or le� separated sequences in regular topological
spaces, for example PFA implies that there are no regular S-spaces, i.e., every regu-
lar topological space which has an uncountable right-separated sequence has an un-
countable le�-separated sequence as well ([51, heorem 8.9]).

Proposition 2.6 Suppose that A is a thin-tall C*-algebra. hen the dual ball BA∗ of
A∗ contains an uncountable right-separated sequence of pure states in the weak∗ topol-
ogy. In particular, under the Proper Forcing Axiom (PFA), the dual ball BA∗ of A∗

contains an uncountable discrete set consisting of pure states.

Proof Let (Iα)α<ω1 be theCantor–Bendixson composition series ofheorem2.2(iii).
As Iα+1/Iα is an essential ideal ofA/Iα , which is ∗-isomorphic with the algebra of all
compact operators on ℓ2, we can embed A/Iα into B(ℓ2) with the range containing
all compact operators. Take τα to be a vector pure state onB(ℓ2) composed with the
quotient map and the embedding. So τα is a pure state on A that is zero on Iα , and
there is Aα ∈ Iα+1 such that τα(Aα) = 1. Denote the set of all pure states on A by
P(A). Now consider

Uα = {τ ∈ P(A)∶τ(Aα) > 0}.

Note that if τβ ∈ Uα , then β ≤ α, so {τα ∶α < ω1} is right-separated in the weak∗
topology. So {τα ∶α < ω1} contains and uncountable le�-separated sequence by PFA
([51, heorem 8.9 ]). It is clear that a sequence that is both le� and right separated is
discrete. ∎

5For the statement of the Proper Forcing Axiom (PFA) or Martin’s Axiom (MA), we refer the reader
to, for example, [25] or [51]. PFA implies among others MA, OCA, and 2ω = ω2 .
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2.2 Construction Schemes

In this section, we recall some deûnitions and results from [54].

Deûnition 2.7 Let E , F ∈ [ω1]
<ω .

(i) F < E whenever α < β for all α ∈ F and β ∈ E.
(ii) F ⊑ E whenever there is α ∈ ω1 such that E ∩ α = F (we say that F is an initial

fragment of E or that E end-extends F).
(iii) F ⊏ E whenever F ⊑ E and E ∖ F /= ∅.

Deûnition 2.8 Let η be an ordinal and let (Fξ ∶ ξ < η) = F ⊆ [ω1]
<ω .

(i) F is coûnal if for all E ∈ [ω1]
<ω there is F ∈ F such that E ⊆ F.

(ii) (Fξ ∶ ξ < η) is a ∆-system of length η with root ∆ whenever Fξ ∩ Fξ′ = ∆ for all
ξ < ξ′ < η,

(iii) A ∆-system (Fξ ∶ ξ < η) with root ∆ is increasing whenever Fξ ∖∆ < Fξ′ ∖∆ for
all ξ < ξ′ < η.

(iv) A subset of a ∆-system is called a subsystem.
(v) F∣F = {E ∈ F ∶E ⊊ F} for F ⊆ ω1.

Deûnition 2.9 A pair of sequences (nk)k∈N ⊆ N and (rk)k∈N ⊆ N are called allowed
parameters if and only if
(i) r0 = r1 = n0 = 0;
(ii) nk ≥ 2 for all k ∈ N;
(iii) each natural value appears in the sequence (rk)k∈N ⊆ N inûnitely many times;
(iv) rk+1 < mk where m0 = 1, mk+1 = rk+1 + nk+1(mk − rk+1) for k > 0.

Deûnition 2.10 Aconstruction schemewith a pair of allowed parameters (nk)k∈N ⊆

N and (rk)k∈N ⊆ N is a coûnal family F = ⋃n∈N Fn satisfying the following:
(i) F0 = [ω1]

1.
(ii) If k > 0 and E , F ∈ Fk , then ∣E∣ = ∣F∣ and E ∩ F ⊑ E , F and

{ϕF ,E[G] ∶G ∈ F∣E} = F∣F ,

where ϕF ,E ∶ E → F is the order preserving bijection between E and F.
(iii) If k ≥ 0 and F ∈ Fk+1, then the maximal elements of F∣F are in Fk and they

form an increasing ∆-system of length nk+1 such that F is its union. he family
of all these maximal elements is called the canonical decomposition of F.

Deûnition 2.11 Given a construction scheme F, we say that an F ∈ Fk for k > 0
captures a ∆-system (s i ∶ i < n) of ûnite subsets of ω1 with root s if the canonical
decomposition (Fi ∶ i < nk) of F with root ∆ has the following properties:
(i) nk ≥ n, s ⊆ ∆, and s i ∖ s ⊆ Fi ∖ ∆ for all i < n.
(ii) ϕFi ,F j[s i] = s j for all i < j < n.
When n = nk , we say that F fully captures the ∆-system.

heorem 2.12 ([54]) Assume ♢. For any pair of allowed parameters (nk)k∈N and
(rk)k∈N, there is a construction scheme F with these parameters and there is a partition
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(Pn)n∈N of N into inûnitely many inûnite sets such that for every n ∈ N and every
uncountable ∆-system T of ûnite subsets of ω1 there exist arbitrarily large k ∈ Pn and
F ∈ Fk+1 that fully captures a subsystem of T.

3 Irredundant Sets

3.1 Reducing Irredundant Sets to Special Ones

Because of theWeierstrass–Stone theorem for unital commutative C*-algebras, some-
times it is useful to consider a strengthening of being irredundant, where the subal-
gebras we generate are unital. However, as can be seen in the following lemma, this
does not aòect the cardinalities of irredundant sets much.

Lemma 3.1 Suppose that A is a unital C*-algebra and that X ⊆ A is its nonempty
irredundant set. hen there is x0 ∈ X such that no element x of X ∖ {x0} belongs to the
unital C*-subalgebra generated by X ∖ {x0 , x}.

Proof If no element x ofX belongs to the unital C*-subalgebra generated byX∖{x},
we are done by taking any element of X as x0.

Otherwise let x0 ∈ X belong to the unital C*-subalgebra generated by X ∖ {x0} so
x0 = λ1+ywhere y is in the subalgebra generated byX∖{x0} and λ ∈ C∖{0}. Suppose
that there is x ∈ X ∖ {x0} in the unital C*-subalgebra generated by X ∖ {x0 , x}, i.e.,
x = λ′1 + z where z is in the subalgebra generated by X ∖ {x0 , x} and λ′ ∈ C ∖ {0}.
So 1 is in the algebra generated by X ∖ {x0}, but this shows that x0 = λ1 + y is in the
subalgebra generated byX∖{x0}, a contradiction to the fact thatX is irredundant. ∎

Clearly any two orthogonal one-dimensional projections in M2 form an irredun-
dant set; however, each of them is in the unital C*-algebra generated by the other
projection.

Proposition 3.2 Suppose thatA is aC*-algebra, κ is an inûnite cardinal and {Aξ ∶ ξ < κ}
is an irredundant set in A. hen there is an irredundant set {Bξ ∶ ξ < κ} consisting of
positive elements ofA.

Proof Given X ⊆ κ, let AX be the C*-subalgebra of A generated by {Aξ ∶ ξ ∈ X}.
Clearly, (Aη + A∗η)/2, (Aη − A∗η)/2i ∈ Aκ∖{ξ} for every η /= ξ and (Aξ + A∗ξ)/2 and
(Aξ − A∗ξ)/2i cannot both belong to Aκ∖{ξ}. So {Bξ ∶ ξ < κ} is an irredundant set
consisting of self-adjoint elements, where Bξ ∈ {(Aξ + A∗ξ)/2, (Aξ − A∗ξ)/2i} is such
that Bξ /∈ Aκ∖{ξ}.

To prove that we can obtain the same cardinality irredundant set consisting of all
positive elements, by the above we can assume that the original Aξs are self-adjoint.
We have Aξ = Aξ+ − Aξ−. Note that there is Bξ ∈ {Aξ+ ,Aξ−}, which does not belong
to Aκ∖{ξ}. But

Aη+ = (∣Aη ∣ + Aη)/2 and Aη− = (Aη − ∣Aη ∣)/2,

where ∣Aη ∣ =
√
A2
η , belong toAξ for all η ∈ κ ∖ {ξ}. So {Bξ ∶ ξ < κ} is irredundant, as

required. ∎
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he following proposition shows the role of being scattered while extracting irre-
dundant sets consisting of projections.

Proposition 3.3 Suppose that A is a scattered C*-algebra, κ is an inûnite cardinal,
and {Aξ ∶ ξ < κ} is an irredundant set inA. hen there is an irredundant set {Pξ ∶ ξ < κ}
consisting of projections.

Proof By Lemma 3.2 we can assume that Aξs are self-adjoint. Let us adopt the no-
tation AX for X ⊆ κ from the proof of Lemma 3.2.

Since subalgebras of scattered algebras are scattered, A{ξ}s are scattered for each
ξ < κ and so of the form C0(K{ξ}) for some locally compact scattered K{ξ} that must
be totally disconnected. It follows that linear combinations of projections ofA{ξ}s are
norm dense in A{ξ}s. Hence, for each ξ < κ, there is a projection Pξ ∈ A{ξ} such that
Pξ /∈ Aκ∖{ξ}. It follows that {Pξ ∶ ξ < κ} is irredundant. ∎

3.2 Irredundant Sets in Commutative C*-algebras

he following two lemmas characterize irredundant sets in commutative C*-algebras.

Lemma 3.4 Suppose that K is a compact Hausdorò space andX ⊆ C(K) is such that
no f ∈ X belongs to the unital C*-subalgebra of C(K) generated by X ∖ { f }. hen for
each f ∈ X, there are x f , y f ∈ K such that f (x f ) /= f (y f ) but g(x f ) = g(y f ) for any
g ∈ X ∖ { f }.
Consequently, if X is a nonempty irredundant set in C(K), then there is h ∈ X such

that X ∖ {h} has the above property.

Proof By the Gelfand representation we can assume that C(K) is the unital
C*-algebra generated by X. By the complex Stone–Weierstrass theorem the proper
C*-subalgebra generated byX∖{ f } does not separate a pair of points of K, say x f , y f .
But they must be separated by f , by the fact that X generated C(K).

he last part of the lemma follows from Lemma 3.1. ∎

Lemma 3.5 Suppose that X is a locally compact noncompact Hausdorò space and
X ⊆ C0(X) is irredundant then for every f ∈ X there are x f , y f ∈ X such that either

● f (x f ) /= 0 and g(x f ) = 0 for all g ∈ X ∖ { f } or
● f (x f ) /= f (y f ) but g(x f ) = g(y f ) for all g ∈ X ∖ { f }.

Points x f satisfying the ûrst case form a discrete subspace of X.

Proof Let K = X ∪ {∞} be the one-point compactiûcation of X. We will iden-
tify C0(K) with a C*-subalgebra of C(K). Note that X satisûes the hypothesis of
Lemma 3.4, because if f = λ1+ g for f , g ∈ C0(X), the unit would be in C0(X), which
contradicts the hypothesis that X is noncompact. So we obtain the pairs of points
x f , y f ∈ K as in Lemma 3.4. he ûrst case of the lemma corresponds to the situation
when one of the points x f , y f is ∞, say y f . But then h(y f ) = 0 for all h ∈ C0(X),
which implies f (x f ) /= 0 and g(x f ) = 0 for all g ∈ X ∖ { f }.
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Considering open sets U f = {x ∈ X0 ∶ f (x) /= 0}, we obtain neighbourhoods wit-
nessing the discretness of the set of x f s satisfying the ûrst case. ∎

In fact, as can be seen in the following remark, discrete subsets of K provide strong
irredundant subsets in C(K).

