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Abstract

Computer vision-based precision weed control has proven effective in reducing herbicide
usage, lowering weed management costs, and enhancing sustainability in modern agriculture.
However, developing deep learning models remains challenging due to the effort required for
weed dataset annotation and the difficulty of identifying weeds at different stages and
densities in complex field conditions. To address these challenges, this study introduces an
indirect weed detection method that combines deep learning and image processing
techniques. The proposed approach first employs an object detection network to identify and
label crops within the images. Subsequently, image processing techniques are applied to
segment the remaining green pixels, thereby enabling indirect detection of weeds.
Furthermore, a novel detection network—CD-YOLOv10n (You Only Look Once version 10
nano)-was developed based on the YOLOv10 framework to optimize computational
efficiency. By redesigning the backbone (C2f-DBB) and integrating an optimized upsampling
module (DySample), the network achieved higher detection accuracy while maintaining a
lightweight structure. Specifically, the model achieved a mean average precision (mAP50) of
98.1%, which is a 1.4% percentage-point increase compared with the YOLOv10n baseline, a
relevant improvement given the already strong baseline performance. At the same time,
compared to YOLOv10n, its GFLOPs were reduced by 22.62%, and the number of
parameters decreased by 15.87%. These innovations make CD-YOLOv10n highly suitable
for deployment on resource-constrained platforms.

Keywords: deep learning; detection algorithms; image processing; precision weed

management; weed detection
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Introduction

Vegetables play a critical role in human health by enhancing immunity, preventing chronic
diseases, and addressing global "hidden hunger" through their rich nutritional content and
phytochemicals (Asaduzzaman et al. 2018). Alongside staple crops, vegetables rank among
the most widely cultivated and economically significant crops worldwide (Dias and Ryder
2011). However, weeds pose a major challenge, not only by diminishing vegetable quality
but also by causing yield losses of up to 45% to 90% (Mennan et al. 2020). Herbicides
remain effective tools for weed suppression; however, excessive application can leave
chemical residues in vegetables, increase environmental risks, and accelerate the evolution of
resistant weed populations, which further complicates management (Mennan et al. 2020).
Manual weeding, while reducing dependence on herbicides, is becoming increasingly
unsustainable for large-scale agricultural production due to rising labor costs (Jin et al. 2021).
Thus, developing automated, vision-based methods for distinguishing between crops and

weeds has become increasingly essential for modern weed management (Jin et al. 2021).

Computer vision has shown significant potential for precision herbicide application in
modern agriculture (Yu et al. 2019a; Yu et al. 2020). Current approaches for distinguishing
between crops and weeds primarily rely on either traditional image processing techniques or
deep learning methods (Wu et al. 2021). Traditional methods rely on features such as texture
(Bakhshipour et al. 2017; Ishak et al. 2009), shape (Bakhshipour and Jafari 2018; Pereira et al.
2012), spectral properties (Elstone et al. 2020; Pignatti et al. 2019), and color (Hamuda et al.
2016; Rasmussen et al. 2019). However, relying on a single handcrafted feature (such as
color or texture) is often insufficient for distinguishing crops from weeds, underscoring the
need for multi-feature integration or deep learning-based approaches (Wu et al. 2021). To
overcome this limitation, many studies have focused on integrating multiple features to
improve detection accuracy (Sabzi et al. 2020). Machine learning techniques, such as Support
Vector Machines (SVMs) and Artificial Neural Networks (ANNSs), have been widely
employed for crop and weed classification (Behmann et al. 2015; Tellaeche et al. 2011).
While these methods can accurately identify weeds under certain conditions, their reliance on
single or manually designed features often limits their robustness and generalization ability,
especially in complex and diverse agricultural environments (Kong et al. 2024; Wu et al.
2021).
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In recent years, deep learning has been increasingly applied to the agricultural domain
(Fu et al. 2020; Too et al. 2019). Deep learning-based approaches for weed detection and
classification have demonstrated promising results (Tiwari et al. 2019; Yu et al. 2019b).
Commonly used deep learning methods for weed detection include Convolutional Neural
Networks (CNNs) (Dyrmann et al. 2016; Olsen et al. 2019; Yu et al. 2020; Yu et al. 2019c)
and Fully Convolutional Networks (FCNs) (Fu and Qu, 2018; Huang et al. 2018). Yu et al.
(2019a) evaluated several Deep Convolutional Neural Network (DCNN) models, including
AlexNet, Visual Geometry Group Network (VGGNet), GoogleNet, and DetectNet, for
detecting dandelion (Taraxacum officinale F.H. Wigg.), ground ivy (Glechoma hederacea
L.), and spotted spurge (Euphorbia maculata L.; syn. Chamaesyce maculata (L.) Small) in
perennial ryegrass (Poa annua L.). Among these, VGGNet achieved a high F; score of
92.78% and a Recall of 99.52% in multi-class classification tasks, while DetectNet excelled
in detecting T. officinale with an F; score of 98.43% and a Recall of 99.11%. Similarly, Jin et
al. (2022b) evaluated DenseNet, EfficientNetV2, ResNet, RegNet, and VGGNet models for
both multi-class and binary classification of weed species. In multi-class classification,
VGGNet achieved an F; score of 95.0% for detecting T. officinale and performed
exceptionally well in identifying goosegrass [Eleusine indica (L.) Gaertn.], purple nutsedge
(Cyperus rotundus L.), and white clover (Trifolium repens L.) in bermudagrass [Cynodon
dactylon (L.) Pers.], with F; scores >98.3%. In binary classification, where the goal was to
distinguish weed-containing sub-images from turfgrass, the EfficientNetV2 model performed
best, achieving F; scores >98.1%. These results underscore the efficacy of deep learning-
based models in addressing the challenges of weed detection and classification across

different contexts and tasks.

