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Abstract 

Computer vision-based precision weed control has proven effective in reducing herbicide 

usage, lowering weed management costs, and enhancing sustainability in modern agriculture. 

However, developing deep learning models remains challenging due to the effort required for 

weed dataset annotation and the difficulty of identifying weeds at different stages and 

densities in complex field conditions. To address these challenges, this study introduces an 

indirect weed detection method that combines deep learning and image processing 

techniques. The proposed approach first employs an object detection network to identify and 

label crops within the images. Subsequently, image processing techniques are applied to 

segment the remaining green pixels, thereby enabling indirect detection of weeds. 

Furthermore, a novel detection network–CD-YOLOv10n (You Only Look Once version 10 

nano)–was developed based on the YOLOv10 framework to optimize computational 

efficiency. By redesigning the backbone (C2f-DBB) and integrating an optimized upsampling 

module (DySample), the network achieved higher detection accuracy while maintaining a 

lightweight structure. Specifically, the model achieved a mean average precision (mAP50) of 

98.1%, which is a 1.4% percentage-point increase compared with the YOLOv10n baseline, a 

relevant improvement given the already strong baseline performance. At the same time, 

compared to YOLOv10n, its GFLOPs were reduced by 22.62%, and the number of 

parameters decreased by 15.87%. These innovations make CD-YOLOv10n highly suitable 

for deployment on resource-constrained platforms.  

Keywords: deep learning; detection algorithms; image processing; precision weed 

management; weed detection 
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Introduction 

Vegetables play a critical role in human health by enhancing immunity, preventing chronic 

diseases, and addressing global "hidden hunger" through their rich nutritional content and 

phytochemicals (Asaduzzaman et al. 2018). Alongside staple crops, vegetables rank among 

the most widely cultivated and economically significant crops worldwide (Dias and Ryder 

2011). However, weeds pose a major challenge, not only by diminishing vegetable quality 

but also by causing yield losses of up to 45% to 90% (Mennan et al. 2020). Herbicides 

remain effective tools for weed suppression; however, excessive application can leave 

chemical residues in vegetables, increase environmental risks, and accelerate the evolution of 

resistant weed populations, which further complicates management (Mennan et al. 2020). 

Manual weeding, while reducing dependence on herbicides, is becoming increasingly 

unsustainable for large-scale agricultural production due to rising labor costs (Jin et al. 2021). 

Thus, developing automated, vision-based methods for distinguishing between crops and 

weeds has become increasingly essential for modern weed management (Jin et al. 2021). 

Computer vision has shown significant potential for precision herbicide application in 

modern agriculture (Yu et al. 2019a; Yu et al. 2020). Current approaches for distinguishing 

between crops and weeds primarily rely on either traditional image processing techniques or 

deep learning methods (Wu et al. 2021). Traditional methods rely on features such as texture 

(Bakhshipour et al. 2017; Ishak et al. 2009), shape (Bakhshipour and Jafari 2018; Pereira et al. 

2012), spectral properties (Elstone et al. 2020; Pignatti et al. 2019), and color (Hamuda et al. 

2016; Rasmussen et al. 2019). However, relying on a single  handcrafted feature (such as 

color or texture) is often insufficient for distinguishing crops from weeds, underscoring the 

need for multi-feature integration or deep learning-based approaches (Wu et al. 2021). To 

overcome this limitation, many studies have focused on integrating multiple features to 

improve detection accuracy (Sabzi et al. 2020). Machine learning techniques, such as Support 

Vector Machines (SVMs) and Artificial Neural Networks (ANNs), have been widely 

employed for crop and weed classification (Behmann et al. 2015; Tellaeche et al. 2011). 

While these methods can accurately identify weeds under certain conditions, their reliance on 

single or manually designed features often limits their robustness and generalization ability, 

especially in complex and diverse agricultural environments (Kong et al. 2024; Wu et al. 

2021). 
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In recent years, deep learning has been increasingly applied to the agricultural domain 

(Fu et al. 2020; Too et al. 2019). Deep learning-based approaches for weed detection and 

classification have demonstrated promising results (Tiwari et al. 2019; Yu et al. 2019b). 

Commonly used deep learning methods for weed detection include Convolutional Neural 

Networks (CNNs) (Dyrmann et al. 2016; Olsen et al. 2019; Yu et al. 2020; Yu et al. 2019c) 

and Fully Convolutional Networks (FCNs) (Fu and Qu, 2018; Huang et al. 2018). Yu et al. 