Remark 3.6 Suppose that K is a compact Hausdorò space and D ⊆ K is discrete.
For each d ∈ D, consider fd ∈ C(K) such that fd(d) /= 0 and fd(d′) = 0 for all
d′ ∈ D ∖ {d}. hen fd does not belong to the ideal generated by { fd′ ∶d′ ∈ D ∖ {d}}.
In particular, { fd ∶d ∈ D} is irredundant.

However, we note in the next remark that there could be a dramatic gap between
the sizes of discrete subsets and the sizes of irredundant sets.

Remark 3.7 Let K be the split interval, i.e., {0, 1}N ×{0, 1} with the order topology
induced by the lexicographical order. hen K has no uncountable discrete subset (in
fact, K is hereditarily separable and hereditarily Lindelöf), but C(K) has an irredun-
dant set {χ[0N⌢0,x⌢0] ∶x ∈ {0, 1}N} of cardinality continuum.

Most of the literature concerning implicitly or explicitly irredundant sets is re-
lated to Boolean algebras. As shown in the following lemma, the relationship between
Boolean irredundance and irredundance for C*-algebras is very close in the light of
Lemma 3.1.

Deûnition 3.8 A subset X of a Boolean algebra A is called Boolean irredundant if
for every x ∈ X the element x does not belong to the Boolean subalgebra generated
by X ∖ {x}.

Lemma 3.9 Suppose thatA is a unital C*-algebra andB ⊆ A is a Boolean algebra of
projections in A and X ⊆ B is Boolean irredundant. hen X is irredundant in A.

Suppose that K is a totally disconnected space and X ⊆ C(K) consists of projections
where no element of x ∈ X belongs to the unital C*-algebra generated by X∖ {x}. hen
X is Boolean irredundant in the Boolean algebra {χU ∶U ∈ Clop(K)}.

Proof Let C be the C*-subalgebra of A generated by B. It is abelian, so it is of the
formC(K)whereK is the Stone space ofB. It is enough to prove thatX is irredundant
in C. But given a proper Boolean subalgebra, there are distinct ultraûlters on the
superalgebra that coincide on the subalgebra. hese ultraûlters are the points of K
witnessing the irredundance of F as in Lemma 3.15. ∎

For commutative scattered C*-algebras the relationship between Boolean and
C*-algebraic irredundance is even closer, as can be seen in the following corollary.

Corollary 3.10 Suppose that A is an inûnite superatomic Boolean algebra. hen the
Boolean irredundance of A is the same as irr(C(KA)), where KA is the Stone space
ofA.

Proof AsA is inûnite, its Boolean irredundance is inûnite (just take an inûnite pair-
wise disjoint collection). By the ûrst part of Lemma 3.9, the Boolean irredundance of

Large Irredundant Sets in Operator Algebras 999

https://doi.org/10.4153/S0008414X19000142 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000142


A is not bigger than irr(C(KA)). On the other hand consider any inûnite irredun-
dant subset X of C(KA). hen KA is scattered as A is superatomic, and so C(KA) is
a scattered C*-algebra. By Proposition 3.3, there is an irredundant subset Y of C(KA)

of the same cardinality as X and consisting of projections in C(KA). By removing
at most one element of Y, by the second part of Lemma 3.9 and Lemma 3.1, it is a
Boolean irredundant set in the Boolean algebra {χU ∶U ∈ Clop(KA)}, and this yields
a Boolean irredundant set in A. ∎

he above positively answers [12, Question 3.10 (3)] in the case of a scattered space.

Corollary 3.11 Suppose that K is an inûnite Hausdorò compact space. hen
irr#(CR(K)) = irr(C(K)) where irr#(CR(K)) is the supremum over the cardinali-
ties of sets X of real-valued continuous functions on K such that no f ∈ X belongs to
the real unital Banach algebra generated byX∖{ f }. In particular, the π-weight of K is
bounded by irr(C(K)) and the density of C(K) is bounded by 2irr(C(K)).

Proof Let X ⊆ C(K) be an inûnite irredundant set. By Lemma 3.2, we can assume
that it consists of real-valued (non-negative) functions. As in the proof of Lemma 3.1,
by removing at most one element, we can assume that no f ∈ X belongs to the real
unital C*-algebra generated by X ∖ { f }. So irr#(CR(K)) ≥ irr(C(K)).

Now, given a set X as in the lemma, by the real unital Weierstrass–Stone theorem
there are pairs of points x f , y f ∈ K such that f (x f ) /= f (y f ) but g(x f ) = g(y f ) for
any g ∈ X ∖ { f } (cf. [30]). Hence, X is an irredundant set in the C*-algebra C(K) by
Lemma 3.4.

he last part of the corollary follows from [24, heorem 10] where π(K) ≤

irr#(CR(K)) is proved and from the fact that the weight of a regular space is bounded
by the exponent of its π-weight ([21, heorem 3.3]). ∎

3.3 Irredundant Sets in General C*-algebras

Having developed the motivations in the previous section, we now move to the irre-
dundant sets in general, possibly noncommutative C*-algebras.

Proposition 3.12 Every inûnite pairwise orthogonal collection of self-adjoint elements
in a C*-algebra is irredundant. In particular, every inûnite dimensional C*-algebra con-
tains an inûnite irredundant set.

Proof his follows from the fact that given a self-adjoint element A of a C*-algebra
A, the set {B ∈ A ∶AB = BA = 0} is a C*-subalgebra ofA. ∎

Proposition 3.13 Suppose that an inûnite dimensional C*-algebra A is a von Neu-
mann algebra. hen A has an irredundant set of cardinality continuum.

Proof An inûnite dimensional von Neumann algebra has an inûnite pairwise or-
thogonal collection of projections, and so it contains the commutative C*-algebra ℓ∞
that is ∗-isomorphic to C(βN). he Boolean algebra ℘(N) is isomorphic to {χU ∶U ∈

Clop(βN)}, and so the Boolean irredundance of ℘(N) is equal to the irredundance
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of ℓ∞ by Lemma 3.10. By considering an almost disjoint family (or an independent
family) of cardinality continuum of subsets ofN, we obtain an irredundant set of car-
dinality continuum. ∎

he following lemma corresponds to Remark 3.6.

Lemma 3.14 Suppose that A is a C*-algebra, κ a cardinal {Aξ ∶ ξ < κ} ⊆ A+ and
{τα ∶α < κ} a family of states such that
● τα(Aα) > 0,
● τα(Aξ) = 0 for ξ /= α.
hen {Aξ ∶ ξ < κ} is irredundant.

Proof As in the GNS construction, one proves that
Lα = {A ∈ A ∶τα(A∗A) = 0}

is a le�-ideal inA, and, in particular, a C*-subalgebra. So Xξ ∈ Lα , where Aξ = X∗
ξ Xξ

and so Aξ ∈ Lα for all ξ /= α. However, by [39, heorem 3.3.2.] we have
0 < τα(Aα) ≤ ∥τα∥τα(A∗αAα),

so Aα /∈ Lα . ∎

In the noncommutative case, for pure states {τα ∶α < κ}, being discrete in the
weak* topology does not yield in general the existence of positive elements Aα as in
the lemma above, as the noncommutative Urysohn lemmas require extra hypothe-
ses ([2]).

he following proposition is a version of the commutative characterizations in
Lemmas 3.4 and 3.5. It is interesting to note that a version of the following propo-
sition where “representations” are replaced by “irreducible representations” implies
the noncommutative Stone–Weierstrass theorem, which remains a well-known open
problem. One should note that below, one of the possibilities of the representation is
to be constantly zero.

Proposition 3.15 ([22]) Suppose thatA is a C*-algebra andX ⊆ A is an irredundant
set. hen for all a ∈ X, there are Hilbert spaces Ha and representations π1

a , π2
a ∶A →

B(Ha) such that π1
a(a) /= π2

a(a), but

X ∖ {a} ⊆ {b ∈ A ∶π1
a(b) = π2

a(b)}.

3.4 Irredundance in Scattered C*-algebras

he following proposition shows that thin-tall algebras play a special role in the con-
text of uncountable irredundant sets.

Proposition 3.16 If there is a nonseparable scattered C*-algebra with no uncountable
irredundant set, then it contains a thin-tall scattered C*-algebra.

Proof First note that by the characterization of subalgebras of the algebra of compact
operators ([5]), a C*-algebra that is isomorphic to a subalgebra of the algebra of all
compact operators on a Hilbert space H but not isomorphic to a subalgebra of the
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algebra of all compact operators on the separable Hilbert space H must contain an
uncountable pairwise orthogonal set that is irredundant by Proposition 3.12. So if a
scattered A has no uncountable irredundant set, then all the algebras IAt(A/Iα) are
∗-isomorphic to a subalgebra of the algebra of all compact operators on the separable
or ûnite dimensional Hilbert space, but as A is nonseparable, ht(A) ≥ ω1, and so Iω1

is the required thin-tall subalgebra ofA. ∎

Corollary 3.17 Assume PFA. Suppose thatA is a nonseparable scattered C*-algebra.
hen there is an uncountable weak∗ discrete set of pure states ofA.

Proof First suppose that A has a quotient that contains an uncountable orthogonal
set of projections. hen it is clear that we can ûnd pure states that form a weak∗
discrete set. Otherwise, using the argument as in the proof of Proposition 3.16, we can
assume that A is thin-tall. By Proposition 2.6, A has an uncountable weak∗ discrete
set of pure states. ∎

Below we prove a simple noncommutative version of a theorem of McKenzie (see
[28, 4.2.3]).

heorem 3.18 IfA is a scattered C*-algebra, then d(A) ≤ 2irr(A) .

Proof Let κ be the minimal cardinal such that IAt(A) is a subalgebra of the alge-
bra of all compact operators on ℓ2(κ). By the characterization of subalgebras of the
algebra of compact operators ([5]) A must contain pairwise orthogonal set of cardi-
nality κ, which is irredundant by Proposition 3.12. So κ ≤ irr(A). By the essentiality
of IAt(A) which follows from Proposition 2.5 we can embed A into B(ℓ2(κ)), so
d(A) ≤ 2κ ≤ 2irr(A) as required. ∎

3.5 Extracting Irredundant Sets from a Given Collection of Operators

Proposition 3.19 here is a collection of operators (Aξ ∶ ξ < ω1) in B(ℓ2) that gen-
erates a nonseparable C*-subalgebra ofB(ℓ2) with no two-element irredundant subset.
Any fully noncommutative thin-tall C*-algebra is generated by such a sequence.