Direct weed identification remains highly challenging due to the visual similarity
between crops and weeds and the variability across field environments (Coleman et al. 2022;
Jin et al. 2022a). Such morphological overlap and ecological variability introduce instability
in feature extraction and reduce detection reliability(Coleman et al. 2022; Jin et al. 20223;
Zhuang et al. 2022). Another major bottleneck lies in dataset construction. Collecting and
annotating sufficient images to represent diverse weed species across regions, growth stages,
and densities requires immense effort, and the lack of such comprehensive datasets limits the
robustness and generalization of deep learning models (Kong et al. 2024; Wu et al. 2021).
This highlights the need for innovative approaches to overcome the limitations posed by data

diversity and availability in weed detection tasks. To tackle these challenges, this study
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proposes a novel deep learning—based approach for training a vegetable detection model. By
first identifying vegetables within an image, all remaining green regions outside the detected
area can be classified as weeds, providing a streamlined and efficient method for weed
detection. In this study, we developed an effective two-step approach for weed detection:

1. Building upon the YOLOV10 (Wang et al. 2024a), we propose a novel detection
model, CD-YOLOv10n (C2f-DBB_Dysample _YOLOv10n), specifically designed
for efficient vegetable identification. This model not only demonstrates outstanding
performance in terms of detection accuracy but also achieves significant
lightweighting, making it suitable for deployment in resource-constrained
environments.

2. Once vegetables are identified, all green pixels outside the bounding box are
classified as weeds. Weed detection and segmentation are then performed using
image processing techniques, ensuring a streamlined and precise approach to weed

detection.
Materials and Methods
Dataset

The images of vegetable seedlings used for training, validation, and testing in this study were
collected in two batches from a vegetable farm on Bagua Island, Qixia District, Nanjing,
China (32°12° N, 118°48’ E), during July and September 2020. Each image had an original
resolution of 4032 x 3024 pixels, and a total of 1500 images were obtained. To enhance the
diversity and generalization ability of the neural network, the dataset included images of bok
choy [Brassica rapa subsp. chinensis (L.) Hanelt.] from vegetable fields with different
sowing times, captured under various lighting conditions, including sunny and overcast
weather. To reduce processing time and enhance real-time performance in field applications,
all sample images were standardized to 1400 x 1050 pixels using a custom Python script. The
collected images were annotated using Labellmg software, focusing on rectangular bounding
boxes around vegetable seedlings. After annotation, corresponding Extensible Markup
Language (XML) label files were generated for each image, serving as training samples for
the neural network model. The dataset was split into training (80%), validation (10%), and
testing (10%) sets, as detailed in Table 1.
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Improvement of YOLOv10n

YOLO is a widely recognized single-stage object detection algorithm, demonstrating
excellent performance across various detection tasks. Compared to two-stage object detection
algorithms, single-stage algorithms like YOLO integrate object localization and candidate
region generation (first stage) with the classification phase (second stage), significantly

improving detection efficiency.

To meet the need for cost-effective implementation, this study selected YOLOv10n, the
simplest and most lightweight model in the YOLOv10 series, for detecting vegetable
seedlings. However, the YOLOv10n algorithm has certain limitations in specific application
scenarios, including limited feature extraction capacity that may hinder detection accuracy
under complex and variable environmental conditions. Additionally, the model's ability to
differentiate between morphologically similar objects may be insufficient, particularly in
high-precision applications such as identifying specific plant species in diverse agricultural
environments. To overcome these challenges and enhance the algorithm's performance in
detecting vegetable seedlings, this study introduces several optimizations to the YOLOv10n
framework. These improvements were designed to address its limitations while maintaining
its efficiency and lightweight structure, ensuring better suitability for complex agricultural

tasks. The algorithm was improved in two key aspects, as illustrated in Figure 1:

1. The Cross Stage Partial Network Fusion (C2f) module in YOLOv10n's backbone
network was replaced with the C2f with Dynamic Block Branching (C2f-DBB)
module (Zhang et al. 2024), resulting in a reduction in module size and improved
efficiency.