(2019a) evaluated several Deep Convolutional Neural Network (DCNN) models, including 

AlexNet, Visual Geometry Group Network (VGGNet), GoogleNet, and DetectNet, for 

detecting dandelion (Taraxacum officinale F.H. Wigg.), ground ivy (Glechoma hederacea 

L.), and spotted spurge (Euphorbia maculata L.; syn. Chamaesyce maculata (L.) Small) in 

perennial ryegrass (Poa annua L.). Among these, VGGNet achieved a high F1 score of 

92.78% and a Recall of 99.52% in multi-class classification tasks, while DetectNet excelled 

in detecting T. officinale with an F1 score of 98.43% and a Recall of 99.11%. Similarly, Jin et 

al. (2022b) evaluated DenseNet, EfficientNetV2, ResNet, RegNet, and VGGNet models for 

both multi-class and binary classification of weed species. In multi-class classification, 

VGGNet achieved an F1 score of 95.0% for detecting T. officinale and performed 

exceptionally well in identifying goosegrass [Eleusine indica (L.) Gaertn.], purple nutsedge 

(Cyperus rotundus L.), and white clover (Trifolium repens L.) in bermudagrass [Cynodon 

dactylon (L.) Pers.], with F1 scores ≥98.3%. In binary classification, where the goal was to 

distinguish weed-containing sub-images from turfgrass, the EfficientNetV2 model performed 

best, achieving F1 scores ≥98.1%. These results underscore the efficacy of deep learning-

based models in addressing the challenges of weed detection and classification across 

different contexts and tasks. 

Direct weed identification remains highly challenging due to the visual similarity 

between crops and weeds and the variability across field environments (Coleman et al. 2022; 

Jin et al. 2022a). Such morphological overlap and ecological variability introduce instability 

in feature extraction and reduce detection reliability(Coleman et al. 2022; Jin et al. 2022a; 

Zhuang et al. 2022). Another major bottleneck lies in dataset construction. Collecting and 

annotating sufficient images to represent diverse weed species across regions, growth stages, 

and densities requires immense effort, and the lack of such comprehensive datasets limits the 

robustness and generalization of deep learning models (Kong et al. 2024; Wu et al. 2021). 

This highlights the need for innovative approaches to overcome the limitations posed by data 

diversity and availability in weed detection tasks. To tackle these challenges, this study 
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proposes a novel deep learning–based approach for training a vegetable detection model. By 

first identifying vegetables within an image, all remaining green regions outside the detected 

area can be classified as weeds, providing a streamlined and efficient method for weed 

detection. In this study, we developed an effective two-step approach for weed detection: 

1. Building upon the YOLOv10 (Wang et al. 2024a), we propose a novel detection 

model, CD-YOLOv10n (C2f-DBB_Dysample_YOLOv10n), specifically designed 

for efficient vegetable identification. This model not only demonstrates outstanding 

performance in terms of detection accuracy but also achieves significant 

lightweighting, making it suitable for deployment in resource-constrained 

environments. 

2. Once vegetables are identified, all green pixels outside the bounding box are 

classified as weeds. Weed detection and segmentation are then performed using 

image processing techniques, ensuring a streamlined and precise approach to weed 

detection. 

Materials and Methods 

Dataset 

The images of vegetable seedlings used for training, validation, and testing in this study were 

collected in two batches from a vegetable farm on Bagua Island, Qixia District, Nanjing, 

China (32°12’ N, 118°48’ E), during July and September 2020. Each image had an original 

resolution of 4032 × 3024 pixels, and a total of 1500 images were obtained. To enhance the 

diversity and generalization ability of the neural network, the dataset included images of bok 

choy [Brassica rapa subsp. chinensis (L.) Hanelt.] from vegetable fields with different 

sowing times, captured under various lighting conditions, including sunny and overcast 

weather. To reduce processing time and enhance real-time performance in field applications, 

all sample images were standardized to 1400 × 1050 pixels using a custom Python script. The 

collected images were annotated using LabelImg software, focusing on rectangular bounding 

boxes around vegetable seedlings. After annotation, corresponding Extensible Markup 

Language (XML) label files were generated for each image, serving as training samples for 

the neural network model. The dataset was split into training (80%), validation (10%), and 

testing (10%) sets, as detailed in Table 1. 
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Improvement of YOLOv10n 

YOLO is a widely recognized single-stage object detection algorithm, demonstrating 

excellent performance across various detection tasks. Compared to two-stage object detection 

algorithms, single-stage algorithms like YOLO integrate object localization and candidate 

region generation (first stage) with the classification phase (second stage), significantly 

improving detection efficiency.  