Proof Construct a fully noncommutative thin-tall C*-algebraA as in [18, heorem
7.6], in particular with the Cantor–Bendixson decomposition (IAtα (A))α<ω1 (see 2.2
(2)), where IAtα+1(A) is ∗-isomorphic to ĨAtα (A) ⊗K(ℓ2).
By [42, heorem 8], any C*-algebra of the form B ⊕K(ℓ2) is singly generated if

B is separable and unital. So for each α < ω1, pick Aα to be a single generator of
IAtα+1(A).
An alternative approach that gives the ûnal statement of the proposition is to use

the fact that scattered C*-algebras are locally ûnite dimensional (see [17] for more on
these notions in the nonseparable context) in the sense that each of its ûnite subsets
can be approximated from a ûnite dimensional C*-subalgebra ([34,35]). So IAtα (A) is
locally ûnite dimensional and separable for each α < ω and so AF. hus the result of
[48] implies that IAtα (A) is singly generated for each α < ω1. So pick Aα+1 as before.
his completes the proof of the theorem. ∎
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Using the free set lemmas as in [13], one can prove that given a discrete set of
operators (Aα)α<ωn for n ∈ N, there is an n-element irredundant set. However, there
is the following much stronger consistent extraction principle.

heorem 3.20 It is relatively consistent that whenever (Aξ ∶ ξ < 2ω) is a collection of
operators inB(ℓ2) that generates a C*-algebra of density continuum, then there is a set
I ⊆ 2ω of cardinality continuum such that (Aξ ∶ ξ ∈ I) is irredundant.

Proof To obtain the relative consistency, wewill use themethod of forcing (see [33]).
We start with the ground model V satisfying the generalized continuum hypothesis
(GCH), and we will consider the generic extension V[G] where G is a generic set in
the forcing P = Fn(ω2 , 2) for adding ω2 Cohen reals (see [33, Chapter VIII §2]).
Fix a ground model orthonormal basis (en ∶ n ∈ N) for ℓ2 in V . In V[G] let

(Aξ ∶ ξ < 2ω) be as in the theorem. By passing to a subset of cardinality 2ω = ω2 and
using the hypothesis that (Aξ ∶ ξ < 2ω) is a collection of operators inB(ℓ2) that gener-
ates a C*-algebra of density continuum, wemay assume that Aξ does not belong to the
C*-algebra generated by the operators (Aη ∶η < ξ) for each ξ < ω1. Moreover, by pass-
ing to a subsequence, we can assume that there is a rational ε > 0 such that ∥A−Aξ∥ > ε
for every A in the C*-algebra generated by the operators (Aη ∶η < ξ) for each ξ < ω1.
Each Aξ can be identiûed with an N × N complex valued matrix

(⟨Aξ(en), em⟩)m ,n∈N. Let Ȧξ be P-names in V for these matrices. Using the
standard argument of nice names, the countable chain condition for P and passing
to a subsequence using the ∆-system lemma for countable sets that follows from
the GCH, we can assume that there are permutations σξ ,η ∶ω2 → ω2 that li� to the
automorphisms of P and the permutations σ ′ξ ,η of P names such that

σ ′ξ ,η(Ȧη) = Ȧξ ,

and for every ξ, η ∈ ω2, we have that
P ⊩ ϕ(ẋ1 , . . . , ẋk) if and only if P ⊩ ϕ(σ ′ξ ,η(ẋ1), . . . , σ ′ξ ,η(ẋk))

for any formula ϕ in k ∈ N free variables and any sequence ẋ1 , . . . , ẋk of P-names
for k ∈ N ([33, 7.13]). Using this for the formulas that say that the distance of Aξ
from any element of the C*-algebra generated by the operators (Aη ∶η ∈ F) for
any ûnite F ⊆ ξ is bigger than ε, we conclude that P forces that no Ȧξ belongs the
C*-algebra generated by any countable collection from {Ȧη ∶η /= ξ} (by considering
a permutation of ω2 that moves ξ above the countable set). his means that P forces
that no Ȧξ belongs the C*-algebra generated by the remaining operators {Ȧη ∶η /= ξ},
i.e., that the collection is irredundant as required. ∎

he above is a version of applying a standard argument as in [52] in the context of
Boolean irredundance.

4 Commutators Under OCA

hemain consistent construction of this paper presented in the following sections has
a strong randomness property. In this section, we show that this randomness does not
take place for any uncountable collection of operators inB(ℓ2) under the assumption
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of Open Coloring Axiom (OCA). We will follow the approach to the strong operator
topology from the book [11] of Davidson. hus, we have the following deûnition.

Deûnition 4.1 Let H be a Hilbert space. he strong operator topology (SOT) on
B(H) is deûned as the weakest topology such that the sets

S(a, x) ∶= {b ∈ B(H)∶∥(b − a)(x)∥ < 1}
are open for each a ∈ B(H) and x ∈ H. We denote by (B(H), τsot) and (B(H)1 , τsot),
respectively the spaceB(H) and the unit ball ofB(H)with the strong operator topol-
ogy.

Proposition 4.2 If H is a separable Hilbert space, then (B(H)1 , τsot) is metrizable
and separable in the strong operator topology.

Proof For metrizability, see [11, Proposition I.6.3.]. For the separability ûx some
orthonormal basis (en)n∈N and consider ûnite rank operators in the linear span of
one dimensional operators of the form v ⊗w where v ,w have ûnitely many nonzero
rational coordinates with respect to (en)n∈N. It is clear that such operators are SOT
dense in B(l2)1, as required. ∎

By the remarks on [11, pp. 16–17], we have the following lemma.

Lemma 4.3 he multiplication on B(H)1 is jointly continuous in the SOT topology
and so every polynomial 6 is SOT continuous on B(H)1.

We will follow the approach to the Open Coloring Axiom (OCA) from [15, p. 55].
Its weaker version was discovered by Abraham, Rubin, and Shelah [1], and the ûnal
form was introduced by Todorcevic [51]. It is consistent with ZFC. In fact, it is a
consequence of the Proper Forcing Axiom (PFA); see [51, heorem 8]. Recall that

[X]
2
= {{x , y} ⊆ X ∶x /= y}.

It is well known that the original form of OCA from [51] for subsets of the reals is
equivalent to the version for separable metric spaces as in [15].

Deûnition 4.4 (Todorcevic [51]) OCA denotes the following statement:
If X is a separable metric Hausdorò space and [X]2 = K0 ∪ K1 is a partition with
K0 open7, then either there is an uncountable Y ⊆ X such that [Y]2 ⊆ K0, or else
X = ⋃n∈N Xn where [Xn]

2 ⊆ K1 for each n ∈ N.

heorem 4.5 (OCA) Let (Aα)α<ω1 be an uncountable family inB(l2) and let P(x , y)
be a polynomial satisfying ∥P(A, B)∥ = ∥P(B,A)∥ for all A, B ∈ B(l2). hen given
ε > 0, either there is an uncountable Γ0 ⊂ ω1 such that ∥P(Aα ,Aβ)∥ ≤ ε for every
distinct α, β ∈ Γ0 or else there is an uncountable Γ1 ⊂ ω1 such that ∥P(Aα ,Aβ)∥ > ε for
every distinct α, β ∈ Γ1.

6By a polynomial P(x , y), we mean a expression in the form P(x , y) = ∑i a ix i + ∑i b i y i +
∑i , j c i , jx i y j +∑i , j d i , j y ix j + e0 .

7We call K0 ⊆ [X]2 open if the symmetric set {(x , y) ∈ X × X ∶ {x , y} ∈ K0} is open in (K × K) ∖ ∆
in the product topology, where ∆ denotes the diagonal of X × X.
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Proof By passing to an uncountable subset, we can assume that there is M > 0 such
that ∥Aα∥ ≤ M for all α < ω1. Let X = {Aα ∶α < ω1} ⊆ MB(ℓ2)1 and note that
MB(ℓ2)1 is metric and separable by Proposition 4.2. Deûne

K0 = {{A, B} ∈ [X]
2
∶ ∥P(A, B)∥ > ε}

and K1 = [X]2 ∖ K0.
First note that the separability is hereditary for metric spaces, so X is metric sepa-

rable as a subspace of (MB(l2)1 , τsot).
Now note that K0 is open. Indeed if ∥P(A, B)∥ > ε, then there is x ∈ ℓ2 of norm

one and δ > 0 such that ∥P(A, B)(x)∥ > ε + δ. Now if P(A′ , B′) ∈ S(P(A, B), x/δ),
we have ∥P(A′ , B′)(x)−P(A, B)(x)∥ < δ and so ∥P(A′ , B′)∥ > ε. Hence, {{A′ , B′} ∈
[X]2 ∶P(A′ , B′) ∈ S(P(A, B), x/δ)} ⊆ K0. But (A, B) ∈ P−1[S(P(A, B), x/δ)] is open
in X × X with the product SOT topology, by the continuity of P (Lemma 4.3).

So we are in the position of applying the OCA. From Deûnition 4.4 we obtain the
required uncountable set Γ0 or Γ1. ∎

Corollary 4.6 (OCA) Let (Aα)α<ω1 be an uncountable family in B(l2). hen given
ε > 0, either there is an uncountable Γ0 ⊂ ω1 such that ∥[Aα ,Aβ]∥ ≤ ε for every α, β ∈ Γ0
or else there is an uncountable Γ1 ⊂ ω1 such that ∥[Aα ,Aβ]∥ > ε for every α, β ∈ Γ1.

Proof Consider P(x , y) = xy − yx and apply heorem 4.5. ∎

Remark 4.7 Let us remark on two trivial versions of the above results. First, let
(An)n∈N be an inûnite family in B(l2). hen given ε > 0, either there is an inûnite
Γ0 ⊂ N such that ∥[An ,Am]∥ ≤ ε for every n,m ∈ Γ0 or else there is an inûnite Γ1 ⊂ N
such that ∥[An ,Am]∥ > ε for every n,m ∈ Γ1. his follows from the Ramsey theorem
whose consistent generalization is the OCA.

Secondly, note that if (Aα)α<ω1 is an uncountable family in a separable
C*-subalgebra of B(ℓ2), then by its second countability in the norm topology, it fol-
lows that for every δ > 0, there is an uncountable Γ0 ⊆ ω1 such that ∥Aα −Aβ∥ < δ for
every α, β ∈ Γ0, and so given any polynomial P satisfying P(x , x) = 0 and ε > 0, by
the norm continuity of P there is an uncountable Γ0 ⊆ ω1 such that ∥P(Aα , Pβ)∥ < ε
for every α, β ∈ Γ0.

In fact, in the nontrivial cases of heorem 4.5 and Corollary 4.6 when (Aα)α<ω1

generates a nonseparableC*-subalgebra ofB(ℓ2), we can assume that (Aα)α<ω1 forms
a norm discrete set.

5 The Partial Order of Finite Dimensional Approximations

5.1 Notation

he C*-algebras that we consider in the rest of this paper are subalgebras of
B(ℓ2(ω1 ×N)). In fact, the subspaces ℓ2({ξ} × N) of ℓ2(ω1 × N), which we call
columns, will be invariant for all our algebras, so our algebras could be identiûed
with subalgebras of Πξ<ω1B(ℓ2({ξ} ×N)). Also, the map

πα ∶Πα≤ξ<ω1B( ℓ2({ξ} ×N)) Ð→ B( ℓ2({α} ×N)) ,
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applied to the appropriate quotients, will be faithful (see Lemma 5.24(iii)). hus, the
purpose of this presentation of the algebras is related to the transparent structure of
the Cantor–Bendixson composition series (see Proposition 5.25(iii)).
For X ⊆ ω1 ×N, we introduce the following notation:

● (eξ ,n ∶ ξ < ω1 , n ∈ N) is the canonical orthonormal basis of ℓ2(ω1 ×N).
● Denote byBX the family of all operators A in B(ℓ2(ω1 ×N)) such that
– ℓ2(X ∩ ({ξ} ×N)) is A-invariant for all ξ < ω1,
– A(eξ ,n) = 0 whenever (ξ, n) /∈ X.