2. The DySample module (Liu et al. 2023) was integrated into the neck network to
replace the original upsampling mechanism in YOLOv10n, thereby enhancing the

network's feature extraction capabilities.
C2f-DBB module

The C2f-DBB module is an optimized version of the original C2f design, in which Dynamic
Block Branching (DBB) is integrated into the bottleneck structure (Zhang et al. 2024). DBB
incorporates six transformation modes, all of which can be converted into convolutions
during inference, thereby improving the model's representation capability. In addition, the
C2f-DBB module incorporates the Global Attention Mechanism (GAM), which strengthens
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feature interactions across both channel and spatial dimensions. By introducing DBB and
attention mechanisms, the module significantly enhances feature extraction capabilities,

leading to improved detection accuracy and model stability.
DySample Block

DySample is an ultra-lightweight and efficient dynamic upsampling technique that redefines
the perspective of point sampling in the upsampling process. It avoids the high computational
complexity and resource consumption inherent in traditional convolution-based methods.
Notably, DySample operates without relying on high-resolution guiding features and is not
constrained by additional CUDA package requirements. This results in significantly lower
inference latency, memory usage, floating-point operations (FLOPs), and parameter count,
optimizing both performance and resource efficiency. Liu et al. (2023) demonstrated that
DySample outperforms other upsampling techniques across five major dense prediction tasks:
semantic segmentation, object detection, instance segmentation, panoptic segmentation, and
monocular depth estimation. In addition to its exceptional performance, DySample achieves
efficiency comparable to bilinear interpolation. This makes it a reliable alternative to
traditional methods like Nearest Neighbor or bilinear interpolation, offering a practical

solution to enhance the performance and efficiency of existing dense prediction models.
Experimental configuration

In this study, all deep neural network models were trained and tested under a consistent
hardware and software environment to ensure reproducibility. The hardware setup included
Ubuntu 20.04.6 LTS as the operating system, an Intel® Xeon® W-2265 CPU, and an Nvidia
GeForce RTX 3080 Ti GPU. For the software environment, a configured Conda environment
was utilized, which included Python 3.8, PyTorch 2.3.1, CUDA 11.3. Details of the
hyperparameter settings for the deep learning models are provided in Table 2. Additionally,
to achieve better convergence, higher precision, and enhanced adaptability to real-world
agricultural scenarios, Mosaic data augmentation was disabled during the final 10 training

epochs.

https://doi.org/10.1017/wsc.2025.10074 Published online by Cambridge University Press


https://doi.org/10.1017/wsc.2025.10074

Evaluation metrics

This study employs multiple performance metrics, including precision, recall, mAP50,
mAP50-95, and inference time, to comprehensively evaluate the performance of the deep
learning models. The formulas for these metrics are as follows:

T
P ision = ———#(1
recision TP T FP (1)

Recall = — % #(2)
CCAt = TP Y FN

mAP = AP = flPreciSion d(Recall) #(3)
0
In this study, mAP is used to represent the average precision. Since our experimental
case involves the identification of a single category, mAP specifically refers to the average
precision (AP) for the vegetable category. True Positive (TP) denotes the number of samples
correctly identified as vegetables, False Positive (FP) refers to the number of samples
incorrectly identified as vegetables, and False Negative (FN) represents the number of

samples that were not correctly identified as vegetables.
Weed segmentation

After crop bounding boxes were detected using the vegetable detector, green pixels outside
the bounding boxes were segmented through a color-based image processing technique and
marked as weeds. In this study, crops were detected but not segmented at the pixel level,
which reduces annotation cost and computational complexity. However, this design may limit
accurate identification of weeds located very close to seedlings, since bounding boxes cannot
perfectly match crop boundaries. To enhance this process, the weed segmentation index
proposed by Jin et al. (2021) was adopted and further optimized. Specifically, pixels were
evaluated using the color index technique only if their green (G) component exceeded the red
(R) or blue (B) components; otherwise, they were directly classified as non-weed pixels. This
optimization improved segmentation accuracy while reducing computational complexity,

resulting in a more efficient and precise weed detection workflow.

(G < R||G < B)|[(—19R + 24G — 2B < 862), background

else, weed #(4)
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Results and Discussion
Ablation experiments of each module

Table 3 summarizes the performance metrics of the model after replacing individual
components. The experimental results demonstrate that both the C2f-DBB and DySample
strategies positively impacted model performance, with the C2f-DBB module achieving an
mAP of 97.3% and the DySample module reaching 97.6%, compared with 96.9% for the
baseline YOLOv10n before adding these modules. However, it is noteworthy that while the
DySample module improved overall detection accuracy, it led to a 1.2% reduction in recall.
Both optimization components effectively reduced the model complexity, significantly
decreasing the number of parameters and GFLOPs. DySample exhibited the most pronounced
impact on performance when replacing the neck network, whereas C2f-DBB achieved the
greatest reduction in parameter count when replacing the backbone network. Both
components contributed to a decrease in GFLOPs, indicating a reduction in the computational

load of the neural network.

To validate the effectiveness of the proposed optimization strategies, ablation
experiments were conducted for each module, with detailed results presented in Table 4. The
findings reveal that the improved CD-YOLOv10n model demonstrates exceptional and
efficient feature extraction capabilities. Built on a lightweight core architecture, the model
achieves significant improvements in operational efficiency without compromising
performance. Additionally, both computational costs and parameter counts are effectively

reduced.

While the Dysample module enhances overall performance, it comes at the expense of a
slight reduction in recall value. In contrast, the C2f-DBB module improved performance
without sacrificing recall. By leveraging the strengths of both components, the proposed
model achieved a balanced trade-off, reducing overall parameters while enhancing
performance. The proposed model outperformed YOLOv10n across key metrics, achieving
improvements of +1.2% in mAP50, +2.1% in mAP50-95, +1.4% in precision, and +1.6% in
recall. Meanwhile, the parameter counts and GFLOPs were reduced by 15.87% and 22.62%,
respectively. These results highlight the significant advancements in both model performance
and lightweight design, indicating the effectiveness of the proposed optimization strategies.
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Training performance of the proposed method compared to YOLOv10n

As shown in Figure 2, CD-YOLOv10n achieved higher accuracy than YOLOv10n
throughout training, with a consistently superior mAP50 curve. First, the model exhibited a
faster convergence rate, with its mAP50 value surpassing that of YOLOv10n during the early
training stages (around the 7th to 10th epoch). This indicates that CD-YOLOv10n is capable
of extracting effective features at an earlier stage. Second, the training process of CD-
YOLOv10n was notably more stable: as the mAP50 value approached 1, the curve showed
smaller fluctuations and greater smoothness, suggesting improved reliability in later-stage
predictions. Lastly, although the final mAP50 values of the two models were very close, CD-
YOLOv10n consistently maintained a slight advantage throughout most of the training
process, consistently outperforming YOLOv10n. Overall, CD-YOLOv10n demonstrates
superior performance in terms of convergence speed, stability, and training efficiency,

highlighting the effectiveness of the proposed optimizations.

CD-YOLOv10n demonstrated significant advantages in training loss performance. The
training loss curve reflects the optimization process of bounding box regression, where lower
values indicate more accurate localization of objects. As shown in the training loss curve in
Figure 3, CD-YOLOV10n exhibited a faster decline in loss during the initial training stages.
Although its initial loss was slightly higher than that of YOLOv10n, it quickly surpassed
YOLOvV10n, indicating higher efficiency in the early learning phase. Further analysis
revealed that the loss curve of CD-YOLOv10n remained smoother throughout the training
process. In particular, during the mid-to-late stages of training, the fluctuation amplitude was
noticeably reduced, reflecting greater stability in the training process. Training stability refers
to the smoothness and consistency of the optimization process, where fewer oscillations in
the loss curve indicate more reliable convergence and reduced risk of overfitting. By the end
of training, the loss value of CD-YOLOv10n was slightly lower than that of YOLOv10n,
suggesting superior performance in bounding box precision and optimization. Overall, these
findings highlight that CD-YOLOv10n outperforms YOLOv10n in both localization accuracy
and training stability.

Comparison of CD-YOLOv10n and YOLOv10n in vegetable detection

As illustrated in Figure 4, the experimental results clearly demonstrate that CD-YOLOv10n

achieved higher accuracy compared to YOLOv10n, particularly in terms of bounding box

https://doi.org/10.1017/wsc.2025.10074 Published online by Cambridge University Press


https://doi.org/10.1017/wsc.2025.10074

localization. Moreover, CD-YOLOv10n exhibited significantly greater robustness in handling
complex scenarios, such as occlusion and overlapping targets. These improvements highlight

the model’s enhanced capability for precise detection under challenging conditions.
Weed detection

As shown in Figure 5, the proposed method accurately detected vegetable seedlings and
effectively segmented weeds, even in visually complex agricultural scenes. The pipeline
maintained robustness under challenging conditions such as occlusion, illumination variation,
and overlapping plants, highlighting its potential for practical weed management in real field

environments.
Model Comparison Experiments

To comprehensively evaluate the efficiency, accuracy, and superiority of the CD-YOLOv10n
model, this study compared its performance with various object detection models for
vegetable detection. The results are summarized in Table 5. To gain deeper insights into the
performance of each model, a comparative analysis was conducted using key metrics,
including mAP, Recall, parameter count, and GFLOPs. The reported values correspond to the
worst-case results among 10 independent runs for each model, thereby providing a
conservative evaluation of performance.

Although some models, such as YOLOX-Tiny (mAP50 98.2%) and Real-Time Detection
Transformer ResNet-18 (RT-DETR-R18) (mAP50 98.2%), achieved slightly higher mAP50
values compared to CD-YOLOv10n (mAP50 98.1%), they exhibited clear disadvantages in
other critical areas. Specifically, YOLOX-Tiny had a 13.8% lower recall, along with higher
parameter counts and GFLOPs, thereby limiting its suitability for resource-constrained
environments. RT-DETR-R18, despite its impressive mAP50 and recall (94.7%), required
significantly higher parameter counts and GFLOPs than CD-YOLOv10n, leading to
increased computational burdens and reduced efficiency for real-time applications. For other
models, the performance gap with CD-YOLOv10n was even more pronounced, particularly
in terms of recall, parameter count, and GFLOPs, further underscoring the advantages of CD-
YOLOv10n.

In summary, although models like YOLOX-Tiny and RT-DETR-R18 achieve slightly
higher mAP50, their lower recall or significantly higher computational demands make them

less suitable for lightweight and deployment solutions. Considering all performance
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indicators, and given that even the worst-case results of CD-YOLOv10n remain competitive,
the model achieves an optimal balance between accuracy, recall, and resource efficiency,
making it the most robust and practical detection model for precision agriculture applications.

The proposed method demonstrates strong robustness and adaptability by combining deep
learning-based vegetable detection with a color-based segmentation approach for weed
identification. By leveraging bounding box information to isolate non-crop areas, the method
narrows the scope of weed segmentation, effectively avoiding the challenges associated with
directly recognizing diverse weed species. This design reduces reliance on large-scale
annotated weed datasets, simplifying the data collection process and improving the method’s
practicality in various agricultural scenarios.