● he unit of the C*-algebraBX will be denoted by PX .
● 1ξ ,m ,n is the operator in Bω1×N satisfying

1ξ ,m ,n(eη ,k) =
⎧⎪⎪
⎨
⎪⎪⎩

eξ ,m if k = n, ξ = η,
0 otherwise.

● If A ∈ Bω1×N we deûne A∣X = APX .
● If A ∈ Bω1×N and a ⊆ ω1 we deûne A∣a as A∣(a ×N).
● A∣X = {A∣X ∶A ∈ A} for A ⊆ Bω1×N and X ⊆ ω1 ×N.

5.2 The Definition of the Partial Order of Finite-dimensional Approximations

Deûnition 5.1 We deûne a partial order P consisting of elements

p = ( ap , {np
ξ ∶ ξ ∈ ap}, {Ap

ξ ,m ,n ∶ ξ ∈ ap , n,m ∈ [0, np
ξ )}) ,

where
(i) ap is a ûnite subset of ω1;
(ii) np

ξ ∈ N for each ξ ∈ ap ;
(iii) Ap

ξ ,m ,n ∈ BXp for each ξ ∈ ap and n,m ∈ [0, np
ξ ), where

Xp = {(ξ, n)∶ ξ ∈ ap ; n ∈ [0, np
ξ )};

(iv) Ap
ξ ,m ,n = (Ap

ξ ,m ,n ∣ξ) + 1ξ ,m ,n for each ξ ∈ ap and n,m ∈ [0, np
ξ ).

he order ≤P=≤ on P is deûned by declaring p ≤ q if and only if the following hold:
(a) ap ⊇ aq ;
(b) np

ξ ≥ nq
ξ for ξ ∈ aq ;

(c) there is a (nonunital) *-embedding ipq ∶BXq → BX p such that ipq(A
q
ξ ,m ,n) =

Ap
ξ ,m ,n for all ξ ∈ aq and m, n ∈ [0, nq

ξ);
(d) ip ,q(A)∣Xq = A for all A ∈ BXq .

Deûnition 5.2 Suppose that p ∈ P and X ⊆ Xp . hen the C∗-subalgebra of BXp

generated by {Ap
ξ ,m ,n ∶(ξ,m), (ξ, n) ∈ X} is denoted byAp

X .

Lemma 5.3 For every α ∈ ω1 and every p ∈ P, we have

A
p
Xp∩(α×N)

= BXp∩(α×N) .

In particular,Ap
Xp

= BXp .
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Proof We will prove this by induction on ∣ap ∩ α∣. If ap ∩ α = ∅, then both of the
algebras are {0}. Suppose ∣ap ∩ α∣ = n + 1 and we have proved the Lemma for every
q ∈ P and α < ω1 such that ∣aq ∩ α∣ = n. Let ξ = max(ap ∩ α). By the deûnition
of BXp we have that BXp∩(α×N) is ∗-isomorphic to BXp∩(ξ×N) ⊕ B{ξ}×[0,n p

ξ )
. By the

inductive hypothesis, BXp∩(ξ×N) is generated by {Ap
η ,m ,n ∶η ∈ ap ∩ ξ;m, n ∈ [0, np

ξ )}.
But by Deûnition 5.1(iv), we have that 1ξ ,m ,n = Ap

ξ ,m ,n − A for some A ∈ BXp∩(ξ×N)

and all m, n ∈ [0, np
ξ ). In particular, B{ξ}×[0,n p

ξ )
is included in the algebra generated

by {Ap
η ,m ,n ∶η ∈ ap ∩ α;m, n ∈ [0, np

η)}. his together with the inductive hypothesis
completes the proof. ∎

Lemma 5.4 Suppose that α < ω1 and p, q ∈ P satisfy p ≤ q and A = ip ,q(B), where
B ∈ Aq

Xq
. hen

∥A∣[α,ω1)∥ = ∥B∣[α,ω1)∥.

Proof Since B∣α and B∣[α,ω1) are in A
q
Xq
, by Lemma 5.3, we have

∥A∣[α,ω1)∥ = ∥ip ,q(B)∣[α,ω1)∥ = ∥ip ,q(B∣α)∣[α,ω1) + ip ,q(B∣[α,ω1))∣[α,ω1)∥.
But B∣α ∈ A

q
Xq∩(α×N)

by Lemma 5.3 and this generation must be preserved by the
isomorphism ip ,q , i.e., ip ,q(B∣α)∣[α,ω1) = 0, and so

∥A∣[α,ω1)∥ = ∥ip ,q(B∣[α,ω1)∣[α,ω1)∥ ≤ ∥ip ,q(B∣[α,ω1)∥.
Since ip ,q is an embedding (in particular an isometry), we conclude that

∥A∣[α,ω1)∥ ≤ ∥B∣[α,ω1)∥.
he other inequality follows from Deûnition 5.1(iii)–(iv). ∎

5.3 Density Lemmas

In the terminology related to partial orders occurring in the theory of forcing a subset
D of a partial order Q is said to be dense if for every p ∈ Q there is d ∈ D satisfying
d ≤ p. In what follows, we usually need stronger information for Q = P, namely that
ad = ap .

Lemma 5.5 Suppose that ξ < ω1. hen Dξ = {p ∈ P ∶ ξ ∈ ap} is a dense subset of P.

Proof Let q ∈ P be such that ξ ∉ aq . Deûne p as follows:
● ap = aq ∪ {ξ};
● np

η = nq
η for η ∈ aq and np

ξ = 1;
● Ap

η ,m ,n = A
q
η ,m ,n for η ∈ aq and Ap

ξ ,0,0 = 1ξ ,0,0.
It is clear that p ∈ P. Also, p ≤ q as IdBXq

∶BXq → BXp is a *-embedding good for ip ,q
in Deûnition 5.1(iii). ∎

Lemma 5.6 Suppose that ξ < ω1, k ∈ N, and q ∈ P are such that ξ ∈ aq . hen there is

p ∈ Eξ ,k = {p ∈ P ∶ ξ ∈ ap , np
ξ ≥ k}

such that p ≤ q and ap = aq .
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Proof
Consider q ∈ P such that ξ ∈ aq but nq

ξ < k. Deûne p as follows:

● ap = aq ;
● np

η = nq
η for η ∈ ap ∖ {ξ} and np

ξ = k;
● Ap

η ,m ,n = A
q
η ,m ,n η ∈ aq ∖ {ξ};

● Ap
ξ ,m ,n = A

q
ξ ,m ,n for n,m ∈ [0, nq

ξ);
● Ap

ξ ,m ,n = 1ξ ,m ,n if n,m ∈ [0, k) and {n,m} ∩ [nq
ξ , k) /= ∅.

It is clear that p ∈ P ∩ Eξ ,k . Also p ≤ q as IdBXq
∶BXq → BXp is a *-embedding good

for ip ,q in Deûnition 5.1(iii). ∎

Lemma 5.7 Suppose that q ∈ P and X ⊆ Xq and that α ∈ aq . hen there is p ≤ q
such that p ∈ FX ,α , where

FX ,α = { p ∈ P ∶α ∈ ap , X ⊆ Xp , and ∀A ∈ A
p
X∥A∣{α}∥ ≥ ∥A∣[α,ω1)∥}.

Moreover, ap = aq and np
ξ = nq

ξ whenever ξ ∈ ap ∖ {α}.

Proof Let q ∈ P. We can assume that X = Xq . If α = max(aq), then there is nothing
to prove. So let aq ∖ (α + 1) = {ξ1 , . . . , ξk} for some k ∈ N and put

l = ∑{nq
ξ i
∶1 ≤ i ≤ k}.

Consider Y = Xq ∩((α,ω1)×N). Let ϕ∶Y → [nq
α , n

q
α + l) be any bijection. We obtain

a ∗-homomorphism i∶BXq → BXq∪({α}×[n
q
α ,n

q
α+l)) given by i(A) = A+ ir(A), where

ir ∶BXq → B{α}×[nq
α ,n

q
α+l) satisûes

⟨ ir(A)(eα ,nq
α+ϕ(ξ i ,k)), eα ,nq

α+ϕ(ξ i′ ,k′)
⟩ = ⟨A(eξ i ,k), eξ i′ ,k′⟩

for all (ξ, k), (ξ′ , k′) ∈ Y and every A ∈ BXq . Deûne p in the following way:

● ap = aq ;
● np

ξ = nq
ξ if ξ ∈ ap ∖ {α} and np

α = nq
α + l ;

● Ap
ξ ,m ,n = i(Aq

ξ ,m ,n) for (ξ,m), (ξ, n) ∈ Xq ;
● Ap

α ,m ,n = 1α ,m ,n if {m, n} ∩ [nq
α , n

p
α) ≠ ∅.

It is clear from the construction that p ∈ P, as condition (iv) ofDeûnition 5.1 is satisûed
due to the fact that we change only Aq

ξ ,m ,n for ξ > α on {α} × N, and that (a), (b) of
Deûnition 5.1 are satisûed.

If we put ip ,q = i, condition (c) follows from the fact that i is a ∗-embedding, since
{α}×[nq

α , n
q
α+l)∩Xq = ∅. We also have ip ,q(Aq

ξ ,m ,n) = A
p
ξ ,m ,n for (ξ,m), (ξ, n) ∈ Xq .

he construction yields (d) of Deûnition 5.1.
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Finally, to check the main assertion of the lemma, note that by Lemma 5.4 for any
A ∈ BXq , we have

∥ip ,q(A)∣{α}∥ = max (∥ip ,q(A)∣{α}∥, ∥ip ,q(A)∣{α} × [nq
α , n

q
α + n)∥)

= max (∥ip ,q(A)∣{α}∥, ∥A∣(α,ω1)∥)

= max (∥ip ,q(A)∣{α}∥, ∥ip ,q(A)∣(α,ω1)∥)

= ∥ip ,q(A)∣[α,ω1)∥

for any A ∈ BXq as required, since X ⊆ Xq . ∎

Lemma 5.8 Let X ⊆ ω1 × N be ûnite and let α ∈ X. If q ∈ FX ,α and p ≤ q, then
p ∈ FX ,α .

Proof Let A ∈ A
p
X . As X ⊆ Xq , we have that A = ip ,q(B) for some B ∈ A

q
X ⊂ A

q
Xq

.
First note that by Lemma 5.4,

∥A∣[α,ω1)∥ = ∥B∣[α,ω1)∥.
Now ∥B∣[α,ω1)∥ ≤ ∥B∣{α}∥ by the hypothesis that q ∈ FX ,α . But ∥B∣{α}∥ ≤ ∥A∣{α}∥
by the fact that A∣Xq = B by Deûnition 5.1(d). So ∥A∣[α,ω1)∥ ≤ ∥A∣{α}∥, as re-
quired. ∎

5.4 Basic Amalgamations

Deûnition 5.9 We say that two elements p, q ∈ P are in convenient position (as
witnessed by σ ∶ ap → aq) if and only if

∆ ∶= ap ∩ aq < ap ∖ ∆ < aq ∖ ∆,
and there is an order preserving bijection σ ∶ ap → aq such that
● np

ξ = nq
σ(ξ) for ξ ∈ ap ,

and the ∗-isomorphism ofBXq ontoBXp induced by σ , denoted by jσ , which is given
by

⟨ jσ(A)(eξ ,k), eξ , l ⟩ = ⟨A(eσ(ξ),k), eσ(ξ), l ⟩
for every (ξ, k), (ξ, l) ∈ Xp and A ∈ BXq satisûes
● jσ(A

q
σ(ξ),n ,m) = Ap

ξ ,n ,m for every ξ ∈ ap , n,m ∈ [0, np
ξ ).