Furthermore, the two-stage framework reduces potential errors in weed identification by
focusing segmentation efforts on non-crop areas. This targeted approach enhances the
method’s reliability and ensures its applicability across diverse farming environments. By
streamlining the weed identification process and eliminating the need for extensive weed
datasets, the proposed method provides an efficient and practical solution for precision
agriculture, addressing critical challenges in weed management with high accuracy.

It should be noted that a limitation of the proposed color-based segmentation approach is
its sensitivity to illumination variations and the presence of non-weed green objects such as
crop residues or algae. While the current implementation incorporates a green-dominance
guard condition to mitigate some false positives, further improvements are needed. Future
work could explore adaptive thresholding or color normalization in HSV/HSL spaces to
enhance robustness under varying light conditions. In addition, integrating multispectral or
near-infrared information may further help discriminate weeds from non-weed vegetation in
complex field environments.

This study developed an efficient vegetable recognition model, CD-YOLOv10n, which
demonstrated exceptional performance with a mAP50 of 98.1% and a recall of 93.4%. The
model also significantly reduced computational costs, as demonstrated by a notable decrease
in GFLOPs, improving its resource efficiency and suitability for practical deployment.
Furthermore, an innovative indirect weed detection strategy was introduced, requiring only
crop annotations during training. By combining crop identification with image processing
techniques, this approach effectively detected weeds in non-crop regions, addressing
limitations of traditional direct weed detection methods that rely heavily on labor-intensive
annotations. This proposed strategy improved robustness and adaptability to varying field
conditions, effectively handling challenges such as species diversity, weed density, and
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growth stages. Future research should focus on validating the method across diverse
agricultural scenarios to further enhance its practical applicability, including other vegetable
species and mixed cropping systems, since differences in morphology, planting patterns, and
canopy structure may affect model performance.

This study proposed CD-YOLOv10n, a lightweight detection model for indirect weed
identification. By integrating C2f-DBB and DySample, the model achieved superior accuracy
(mAP50 98.1%, recall 93.4%) while reducing parameters and GFLOPs compared with
YOLOv10n. The indirect weed detection strategy, based on crop detection followed by
optimized color-index segmentation, reduced annotation costs and improved robustness under
complex conditions.

While this study validated the approach on bok choy, the proposed pipeline has broader
applicability. Because the method relies on detecting crops rather than classifying diverse
weed species, it is less sensitive to the variability of weeds across environments. For
adaptation to other vegetables or mixed cropping systems, the model would only require
retraining on the limited set of crop classes relevant to the target field. Once the crop(s) are
reliably identified, all non-crop vegetation can still be indirectly classified as weeds,
regardless of species composition. This design reduces the need for extensive weed-specific
annotations and highlights the scalability of the method. Nonetheless, additional validation
across different vegetables and cropping patterns is necessary to confirm robustness under

more diverse agronomic conditions.
Funding

This work was supported by the Weifang Science and Technology Development Plan Project
(Grant No. 20242J1097), Shandong Provincial Natural Science Foundation (Grant No.
SYS202206), the National Natural Science Foundation of China (Grant No. 32072498),
Taishan Scholar Program of Shandong Province, and the Yuandu Scholar, Program of

Weifang, Shandong China.
Competing Interests

The authors declare no conflict of interest.

https://doi.org/10.1017/wsc.2025.10074 Published online by Cambridge University Press


https://doi.org/10.1017/wsc.2025.10074

References

Asaduzzaman M, Asao T, Amao | (2018) Vegetables—Importance of quality vegetables to
human health. Pages 1-18 in Asaduzzaman M, Asao T, eds. Vegetables—Importance
of Quality Vegetables to Human Health. London: IntechOpen

Bakhshipour A, Jafari A (2018) Evaluation of support vector machine and artificial neural

networks in weed detection using shape features. Comput Electron Agric 145:153-160

Bakhshipour A, Jafari A, Nassiri SM, Zare D (2017) Weed segmentation using texture

features extracted from wavelet sub-images. Biosyst Eng 157:1-12

Behmann J, Mahlein A-K, Rumpf T, Rémer C, Plumer L (2015) A review of advanced
machine learning methods for the detection of biotic stress in precision crop
protection. Precis Agric 16:239-260

Cai Z, Vasconcelos N (2019) Cascade R-CNN: High quality object detection and instance
segmentation. Pages 1483-1492 in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer
Society

Coleman GR, Bender A, Hu K, Sharpe SM, Schumann AW, Wang Z, Bagavathiannan MV,
Boyd NS, Walsh MJ (2022) Weed detection to weed recognition: reviewing 50 years
of research to identify constraints and opportunities for large-scale cropping systems.
Weed Technol 36:741-757

Dias JS, Ryder E (2011) World vegetable industry: production, breeding, trends. Pages 299—
356 in Janick J, ed. Horticultural Reviews. Vol 38. Hoboken, NJ: Wiley

Dyrmann M, Karstoft H, Midtiby HS (2016) Plant species classification using deep

convolutional neural network. Biosyst Eng 151:72-80

Elstone L, How KY, Brodie S, Ghazali MZ, Heath WP, Grieve B (2020) High speed crop and

weed identification in lettuce fields for precision weeding. Sensors 20:455

Feng C, Zhong Y, Gao Y, Scott MR, Huang W (2021) Tood: Task-aligned one-stage object
detection. Pages 3490-3499 in Proceedings of the IEEE/CVF International

Conference on Computer Vision. Los Alamitos, CA: IEEE Computer Society

https://doi.org/10.1017/wsc.2025.10074 Published online by Cambridge University Press


https://doi.org/10.1017/wsc.2025.10074

Fu L, Gao F, Wu J, Li R, Karkee M, Zhang Q (2020) Application of consumer RGB-D
cameras for fruit detection and localization in field: A critical review. Comput
Electron Agric 177:105687

Fu X, Qu H (2017) Research on semantic segmentation of high-resolution remote sensing
image based on full convolutional neural network. Pages 1-4 in Proceedings of the
IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Los
Alamitos, CA: IEEE

Ge Z, Liu S, Wang F, Li Z, Sun J (2021) Yolox: Exceeding yolo series in 2021. arXiv preprint
arXiv:2107.08430

Hamuda E, Glavin M, Jones E (2016) A survey of image processing techniques for plant

extraction and segmentation in the field. Comput Electron Agric 125:184-199

Huang H, Deng J, Lan Y, Yang A, Deng X, Wen S, Zhang H, Zhang Y (2018) Accurate weed
mapping and prescription map generation based on fully convolutional networks

using UAV imagery. Sensors 18:3299

Ishak AJ, Hussain A, Mustafa MM (2009) Weed image classification using Gabor wavelet
and gradient field distribution. Comput Electron Agric 66:53-61

Jin X, Bagavathiannan M, Maity A, Chen Y, Yu J (2022a) Deep learning for detecting

herbicide weed control spectrum in turfgrass. Plant Methods 18:94

Jin X, Bagavathiannan M, McCullough PE, Chen Y, Yu J (2022b) A deep learning-based
method for classification, detection, and localization of weeds in turfgrass. Pest
Manag Sci 78:4809-4821

Jin X, Che J, Chen Y (2021) Weed identification using deep learning and image processing in
vegetable plantation. IEEE Access 9:10940-10950

Jun ELT, Tham M-L, Kwan BH (2023) A Comparative Analysis of RT-DETR and YOLOv8
for Urban Zone Aerial Object Detection. Pages 340-345 in Proceedings of the IEEE
International Conference on Robotics and Automation. Los Alamitos, CA: IEEE

Kong X, Liu T, Chen X, Jin X, Li A, Yu J (2024) Efficient crop segmentation net and novel
weed detection method. Eur J Agron 161:127367

https://doi.org/10.1017/wsc.2025.10074 Published online by Cambridge University Press


https://doi.org/10.1017/wsc.2025.10074

Li X, Wang W, Wu L, Chen S, Hu X, Li J, Tang J, Yang J (2020) Generalized focal loss:
Learning qualified and distributed bounding boxes for dense object detection. Adv
Neural Inf Process Syst 33:21002-21012

Liu W, Lu H, Fu H, Cao Z (2023) Learning to upsample by learning to sample. Pages 6027-
6037 in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Los Alamitos, CA: IEEE Computer Society

Lu X, Li B, Yue Y, Li Q, Yan J (2019) Grid r-cnn. Pages 7363-7372 in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos,
CA: IEEE Computer Society

Mennan H, Jabran K, Zandstra BH, Pala F (2020) Non-chemical weed management in

vegetables by using cover crops: A review. Agronomy 10:257

Olsen A, Konovalov DA, Philippa B, Ridd P, Wood JC, Johns J, Banks W, Girgenti B, Kenny
O, Whinney J (2019) DeepWeeds: A multiclass weed species image dataset for deep
learning. Sci Rep 9:2058

Pereira LA, Nakamura RY, De Souza GF, Martins D, Papa JP (2012) Aquatic weed automatic
classification using machine learning techniques. Comput Electron Agric 87:56-63

Pignatti S, Casa R, Harfouche A, Huang W, Palombo A, Pascucci S (2017) Maize crop and
weeds species detection by using uav vnir hyperpectral data. Pages 7235-7238 in
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium
(IGARSS). Los Alamitos, CA: IEEE

Rasmussen J, Nielsen J, Streibig J, Jensen J, Pedersen K, Olsen S (2019) Pre-harvest weed
mapping of Cirsium arvense in wheat and barley with off-the-shelf UAVs. Precis
Agric 20:983-999

Ren S, He K, Girshick R, Sun J (2016) Faster R-CNN: Towards real-time object detection
with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137-1149

Sabzi S, Abbaspour-Gilandeh Y, Arribas JI (2020) An automatic visible-range video weed

detection, segmentation and classification prototype in potato field. Heliyon 6:e03787

Tellaeche A, Pajares G, Burgos-Artizzu XP, Ribeiro A (2011) A computer vision approach for

https://doi.org/10.1017/wsc.2025.10074 Published online by Cambridge University Press


https://doi.org/10.1017/wsc.2025.10074

weeds identification through Support Vector Machines. Appl Soft Comput 11:908-915