Lemma 5.10 Suppose that two elements p, q ∈ P are in convenient position as wit-
nessed by σ ∶ ap → aq and that ξ ∈ ∆ = ap ∩ aq . hen Aq

ξ ,n ,m = Ap
ξ ,n ,m for every

n,m ∈ [0, np
ξ ) = [0, nq

ξ).

Proof Note that in Deûnition 5.9 the bijection σ must be the identity on ∆, because
it is order-preserving and ∆ is the initial fragment of both ap and aq and so any ξ ∈ ∆
must have the same position in both ap and aq . So jσ(A

q
ξ ,n ,m) = Ap

ξ ,n ,m , and it is
enough to prove that jσ(A

q
ξ ,n ,m) = Aq

ξ ,n ,m .
For η ∈ ap ∖ ∆ we have

⟨ jσ(A
q
ξ ,n ,m)(eη ,k), eη , l ⟩ = ⟨Aq

ξ ,n ,m(eσ(η),k), eσ(η), l ⟩ = 0

for every k, l ∈ N such that (η, k), (η, l) ∈ Xp as σ(η) ∈ aq ∖ ∆.
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On the other hand, for η ∈ ∆ we have σ(η) = η, and so

⟨ jσ(A
q
ξ ,n ,m)(eη ,k), eη , l ⟩ = ⟨Aq

ξ ,n ,m(eη ,k), eη , l ⟩

for every k, l ∈ N such that (η, k), (η, l) ∈ Xp as σ(η) = η by Deûnition 5.9. Using
Deûnition 5.1(iv), this proves the required Aq

ξ ,n ,m = jσ(A
q
ξ ,n ,m) = Ap

ξ ,n ,m . ∎

Lemma 5.11 Suppose that p, q ∈ P are in convenient position as witnessed by σ ∶ ap →

aq . hen there is r ≤ p, q such that
● ar = ap ∪ aq ;
● nr

ξ = np
ξ if ξ ∈ ap and nr

ξ = nq
ξ if ξ ∈ aq ;

● ir ,p = IdBXp
, ir ,q = IdBXq

.
In particular,
● Ar

ξ ,m ,n = A
p
ξ ,m ,n for each ξ ∈ ap and n,m ∈ [0, nr

ξ);
● Ar

ξ ,m ,n = A
q
ξ ,m ,n for each ξ ∈ aq and n,m ∈ [0, nr

ξ).

he element r will be called the disjoint amalgamation of p and q.

Proof Deûne r as in the lemma. As p, q ∈ P, it is easy to see that r ∈ P. To see that
r ≤ p, q note that IdBXp

and IdBXq
are ∗-embeddings into BXr . ∎

Lemma 5.12 Suppose that p, q are two elements of P in convenient position as wit-
nessed by σq ,p ∶ ap → aq . Let U ∈ BXp∪Xq be a partial isometry satisfyingUU∗ = U∗U =

PXp∖Xq , where PXp∖Xq is the projection on the space spanned by {eξ ,k ∶(ξ, k) ∈ Xp∖Xq}.
hen there is rU = r ≤ p, q such that
● ar = ap ∪ aq ;
● nr

ξ = np
ξ if ξ ∈ ap , nr

ξ = nq
ξ if ξ ∈ aq ;

● ir ,p = IdBXp
;

● ir ,q(A) = A+U jσq ,p(A)U
∗ for all A ∈ BXq .

In particular,
● Ar

ξ ,m ,n = A
p
ξ ,m ,n for ξ ∈ ap and m, n ∈ [0, nr

ξ);
● Ar

ξ ,m ,n = UAp
σ−1q ,p(ξ),m ,n

U∗ + Aq
ξ ,m ,n for ξ ∈ aq ∖ ap and m, n ∈ [0, nr

ξ).

he element rU will be called the U-including amalgamation of p and q; if U = PXp∖Xq ,
then rU is called the including amalgamation.

Proof Deûne rU as in the lemma. It is clear by Deûnition 5.1 applied to p and q that
r ∈ P. hen rU ≤ p, because IdBXp

∶BXp → BXr is a ∗-embedding. For rU ≤ q, we note
that Ar

ξ ,m ,n ∣Xq = Aq
ξ ,m ,n as (UAp

σ−1q ,p(ξ),m ,n
U∗)∣Xq = 0, since UU∗ = U∗U = PXp∖Xq

and that the formula ir ,q(A) = A+U jσ(A)U∗ for all A ∈ BXq deûnes a *-embedding
from BXp to BXr . his follows from the fact that sending A to U jσ(A)U∗ is a
*-homomorphism since BXp∖Xq is Ap

Xp
-invariant, so ir ,q is a *-homomorphism. But

its kernel is null, since U jσ(A)U∗ = (U jσ(A)U∗)∣(Xp ∖ Xq) for all A ∈ BXq . ∎
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Lemma 5.13 Suppose that v1 , v2 are two orthogonal unit vectors ofCn for n > 1. hen
there is a unitary U ∈ Mn such that

∥[UAU∗ ,A]∥ = 1/2

for every nonexpanding linear A ∈ Mn satisfying A(v1) = v1 and A(v2) = 0.

Proof Choose an orthonormal basis v1 , . . . , vn of Cn starting with v1 , v2 and con-
sider the orthogonal projection P ∈ Mn onto the line containing v1, so, in particular,
we have P(v1) = v1 and P(v2) = 0. Let U = V ⊕ In−2, U∗ = V∗ ⊕ In−2, where

V = V∗
=
⎛
⎜
⎝

−1
√

2
1

√
2

1
√

2
1

√
2

⎞
⎟
⎠
.

So we obtain that

UPU∗
=
⎛
⎜
⎝

−1
√

2
1

√
2

1
√

2
1

√
2

⎞
⎟
⎠

⎛

⎝

1 0
0 0

⎞

⎠

⎛
⎜
⎝

−1
√

2
1

√
2

1
√

2
1

√
2

⎞
⎟
⎠
⊕ 0n−2 =

⎛

⎝

−1
2

−1
2

−1
2

−1
2

⎞

⎠
⊕ 0n−2 .

Hence,

[UPU∗ , P] = UPU∗P − PUPU∗

=
⎛

⎝

−1
2

−1
2

−1
2

−1
2

⎞

⎠

⎛

⎝

1 0
0 0

⎞

⎠
⊕ 0n−2 −

⎛

⎝

1 0
0 0

⎞

⎠

⎛

⎝

−1
2

−1
2

−1
2

−1
2

⎞

⎠
⊕ 0n−2

=
⎛

⎝

−1
2 0
−1
2 0

⎞

⎠
⊕ 0n−2 −

⎛

⎝

−1
2

−1
2

0 0
⎞

⎠
⊕ 0n−2 =

⎛

⎝

0 −1
2

−1
2 0

⎞

⎠
⊕ 0.

And so ∥[UPU∗ , P]∥ = 1/2, and, in particular,
● [UPU∗ , P](v1) = (−1/2)v2,
● [UPU∗ , P](v2) = (1/2)v1.
Since P equals A on the space spanned by v1 and v2, and U ,U∗ leave this space in-
variant, we have the same equalities for A instead of P, hence ∥[UAU∗ ,A]∥ ≥ 1/2. he
other inequality follows from the fact that ∥[B,C]∥ ≤ 1/2 for any two B,C satisfying
0 ≤ B,C ≤ 1 by a result of Stamp�i [47, Corollary 2]. ∎

Lemma 5.14 Suppose that p, q are two elements of P in convenient position as wit-
nessed by σ ∶ ap → aq such that ∆ < ap ∖ ∆ < aq ∖ ∆. Suppose that nq

ξ = n ≥ 1 for every
ξ ∈ aq ∖ ap and that v1 = (v1

0 , . . . , v1
n−1), v2 = (v2

0 , . . . , v2
n−1) are two orthogonal unit

vectors of Cn . hen there is r ≤ p, q such that
● ar = ap ∪ aq ,
● nr

ξ = np
ξ if ξ ∈ ap , nr

ξ = nq
ξ if ξ ∈ aq ,

● ∥[irq(A), ir p( jσ(A))]∥ = 1/2
for every nonexpanding A ∈ BXq such that there is ξ ∈ aq ∖ ap with

A( ∑
k<n

v1
k eξ ,k) = ∑

k<n
v1
k eξ ,k and A( ∑

k<n
v2
k eξ ,k) = 0.

We call r the (v1 , v2)-anticommuting amalgamation of p and q.
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Proof By Lemma 5.13, for each ξ ∈ aq ∖ ap for ηξ = σ−1(ξ), there is a unitary
Uξ ∈ B{ηξ}×[0,n) such that

(∗) ∥[Uξ( jσ(A)∣{ηξ})U∗
ξ , jσ(A)∣{ηξ}]∥ = 1/2,

whenever A ∈ BXq is nonexpanding such that

A( ∑
k<n

v1
k eξ ,k) = ∑

k<n
v1
k eξ ,k and A( ∑

k<n
v2
k eξ ,k) = 0.

Let U ∈ BX p∪Xq be a partial isometry such that U ∣({ηξ} × [0, n)) = Uξ and U is
zero on the columns not in in X p∖Xq , andUU∗ = PX p∖Xq . Consider theU-including
amalgamation rU ≤ p, q as in Lemma 5.12.

We claim that r = rU satisûes the lemma we are proving. Let A ∈ BXq be non-
expanding, and let ξ ∈ aq ∖ ap be such that A(∑k<n v1

k eξ ,k) = ∑k<n v1
k eξ ,k and

A(∑k<n v2
k eξ ,k) = 0. Since ℓ2({ξ} × [0, nq

ξ)) for ξ ∈ aq ∖ ap are invariant for BXq ,
the operator A∣{ξ} is nonexpanding as well, and so is jσ(A)∣{ηξ}. By Lemma 5.12,
we have ir ,q(A) = A + U jσ(A)U∗ and ir ,p( jσ(A)) = jσ(A), so for ηξ = σ−1(ξ) we
have

[ir ,q(A), ir ,p( jσ(A))]∣({ηξ} × [0, n)) = [Uξ( jσ(A)∣{ηξ})U∗
ξ , jσ(A)∣{ηξ}],

So by (∗) we have ∥[ir ,q(A), ir ,p( jσ(A))]∥ ≥ 1/2. he other inequality follows from
the maximality of 1/2 [47, Corollary 2]. ∎

5.5 Types of 3-amalgamations

Lemma 5.15 Suppose that p1 , p2 , p3 are distinct elements in P that are pairwise
in convenient position as witnessed by σ j , i ∶ ap i → ap j for 1 ≤ i < j ≤ 3 such that
∆ < ap1 ∖ ∆ < ap2 ∖ ∆ < ap3 ∖ ∆. hen there is r ≤ p1 , p2 , p3 satisfying the following:
● ar = ap1 ∪ ap2 ∪ ap3 ;
● there is n ∈ N such that for each ξ ∈ ar we have

n = nr
ξ > n′ = max{np i

ξ ∶ ξ ∈ ap i , 1 ≤ i ≤ 3};

● r ∈ ⋂{FX ,α ∶X ∈ {Xp1 , Xp2 , Xp3}, α ∈ X}.
he element r is called the amalgamation of p1 , p2 , p3 of type 1.