Tian Z, Shen C, Chen H, He T (2019) Fcos: Fully convolutional one-stage object detection.
Pages 9627-9636 in Proceedings of the IEEE/CVF International Conference on
Computer Vision. Los Alamitos, CA: IEEE Computer Society

Tiwari O, Goyal V, Kumar P, Vij S (2018) An experimental set up for utilizing convolutional
neural network in automated weed detection. Pages 1-6 in Proceedings of the IEEE

International Conference on Intelligent Systems. Los Alamitos, CA: IEEE

Too EC, Yujian L, Njuki S, Yingchun L (2019) A comparative study of fine-tuning deep

learning models for plant disease identification. Comput Electron Agric 161:272-279

Wang A, Chen H, Liu L, Chen K, Lin Z, Han J (2024a) Yolov10: Real-time end-to-end object
detection. Adv Neural Inf Process Syst 37:107984-108011

Wang C-Y, Yeh I-H, Mark Liao HY (2024b) Yolov9: Learning what you want to learn using
programmable gradient information. Pages 1-21 in Computer Vision — ECCV 2022.

Lecture Notes in Computer Science. Cham: Springer

Wu Z, Chen Y, Zhao B, Kang X, Ding Y (2021) Review of weed detection methods based on
computer vision. Sensors 21:3647

Yang L, Shami A (2020) On hyperparameter optimization of machine learning algorithms:

Theory and practice. Neurocomputing 415:295-316

Yu J, Schumann AW, Cao Z, Sharpe SM, Boyd NS (2019a) Weed detection in perennial
ryegrass with deep learning convolutional neural network. Front Plant Sci 10:1422

Yu J, Schumann AW, Sharpe SM, Li X, Boyd NS (2020) Detection of grassy weeds in

bermudagrass with deep convolutional neural networks. Weed Sci 68:545-552

Yu J, Sharpe SM, Schumann AW, Boyd NS (2019b) Deep learning for image-based weed
detection in turfgrass. Eur J Agron 104:78-84

Yu J, Sharpe SM, Schumann AW, Boyd NS (2019c) Detection of broadleaf weeds growing in
turfgrass with convolutional neural networks. Pest Manag Sci 75:2211-2218

Zhang H, Chang H, Ma B, Wang N, Chen X (2020a) Dynamic R-CNN: Towards high quality

https://doi.org/10.1017/wsc.2025.10074 Published online by Cambridge University Press


https://doi.org/10.1017/wsc.2025.10074

object detection via dynamic training. Pages 260-275 in Computer Vision — ECCV
2020. Lecture Notes in Computer Science. Vol 12349. Cham: Springer

Zhang H, Li F, Liu S, Zhang L, Su H, Zhu J, Ni LM, Shum HY (2022) Dino: Detr with
improved denoising anchor boxes for end-to-end object detection. arXiv preprint
arXiv:2203.03605

Zhang S, Chi C, Yao Y, Lei Z, Li SZ (2020b) Bridging the gap between anchor-based and
anchor-free detection via adaptive training sample selection. Pages 9759-9768 in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. Los Alamitos, CA: IEEE Computer Society

Zhang X, Wan F, Liu C, Ji R, Ye Q (2019) Freeanchor: Learning to match anchors for visual
object detection. Adv Neural Inf Process Syst 32:14789-14800

Zhang Z, Wang X, Wang L, Xia X (2024) Surface defect detection method for discarded

mechanical parts under heavy rust coverage. Sci Rep 14:7963

Zhu B, Wang J, Jiang Z, Zong F, Liu S, Li Z, Sun J (2020) Autoassign: Differentiable label
assignment for dense object detection. arXiv preprint arXiv:2007.03496

Zhu C, He Y, Savvides M (2019) Feature selective anchor-free module for single-shot object
detection. Pages 840-849 in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society

Zhuang J, Li X, Bagavathiannan M, Jin X, Yang J, Meng W, Li T, Li L, Wang Y, Chen Y
(2022) Evaluation of different deep convolutional neural networks for detection of
broadleaf weed seedlings in wheat. Pest Manag Sci 78:521-529

https://doi.org/10.1017/wsc.2025.10074 Published online by Cambridge University Press


https://doi.org/10.1017/wsc.2025.10074

.ﬂ J
' 8 i
] ]
19 !

1
'3 ._

-

-

-

“Backbone "\

-

Tsssama-

Figure 1. CD-YOLOvV10n architecture.
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YOLOvIOn vs CD-YOLOv10n (mAP50 over Epochs)
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Figure 2. Training accuracy (mAP50) versus epoch (0-100) for YOLOv10n and CD-
YOLOv10n. The x-axis shows training epochs, and the y-axis shows mAP50. Curves are

averaged across epochs and smoothed with a 3-epoch moving average for clarity.
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Comparison of YOLOv10n and CD-YOLOv 10n ( Train/Box_ Loss)

—e— YOLOvlOn
= CD-YOLOVI0n

Train/Box_Loss

o 20 o« ob S e
Fpoch

Figure 3. Training loss versus epoch (0-100) for YOLOv10n and CD-YOLOv10n. Loss
represents the weighted sum of box regression, objectness, and classification components.

Lower values indicate more accurate bounding box regression.
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Original images YOLOvI10n CD-YOLOv10n

Figure 4. Vegetable detection results of YOLOv10n and CD-YOLOv10n on challenging field scenes. Columns show the original image,
YOLOvV10n output, and CD-YOLOv10n output. Smaller inset boxes highlight regions where the two models differ, with bounding boxes
indicating predictions in difficult areas.
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Original images Vegetable detection Image processing

Figure 5. Vegetable detection and weed segmentation results. Columns show the original image, CD-YOLOv10n detection (vegetable bounding

boxes), and the segmentation output where green pixels outside the boxes are classified as weeds.
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Table 1. Number of images used for training, validation, and testing.

Dataset Number of images Proportion
Training 1200 80%
Validation 150 10%
Testing 150 10%
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Table 2. The hyperparameters for deep learning training.?

Hyperparameter Parameter value
Total epoch (n) 100

Batch size (images/iteration) 16

Number of workers (threads) 4

Learning Rate (-)° 0.001
Momentum (-) 0.937
Optimizer (algorithm) SGD¢

 Hyperparameter settings follow common practice for YOLO-family detectors (Wang et al.

2024a) and general principles of hyperparameter optimization (Yang and Shami 2020).

b (132

indicates a dimensionless parameter (no units).

¢ SGD, Stochastic Gradient Descent.
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Table3. Performance improvements achieved through the replacement of each component.

Model mAP50  mAP50-95 Precision  Recall Parameters GFLOPS®
(%) (%) (%) (%) quantity (G)
YOLOv10n 96.9 73.1 91.5 91.8 2707430 8.4
+C2f-DBB? 97.3 74.8 94.4 91.8 2265363 6.5
+Dysample 97.6 73.9 94.1 90.6 2277715 6.5

& C2f-DBB, C2f with Dynamic Block Branching.
® GFLOPs, Giga Floating-point Operations Per Second.

https://doi.org/10.1017/wsc.2025.10074 Published online by Cambridge University Press


https://doi.org/10.1017/wsc.2025.10074

Table 4. Results of ablation experiments.

Method C2f- Dysampl mAP5 mAP50~9 Precisio Recal Paramete GFLOPs

DBB e 0(%) 5 (%) n) 1 (%) r *(G)
a quantity
YOLOV10 969  73.1 91.5 91.8 2707430 8.4
n
PM1° \ 97.3 748 94.4 91.8 2265363 6.5
PM2 \ 976  73.9 94.1 90.6 2277715 6.5
Ours \ \ 98.1  75.2 92.9 93.4 2277715 6.5

8 C2f-DBB, C2f with Dynamic Block Branching.
b GFLOPs, Giga Floating-point Operations Per Second.

° PM, Proposed method.
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Table 5. Performance comparison of detection models.?

Model mAP50 mAP50- Recall Parameters GFLOPs"
(%) 95 (%) (%) quantity (G)
ATSS-R50° (Zhang et al. 2020b) 954 63.6 72.1 32113000 171
AutoAssign-R50° (Zhu et al. 2020)  94.1 59.1 68.1 36244000 168
Cascade R-CNN"-R50-FPN°® (Cai 96.0 68.0 74.3 69152000 205
and Vasconcelos 2019)
DINO' (Zhang et al. 2022) 87.8 66.9 84.0 47540000 235
Dynamic R-CNN-R50 (Zhang et al. 93.3 66.8 73.8 5033000 7.571
2020a)
Faster ~ R-CNN-R50-FPN-CIOU® 96.5 67.1 73.6 41394000 178
(Ren et al. 2016)
FreeAnchor-R50 (Zhang et al. 94.5 59.3 66.4 36330000 173
2019)
FCOS"-R50 (Tian et al. 2019) 79.2 40.4 55.7 32113000 167
FSAF' (Zhu et al. 2019) 95.8 59.5 66.7 36238000 172
GFL (Li et al. 2020) 95.1 64.8 73.7 32258000 174
Grid R-CNN (Lu et al. 2019) 94.9 62.2 68.8 64467000 291
TOOD-R50 (Feng et al. 2021) 95.1 64.8 72.8 32018000 168
YOLOX-Tiny (Ge et al. 2021) 98.2 75.3 79.6 5033000 7.571
YOLOV9t (Wang et al. 2024b) 97.9 76.5 93.8 1970979 7.6
RT-DETR-R18™ (Jun et al. 2024) 98.2 78.8 94.7 19873044 56.9
YOLOV10 (Wang et al. 2024a) 96.9 73.1 91.8 2707430 8.4
CD-YOLOv10 98.1 75.2 934 2277715 6.5

 Values represent the worst results from 10 independent runs for each model, providing a

conservative assessment of performance.

b ATSS, Adaptive Training Sample Selection.

°R50, ResNet-50.

9R-CNN, Region-Based Convolutional Neural Network

*FPN, Feature Pyramid Network.
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"DINO, DETR with Improved Denoising Anchor Boxes for End-to-End Object Detection.
9CIOU, Complete Intersection over Union.

"FCOS, Fully Convolutional One-Stage.

'FSAF, Feature Selective Anchor-Free.

JGFL, Generalized Focal Loss.

KTOOD, Task-aligned One-stage Object Detection.

'YOLO, You Only Look Once.

MRT-DETR-R18, Real-Time Detection Transformer ResNet-18.

" GFLOPs, Giga Floating Point Operations Per Second.
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