Proof Let ap1 = {α1 , . . . , αk} in the increasing order. Using Lemma 5.7 ûnd p1 ≥

p1
1 ≥ ⋅ ⋅ ⋅ ≥ pk

1 such that ap1 = apk
1
and ap1j

∈ FXp1 ,α j for 1 ≤ j ≤ k. Now using Lemma 5.6
several times, ûnd q1 ≤ pk

1 such that aq1 = ap1 and nq1
ξ = n > n′ for every ξ ∈ aq1 .

Now ûnd q2 , q3 ∈ P such that q2 ≤ p2 and q3 ≤ p3 and “isomorphic” with q1, i.e.,
with aq2 = ap2 , aq3 = ap3 and where q1 , q2 , q3 are pairwise in convenient position as
witnessed by σ j , i ∶ aq i → aq j for 1 ≤ i < j ≤ 3. Note that by Lemma 5.8 we have

q i ∈ ⋂{FXpi ,α ∶α ∈ Xp i}.

Now let s1 ≤ q1 , q2 and s2 ≤ q1 , q3 be the disjoint amalgamations as in Lemma 5.11.
Note that s1 and s2 are in convenient position as witnessed by Idap1

∪σ3,2 ∶ ap1 ∪ap2 →

ap1 ∪ ap3 where as1 ∩ as2 = ap1 . So now let r ≤ s1 , s2 be the disjoint amalgamation
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of s1 and s2 as in Lemma 5.11. Note that we have the ûnal statement of the lemma by
Lemma 5.8. ∎

Lemma 5.16 Suppose that p1 , p2 , p3 are distinct elements in P that are pairwise
in convenient position as witnessed by σ j , i ∶ ap i → ap j for 1 ≤ i < j ≤ 3 such that
∆ < ap1 ∖ ∆ < ap2 ∖ ∆ < ap3 ∖ ∆. hen there is r ≤ p1 , p2 , p3 satisfying
● ar = ap1 ∪ ap2 ∪ ap3 ;
● nr

ξ = np i

ξ if ξ ∈ ap i for 1 ≤ i ≤ 3;
● ir ,p1 = IdBXp1

;
● ir ,p2(A) = A+ jσ2,1(A)∣Xp1∖Xp2

for all A ∈ BXp2
;

● ir ,p3(A) = A+ jσ3,1(A)∣Xp1∖Xp3
for all A ∈ BXp3

.
In particular,

ir ,p3(A)ir ,p2( jσ3,2(A)) = ir ,p1( jσ3,1(A))
2

for every A ∈ BXp3
. he element r is called the amalgamation of p1 , p2 , p3 of type 2.

Proof First consider s2 ≤ p1 , p2 and s3 ≤ p1 , p3, which are the including amalgama-
tions of p1 , p2 and p1 , p3 as in Lemma 5.12. It is clear that s1 and s2 are in convenient
position as witnessed by Idap1

∪σ3,2∶ ap1 ∪ ap2 → ap1 ∪ ap3 . Now let r be the dis-
joint amalgamation of s1 and s2 as in Lemma 5.11. he properties of r follow from
Lemma 5.12 and Deûnition 5.1.

To prove the last statement of the lemma, note that

ir ,p3(A)ir ,p2( jσ3,2(A))

= (A+ jσ3,1(A)∣(Xp1 ∖ Xp3))( jσ3,2(A) + jσ3,1(A)∣(Xp1 ∖ Xp3))

= ( jσ3,1(A))
2
= ir ,p1( jσ3,1(A))

2 . ∎

Lemma 5.17 Suppose that p1 , p2 , p3 are distinct elements in P that are pairwise
in convenient position as witnessed by σ j , i ∶ ap i → ap j for 1 ≤ i < j ≤ 3 such that
∆ < ap1 ∖ ∆ < ap2 ∖ ∆ < ap3 ∖ ∆ and np i

ξ = n for some n > 1 and each i ∈ {1, 2, 3}
and that v1 = (v1

0 , . . . , v1
n−1), v2 = (v2

0 , . . . , v2
n−1) are two orthogonal unit vectors ofCn .

hen there is r ≤ p1 , p2 , p3 satisfying
● ar = ap1 ∪ ap2 ∪ ap3 ;
● nr

ξ = np i

ξ = n if ξ ∈ ap i for 1 ≤ i ≤ 3;
● ∥[ir ,pm(A), ir ,p1( jσm ,1(A))]∥ = 1/2, for m = 2, 3 and for every nonexpanding
A ∈ BXpm

such that there is ξ ∈ am ∖ ap1 with

A( ∑
k<n

v1
k eξ ,k) = ∑

k<n
v1
k eξ ,k and A( ∑

k<n
v2
k eξ ,k) = 0.

he element r is called the amalgamation of p1 , p2 , p3 of type 3 for vectors v1and v2.

Proof First consider s2 ≤ p1 , p2 and s3 ≤ p1 , p3, which are the (v1 , v2)-anti-
commuting amalgamations of p1 , p2 and p1 , p3 as in Lemma 5.14. It is clear that s1
and s2 are in convenient position as witnessed by Idap1

∪σ3,2∶ ap1 ∪ ap2 → ap1 ∪ ap3 .
Now let r be the disjoint amalgamation of s1 and s2 as in Lemma 5.11. he properties
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of s1 and s2 from the (v1 , v2)-anti-commuting amalgamations s1 and s2 pass to r by
Deûnition 5.1(iv). ∎

5.6 Inductive Limits of Directed Families in P

In this section we adopt the terminology where a directed set is a partial order (X , ≤)
where for any two x , y ∈ X, there is z ∈ X such that z ≤ x , y. In this section we
will consider inductive limits AG of systems (Ap

Xp
∶ p ∈ G) where G ⊆ P is a directed

subset of P with the order ≤ = ≤P. Here, for p ≤ q the embeddings ipq ∶A
q
Xq
→ A

p
Xp

are given by Deûnition 5.1(c); i.e., they satisfy ipq(A
q
ξ ,m ,n) = Ap

ξ ,m ,n for ξ ∈ aq and
n,m ∈ [0, nq

ξ). Formally, we deûne A
G diòerently in order to work with its conve-

nient representation inBω1×N, but then, in Lemma 5.22 we prove that the constructed
algebra is the corresponding inductive limit.

Deûnition 5.18 We say that G ⊆ P is covering if and only if

ω1 ×N ⊆ ⋃{Xp ∶ p ∈ G}.

Deûnition 5.19 Suppose thatG ⊆ P is directed and covering. hen AG
ξ ,n ,m ∈ Bω1×N

is given by

⟨AG
ξ ,n ,m(eη ,k), eη , l ⟩ = ⟨Ap

ξ ,n ,m(eη ,k), eη , l ⟩

for any (all) p ∈ G such (η, k), (η, l), (ξ, n), (ξ,m) ∈ Xp .

Note that AG
ξ ,n ,m are well deûned if G is directed and covering. his is because

given two p, p′ ∈ G such that (η, k), (η, l), (ξ, n), (ξ,m) ∈ Xp , Xp′ , there is q ≤ p, p′,
which implies that Xp , Xp′ ⊆ Xq , and so

⟨Ap
ξ ,n ,m(eη ,k), eη , l ⟩ = ⟨Aq

ξ ,n ,m(eη ,k), eη , l ⟩ = ⟨Ap′

ξ ,n ,m(eη ,k), eη , l ⟩

by Deûnition 5.1(c)–(d). he following deûnition is parallel to Deûnition 5.2.

Deûnition 5.20 Suppose that G ⊆ P is directed and covering. hen AG is the
subalgebra ofBω1×N generated by the operators AG

ξ ,m ,n for all ξ ∈ ω1 and m, n ∈ N.
Let X be a subset of ω1×N. We deûneAG

X to be the C∗-subalgebra ofAG generated
by (AG

ξ ,m ,n ∶(ξ, n), (ξ,m) ∈ X). In particular, for every α < ω1, by AG
α we mean the

C∗-subalgebra ofAG generated by {AG
ξ ,m ,n ∶ ξ < α,m, n ∈ N}.

Lemma 5.21 Suppose that G ⊂ P is directed and covering and p ∈ G. here is a
∗-embedding iG,p ∶A

p
Xp
→ AG

Xp
such that

(i) iG,p(A
p
ξ ,m ,n) = A

G
ξ ,m ,n ,

(ii) iG,p(A
p
ξ ,m ,n)∣Xp = A

p
ξ ,m ,n

for every ξ, n,m such that (ξ, n), (ξ,m) ∈ X.
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Proof By Deûnitions 5.1 and 5.19, a map sending Ap
ξ ,m ,n to AG

ξ ,m ,n extends to a
∗-homomorphism of Ap

Xp
into AG

Xp
. Its kernel must be null as the kernels of iq ,p

for q ≤ p are null.
To prove the second part of the lemma, use the ûrst part and Deûnition 5.19. ∎

Lemma 5.22 Suppose thatG ⊆ P is directed and covering. here is a ∗-isomorphism
j of AG and the inductive limit limp∈GA

p
Xp

of the system (A
p
Xp
∶ p ∈ G) with maps

(ip ,q ∶ p ≤ q) such that
j(AG

ξ ,n ,m) = lim
p∈G

Ap
ξ ,n ,m

for each ξ ∈ ω1 and m, n ∈ N.

Proof As in [39, Ex. 1. Chapter 6] it is enough to prove that for every p, q ∈ G
satisfying p ≤ q, the diagram

A
q
Xq

AG
Xq

A
p
Xp

AG
Xp

iG,q

ip,q ⊆

iG,p

commutes. his follows from the fact that by Deûnition 5.19, we have

iG,p( ip ,q(A
q
ξ ,n ,m)) = AG

ξ ,n ,m = iG,q(A
q
ξ ,n ,m)

for ξ,m, n such that (ξ,m), (ξ, n) ∈ Xq . But these elements generateAq
Xq

. ∎

Deûnition 5.23 A familyG ⊆ P is called F-rich if and only ifG is directed, covering
and FX ,α ∩ G /= ∅ for every ûnite X ⊆ ω1 × N and α ∈ X, where FX ,α is deûned in
Lemma 5.7.

Lemma 5.24 Let G ⊆ P be an F-rich family. hen for every α < ω1, the following
hold:
(i) AG

α is an ideal ofAG equal to {A ∈ AG ∶A∣[α,ω1) = 0};
(ii) there is a ∗-isomorphism jα ∶AG/AG

α → AG∣[α,ω1);
(iii) the representation πα ∶ AG∣[α,ω1)→AG∣{α} given by πα(A)=A∣{α} is faithful.

Proof As ℓ2({ξ}×N) areAG-invariant, it is clear that sending A ∈ AG to A∣[α,ω1)

is a ∗-homomorphism. So for (i) and (ii) we are le� with proving that its kernel is
equal to AG

α .
First, note that the kernel contains every generator AG

ξ ,n ,m for ξ < α and m, n ∈ N
ofAG

α and so includes AG
α . his is true by Deûnition 5.1(iv).

For the other inclusion, let A ∈ AG satisfy A∣[α,ω1) = 0. SinceAG is the inductive
limit of Ap

Xp
s for p ∈ G by Lemma 5.22, for every ε > 0 there is p ∈ G and B ∈ A

p
Xp

such that ∥iG,p(B) − A∥ < ε, and so ∥iG,p(B)∣[α,ω1)∥ < ε. By Lemma 5.3, B∣α ∈

A
p
Xp∩(α×N)

⊆ A
p
Xp
and B∣[α,ω1) ∈ A

p
Xp
, so we can apply iG,p to them. By Lemma 5.4
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and Deûnition 5.19 we have that

∥ iG,p(B∣[α,ω1))∥ = ∥ iG,p(B) ∣ [α,ω1)∥ .

So we have

∥A− iG,p(B∣α)∥ = ∥A− iG,p(B) + iG,p(B∣[α,ω1))∥

≤ ∥A− iG,p(B)∥ + ∥iG,p(B)∣[α,ω1)∥ ≤ 2ε.

But iG,p(B∣α) ∈ AG
α , since B∣α ∈ A

p
Xp∩(α×N)

. As ε > 0 was arbitrary and iG,p(B∣α) ∈
AG
α , we conclude that A ∈ AG

α , completing the proof of (i) and (ii).
To prove (iii) ûrst note that since ℓ2({α}×ω1) isAG-invariant, it is clear that πα is

a representation ofAG∣[α,ω1). Now suppose that A ∈ AG
Xq
for q ∈ G. By Lemma 5.21,

there is B ∈ A
q
Xq

such that iG,q(B) = A. Since G is assumed to be F-rich, by Lem-
mas 5.7 and 5.8, there is p ∈ FXq ,α such that p ≤ q. By Lemma 5.4 and Deûnition 5.19,
we have ∥A∣[α,ω1)∥ = ∥ip ,q(B)∣[α,ω1)∥. By the fact that p ∈ FXq ,α , we have that

∥A∣{α}∥ ≥ ∥ip ,q(B)∣{α}∥ ≥ ∥ip ,q(B)∣[α,ω1)∥ = ∥A∣[α,ω1)∥.

his shows that πα is an isometry when restricted to⋃q∈GAG
Xq

∣[α,ω1), which is dense
in AG∣[α,ω1) by Lemma 5.22, and so the representation is faithful. ∎

Proposition 5.25 Suppose that G ⊆ P is an F-rich family. hen AG is a scattered
thin-tall fully noncommutative C*-algebra such that

(i) IAtα (AG) = AG
α ;

(ii) there is a ∗-isomorphism jα ∶AG/IAtα (AG) → AG∣[α,ω1) satisfying

jα([A]IAtα (A)) = A∣[α,ω1);

(iii) the collection {[Aα ,m ,n]IAtα (A) ∶n,m ∈ N} satisûes the matrix units relations and
generates the essential ideal At(AG/IAtα (AG)).

Proof By [18, heorem 1.4] it is enough to prove (i)–(iii) to conclude that A is a
scattered thin-tall fully noncommutative C*-algebra.

he proof of (i)–(iii) is by induction on α < ω1. For α = 0 we have that Iα = {0}
and so (i) and (ii) are trivial. Also, AG

0,n ,m = 10,n ,m by Deûnition 5.1, so these el-
ements satisfy the matrix unit relations. Moreover, they generate the algebra of all
compact operators on ℓ2({0} × N), which is an essential ideal in B{0}×N. Since π0
from Lemma 5.24 is faithfull, the collection {A0,m ,n ∶n,m ∈ N} generates an essen-
tial ideal isomorphic to an algebra of all compact operators on a Hilbert space, so by
[18, heorem 1.2(4)] this ideal is IAt(AG) as required.

Now suppose we are done for β < α < ω1.
(i) If α is a limit ordinal, then by [18, 1.4] and the inductive hypothesis we have

IAtα (A) = ⋃
β<α

IAtβ (A) = ⋃
β<α

Aβ = Aα .

If α = β + 1, then (iii) of the inductive hypothesis implies (i).
(ii) follows from Lemma 5.24.
(iii) is proved as in the case α = 0. ∎
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6 An Operator Algebra Along a Construction Scheme

In this section, we adopt the terminology and the notation of Section 5. We will use
the constructions scheme of [54] described in Section 2.2 to build appropriate F-rich
families G in the partial order P of approximations whose inductive limit AG will
have interesting properties described in the introduction. To prove the main theorem
of this section we need one more general lemma.

Lemma 6.1 Suppose that A is an AF C*-algebra and {AD ∶D ∈ D} is a directed
family of ûnite-dimensional subalgebras with dense union. Let P ∈ A be a projection.
hen for every 0 < ε < 1 there is D ∈D and a projection Q ∈ AD such that ∥Q − P∥ < ε.

Proof Let D ∈D be such that there is A ∈ AD satisfying ∥A−P∥ < ε/6. By consider-
ing (A+A∗)/2 instead of Awemay assume that A is self-adjoint and ∥A−P∥ < ε/6. As
AD is ûnite dimensional, it is ∗-isomorphic to the direct sum of full matrix algebras.
Let π be the isomorphism. he matrix π(A) is self-adjoint, so it can be diagonalized.
As ∥A − P∥ < ε/6, we have that ∥A2 − A∥ < ε/2 and so the distance of each entry on
the diagonal of the diagonalized π(A) from 0 or 1 cannot be bigger than ε/2, so there
is a projection Q ∈ AD such that ∥π(Q) − π(A)∥ < ε/2, and hence ∥Q −A∥ < ε/2 and
∥Q − P∥ < ε, as required. ∎

heorem 6.2 Suppose that there exists a construction scheme F with allowed param-
eters (rk)k∈N and (nk)k∈N, where nk = 3 for each k ∈ N∖{0} and a partition (Pm)m∈N
of N into inûnite sets such that for every m ∈ N and every uncountable ∆-system T of
ûnite subsets of ω1 there exist F ∈ F of arbitrarily large rank in Pm that fully captures a
subsystem of T.

hen there is anF-rich familyG of elements ofP such that the scattered thin-tall fully
noncommutative C*-algebraAG has the following properties:
(i) here is a nondecreasing unbounded sequence (lk)k∈N ⊆ N and a directed family

of ûnite dimensional algebras {AG
X ∶ X = F × [0, lk), F ∈ Fk , k ∈ N} whose union

B is dense in A, such that if (Pξ ∶ ξ < ω1) ⊆ B is a family of projections which
generate a nonseparable subalgebra ofAG, then for every ε > 0,
(a) there are ξ1 < ξ2 < ξ3 < ω1 such that ∥Pξ1 − Pξ2Pξ3∥ < ε,
(b) there are ξ1 < ξ2 < ω1 such that ∥[Pξ1 , Pξ2∥ < ε,
(c) there are ξ1 < ξ2 < ω1 such that ∥[Pξ1 , Pξ2]∥ > 1/2 − ε.

(ii) AG has no uncountable irredundant subset.
(iii) AG has no nonseparable abelian subalgebra.

Proof Fix an enumeration ((vm ,wm)∶m ≥ 3), with possible repetitions, of all pairs
of orthonormal complex vectors with ûnitely many coordinates, all of them rational,
such that vm ,wm ∈ Cm for each m ≥ 3 (we abuse notation and identify Cm′

with a
subset of Cm for m′ ≤ m).

We construct the sequence (lk)k∈∈N ⊆ N and G = {pF ∶F ∈ F} ⊆ P by induction
with respect to k ∈ N such that F ∈ Fk . Moreover, for each k ∈ N we require that
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whenever F , F′ ∈ Fk are such that F ∖ F′ < F′ ∖ F (cf. Deûnition 2.10(ii)), then

pF and pF′ are in convenient position as witnessed by ϕF′ ,F .(6.1)
apF = F,(6.2)

npF
ξ = lk for all ξ ∈ F and F ∈ Fk and k ∈ N.(6.3)

For k = 0, we have thatF1 = [ω1]
1 byDeûnition 2.10(i), so we deûne pF for F = {ξ}

to be the element of P such that
● apF = {ξ};
● nξ

pF = l0 = 1;
● ApF

ξ ,0,0 = 1ξ ,0,0.
Suppose that we have constructed pF for all F ∈ Fk′ for k′ ≤ k satisfying (6.1)–(6.3).

Now we need to deûne the pF for F ∈ Fk+1. Since nk+1 = 3, each F ∈ Fk+1 is the union
of the maximal elements G1 ,G2 ,G3 of F∣F which form an increasing ∆-system by
Deûnition 2.10(iii). If k ∈ P1, then we deûne pF as the amalgamation of pG1 , pG2 , pG3

of type 1 from Lemma 5.15. If k ∈ P2, then we deûne pF as the amalgamation of
pG1 , pG2 , pG3 of type 2 from Lemma 5.16. If k ∈ Pm for m ≥ 3, and lk < m, then we
deûne pF as the amalgamation of pG1 , pG2 , pG3 of type 1 from Lemma 5.15. If k ∈ Pm
for m ≥ 3, and lk ≥ m, then we deûne pF as the amalgamation of pG1 , pG2 , pG3 of
type 3 for vectors (vm ,wm) from Lemma 5.17.

Observe that amalgamation of type 1 increases lk , so lk →∞ when k →∞.
First, let us note that our inductive hypothesis (6.1)–(6.3) is preservedwhenwepass

from k ∈ N to k+1. Let F , F′ ∈ Fk+1 be such that F∖F′ < F′∖F. By Deûnition 2.10(ii),
there is an order preserving bijection ϕF′ ,F ∶ F → F′ and F ∩ F′ < F ∖ F′ < F′ ∖ F.
In particular Deûnition 2.10(ii) implies that the maximal elements of F∣F are sent
by ϕF ,′ ,F onto the maximal elements of F∣F′, on the other hand, Deûnition 2.10(iii)
implies that these maximal elements form the canonical decomposition consisting of
elements in Fk , which in fact are used in the construction of pF or pF′ . Now to verify
Deûnition 5.9 in order to check (6.1), we note that the amalgamations described in
Lemmas 5.15, 5.16, and 5.17 consist of constructions of operators that depend only on
the place of the involved objects in F, so Deûnition 5.9 and (6.1) are satisûed for pF
and pF′ . Equations (6.2) and (6.3) follow from the descriptions of the amalgamations
from Lemmas 5.15, 5.16, 5.17. We have lk+1 = lk if k ∈ N∖P1 and lk+1 > lk if k ∈ P1, and
Deûnition 2.10 guarantees that the amalgamations that followLemma5.15 can be done
in “the same way” up to the bijection ϕF′ ,F , and so obtaining nξ

pF = lk+1 = nξ′
pF′ for any

F , F′ ∈ Fk+1 and ξ ∈ F and ξ′ ∈ F′. his completes the construction of G={pF ∶F ∈ F}

and completely determines the C*-algebraAG as in Deûnition 5.20.
Now note that G is F-rich as in Deûnition 5.23. First note that pF′ ≤ pF whenever

F′ ⊆ F and F , F′ ∈ F. his can be proved by induction on k ∈ N such that F ∈ Fk . Note
that it is true if F′ is a maximal element of F∣F, because then F′ is in the canonical
decomposition of F by Deûnition 2.10(iii) and we use pF′ in the construction of pF ,
obtaining pF′ ≤ pF by the Lemmas 5.15–5.17. Now we proceed with the inductive
argument; given F′ ⊊ F, either F′ is below a maximal element G of F∣F or it is one of
the maximal elements. he latter case is proved above, and the former follows from
the inductive assumption for the pair F′ ,G and from the transitivity of the order in P.
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To prove the directedness ofG take F , F′ ∈ F and use the coûnality of F in [ω1]
<ω

(Deûnition 2.10) to ûnd F′′ ∈ F such that F ∪ F′ ⊆ F′′. By the above arguments, we
have pF , pF′ ≤ pF′′ .

Now let X = a × [0, l) ∈ [ω1 ×N]<ω and α ∈ ω1 and aim at proving further parts of
the F-richness. Consider the ∆-system

T = { a ∪ {α, ξ}∶ max(a ∪ {α}) < ξ < ω1}

of ûnite subsets of ω1. By the hypothesis there is k ∈ P1 with lk ≥ l and F ∈ F such that
F fully captures a subsystem of T . In particular, F = G1∪G2∪G3 for someG1 ,G2 ,G3 ∈

Fk and X ⊆ XpG1
and α ∈ apG1

. By the construction, we do the amalgamation of type 1
as in Lemma 5.15 while constructing pF , and so pF is in FXpG1

,α , but this implies that
it is in FX ,α , as required for F-richness in Deûnition 5.23.

Proposition 5.25 implies thatAG, as in Deûnition 5.20, is a thin-tall fully noncom-
mutative scattered C*-algebra.

To prove (i), the directed family of ûnite dimensional subalgebras of AG is
{AG

Xp
∶ p ∈ G} as inDeûnition 5.20. By Lemma5.21, the algebrasAG

Xp
are∗-isomorphic

to the algebras Ap
Xp
and they are ûnite dimensional, since they are equal to BXp by

Lemma 5.3. Let B = ⋃{AG
Xp
∶ p ∈ G}.

Suppose that {Pξ ∶ ξ < ω1} ⊆ B is a collection of projections that generate a nonsep-
arable subalgebra ofAG. So, there must be distinct αξ ∈ ω1 such that Pξ ∣({αξ}×N) /=

0. Since B{αξ}×N is invariant for AG, it follows that Pξ ∣({αξ} ×N) is a non-zero pro-
jection. Moreover, it is not the unit of B{αξ}×N, because such a unit would produce a
unit of AG/IAtαξ

(AG) by Lemma 5.24 andheorem 5.25, which is impossible because
AG is the union of proper ideals IAtα (AG) for α < ω1.

Let Fξ ∈ F be such that αξ ∈ Fξ , Pξ ∈ AG
XpFξ

= AG
Fξ×[0, lξ)

for each ξ ∈ ω1, where

lξ = lk for Fξ ∈ Fk and Pξ ∣({αξ} × [0, lξ)) is a nonzero projection that is not the unit
ofB{αξ}×[0, lξ). his can be obtained from the coûnality of F and the fact that lk →∞

when k →∞.
Let Qξ ∈ A

pFξ
Fξ×[0, lξ)

be such that iG,pFξ (Qξ) = Pξ . Note that by Lemma 5.21 the Qξs
are projections and Qξ ∣({αξ} × [0, lξ)) is a nonzero projection that is not the unit of
B{αξ}×[0, lξ) for each ξ < ω1.
By passing to an uncountable subset, we can assume that T = {Fξ ∶ ξ < ω1} forms

an increasing ∆-system of elements of Fk′ for a ûxed k′ ∈ N and that

∣ ⟨Qξ(eη , l), eη , l ′⟩ − ⟨Qξ′(eϕFξ′ ,Fξ (η), l), eϕFξ′ ,Fξ (η), l ′⟩ ∣ < ε/2lk′

for every (η, l), (η, l ′) ∈ Fξ × [0, lk′) and every ξ < ξ′ < ω1. his guarantees that

(6.4) ∥ jϕFξ ,Fξ′ (Qξ) − Qξ′∥ < ε/2

for every ξ < ξ′ < ω1. Now let us prove item (a) of (i). By the hypothesis on F,
there is k ∈ P2 bigger than k′ and F ∈ Fk+1, which fully captures T ; i.e., the canonical
decomposition of F is {G1 ,G2 ,G3}, and there are ξ1 < ξ2 < ξ3 < ω1 such that Fξ i ⊆ G i
and ϕG j ,G i [Fξ i ] = Fξ j for all 1 ≤ i , j ≤ 3. As ϕG j ,G i are order preserving, they must
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agree with ϕFξ j ,Fξi on Fξ i , so (6.4) implies that

∥ jϕG3 ,Gi
(Qξ3) − Qξ i ∥ < ε/2

holds for i = 1, 2. Since we use amalgamation of type 2 at the construction of pF for
k ∈ P2, by Lemma 5.16, we have

ipF ,pG3
(Qξ3)ipF ,pG2

( jϕG3 ,G2
(Qξ3)) = ipF ,pG1

( jϕG3 ,G1
(Qξ3))

2 ,

and so
∥ipF ,pG3

(Qξ3)ipF ,pG2
(Qξ2) − ipF ,pG1

(Qξ1)
2
∥ < ε,

and hence ∥Pξ3Pξ2 − Pξ1∥ < ε, since

iG,pF ○ ipF ,pGξi
(Qξ i ) = iG,pGξi

(Qξ i ) = iG,pGξi
(ipGξi

,pFξi
(Qξ i ))

= iG,pFξi (Qξ i ) = Pξ i

by Deûnition 5.19 and Lemma 5.21. his completes the proof of (a) of (i). Item (b)
follows from (a) for ε/2 and by taking adjoints.

Now let us prove item (c) of (i). For ξ < ω1 let Q′
ξ ∈ BFξ×[0, lk′) be such projections

that ∥Qξ − Q′
ξ∥ < ε/8, and there is an orthonormal basis in B{αξ}×[0, lk′) of eigenvec-

tors for Q′
ξ consisting only of vectors with all rational coordinates with respect to our

canonical basis (eαξ , l ∶0 ≤ l < lk′). Note that by Lemma 5.3, we have that Q′
ξ ∈ A

pFξ
XpFξ

.
Since Qξ ∣({αξ} × [0, lk′)) is a nonzero projection that is not the unit ofB{αξ}×[0, lk′)
for each ξ < ω1, Q′

ξ can be assumed to have the same rank as Qξ and so there are
orthogonal unit vectors v ξ ,w ξ ∈ Clk′ with all rational coordinates such that

Q′
ξ( ∑

l<lk′
v ξl eαξ , l) = ∑

l<lk′
v ξl eαξ , l ,Q

′
ξ( ∑

l<lk′
w ξ

l eαξ , l) = 0.

As there are only countably many such vectors, we may assume that all of them are
equal to a pair (v ,w), and moreover that

(6.5) ∥ jϕFξ ,Fξ′ (Q
′
ξ) − Q′

ξ′∥ < ε/4

for every ξ < ξ′ < ω1.
By the hypothesis on F there is k ∈ Pm bigger than k′ such that vm = v =

(v1 , . . . , v lk′ ) and wm = w = (w1 , . . . ,w lk′ ) and there is F ∈ Fk+1 which fully cap-
tures T , i.e., the canonical decomposition of F is {G1 ,G2 ,G3} and there are ξ1 < ξ2 <
ξ3 < ω1 such that Fξ i ⊆ G i and ϕG j ,G i [Fξ i ] = Fξ j for all 1 ≤ i , j ≤ 3. Note that αξ i s
are not in the root of {G1 ,G2 ,G3} as they are not in the root of the Fξs. As ϕG j ,G i are
order preserving, they must agree with ϕFξ j ,Fξi on Fξ i , so (6.5) implies that

∥ jϕG1 ,Gi
(Q′

ξ1) − Q′
ξ i
∥ < ε/4

holds for i = 2, 3. Since we use amalgamation of type 3 at the construction of pF for
k ∈ Pm by Lemma 5.17, we have

∥[ ipF ,pG1
(Q′

ξ1), ipF ,pG2
( jϕG1 ,G2

(Q′
ξ1))]∥ = 1/2

and so
∥[ ipF ,pG1

(Q′
ξ1), ipF ,pG2

(Q′
ξ2)]∥ ≥ 1/2 − ε/2,
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and hence
∥[ipF ,pG1

(Qξ1), ipF ,pG2
(Qξ2)]∥ ≥ 1/2 − ε,

as ∥Qξ − Q′
ξ′∥ < ε/8 for each ξ < ξ′ < ω1; and ûnally

∥[Pξ1 , Pξ2]∥ ≥ 1/2 − ε,

since

iG,pF ○ ipF ,pGξi
(Qξ i ) = iG,pGξi

(Qξ i ) = iG,pGξi
( ipGξi

,pFξi
(Qξ i ))

= iG,pFξi (Qξ i ) = Pξ i ,

by Deûnition 5.19 and Lemma 5.21. his completes the proof of (c) of (i).
he proof of (ii) will be based on (i)(a) and Lemma 6.1. Suppose that AG contains

an uncountable irredundant set {Qξ ∶ ξ < ω1}. By Lemma 3.3, we can assume that all
Qξs are projections. For each ξ, let Aω1∖{ξ} be the C*-subalgebra ofAG generated by
the set {Qη ∶η ∈ ω1 ∖ {ξ}}. By passing to an uncountable subset, we can assume that
there is ε > 0 such that for each ξ < ω1 we have ∥A−Qξ∥ ≥ ε for each A ∈ Aω1∖{ξ}. Let
Pξ ∈ B be a projection satisfying ∥Pξ −Qξ∥ < ε/4, which is obtained using Lemma 6.1.
By (i)(a) there are ξ1 < ξ2 < ξ3 < ω1 such that ∥Pξ1 − Pξ2Pξ3∥ < ε/4. his implies that
∥Qξ1 − Qξ2Qξ3∥ < ε, which contradicts the deûning property of ε and completes the
proof of (ii).

he proof of (iii) will be based on (i)(c) and Lemma 6.1. Suppose thatAG contains
a nonseparable abelian subalgebra. As subalgebras of scattered algebras are scattered
and scattered locally compact spaces are totally disconnected, it follows thatAG con-
tains an uncountable Boolean algebra of (commuting) projections {Qξ ∶ ξ < ω1}. In
particular ∥Qξ − Qξ′∥ = 1 for all ξ < ξ′ < ω1.

Let Pξ ∈ B for ξ < ω1 be projections satisfying ∥Pξ − Qξ∥ < 1
10 for each ξ < ω1,

which is obtained using Lemma 6.1. In particular, ∥Pξ − Pξ′∥ ≥
8
10 for all ξ < ξ′ < ω1

and so they generate a nonseparable C*-algebra.
We have ∥Pξ1Pξ2 − Qξ1Qξ2∥ <

1
5 and ∥Pξ2Pξ1 − Qξ2Qξ1∥ <

1
5 for each ξ1 < ξ2 < ω1,

so [Pξ1 , Pξ2] <
2
5 for each ξ1 < ξ2 < ω1. But by (i)(c), there are ξ1 < ξ2 < ω1 such that

∥[Pξ1 , Pξ2]∥ ≥
2
5 , a contradiction. ∎
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