To meet the need for cost-effective implementation, this study selected YOLOv10n, the 

simplest and most lightweight model in the YOLOv10 series, for detecting vegetable 

seedlings. However, the YOLOv10n algorithm has certain limitations in specific application 

scenarios, including limited feature extraction capacity that may hinder detection accuracy 

under complex and variable environmental conditions. Additionally, the model's ability to 

differentiate between morphologically similar objects may be insufficient, particularly in 

high-precision applications such as identifying specific plant species in diverse agricultural 

environments. To overcome these challenges and enhance the algorithm's performance in 

detecting vegetable seedlings, this study introduces several optimizations to the YOLOv10n 

framework. These improvements were designed to address its limitations while maintaining 

its efficiency and lightweight structure, ensuring better suitability for complex agricultural 

tasks. The algorithm was improved in two key aspects, as illustrated in Figure 1: 

1．The Cross Stage Partial Network Fusion (C2f) module in YOLOv10n's backbone 

network was replaced with the C2f with Dynamic Block Branching (C2f-DBB) 

module (Zhang et al. 2024), resulting in a reduction in module size and improved 

efficiency. 

2． The DySample module (Liu et al. 2023) was integrated into the neck network to 

replace the original upsampling mechanism in YOLOv10n, thereby enhancing the 

network's feature extraction capabilities.  

C2f-DBB module 

The C2f-DBB module is an optimized version of the original C2f design, in which Dynamic 

Block Branching (DBB) is integrated into the bottleneck structure (Zhang et al. 2024). DBB 

incorporates six transformation modes, all of which can be converted into convolutions 

during inference, thereby improving the model's representation capability. In addition, the 

C2f-DBB module incorporates the Global Attention Mechanism (GAM), which strengthens 
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feature interactions across both channel and spatial dimensions. By introducing DBB and 

attention mechanisms, the module significantly enhances feature extraction capabilities, 

leading to improved detection accuracy and model stability. 

DySample Block 

DySample is an ultra-lightweight and efficient dynamic upsampling technique that redefines 

the perspective of point sampling in the upsampling process. It avoids the high computational 

complexity and resource consumption inherent in traditional convolution-based methods. 

Notably, DySample operates without relying on high-resolution guiding features and is not 

constrained by additional CUDA package requirements. This results in significantly lower 

inference latency, memory usage, floating-point operations (FLOPs), and parameter count, 

optimizing both performance and resource efficiency. Liu et al. (2023) demonstrated that 

DySample outperforms other upsampling techniques across five major dense prediction tasks: 

semantic segmentation, object detection, instance segmentation, panoptic segmentation, and 

monocular depth estimation. In addition to its exceptional performance, DySample achieves 

efficiency comparable to bilinear interpolation. This makes it a reliable alternative to 

traditional methods like Nearest Neighbor or bilinear interpolation, offering a practical 

solution to enhance the performance and efficiency of existing dense prediction models. 

Experimental configuration 

In this study, all deep neural network models were trained and tested under a consistent 

hardware and software environment to ensure reproducibility. The hardware setup included 

Ubuntu 20.04.6 LTS as the operating system, an Intel® Xeon® W-2265 CPU, and an Nvidia 

GeForce RTX 3080 Ti GPU. For the software environment, a configured Conda environment 

was utilized, which included Python 3.8, PyTorch 2.3.1, CUDA 11.3. Details of the 

hyperparameter settings for the deep learning models are provided in Table 2. Additionally, 

to achieve better convergence, higher precision, and enhanced adaptability to real-world 

agricultural scenarios, Mosaic data augmentation was disabled during the final 10 training 

epochs. 
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Evaluation metrics 

This study employs multiple performance metrics, including precision, recall, mAP50, 

mAP50-95, and inference time, to comprehensively evaluate the performance of the deep 

learning models. The formulas for these metrics are as follows: 

          
  

     
     

       
  

     
     

                           
 

 

     

In this study, mAP is used to represent the average precision. Since our experimental 

case involves the identification of a single category, mAP specifically refers to the average 

precision (AP) for the vegetable category. True Positive (TP) denotes the number of samples 

correctly identified as vegetables, False Positive (FP) refers to the number of samples 

incorrectly identified as vegetables, and False Negative (FN) represents the number of 

samples that were not correctly identified as vegetables. 

Weed segmentation 

After crop bounding boxes were detected using the vegetable detector, green pixels outside 

the bounding boxes were segmented through a color-based image processing technique and 

marked as weeds. In this study, crops were detected but not segmented at the pixel level, 

which reduces annotation cost and computational complexity. However, this design may limit 

accurate identification of weeds located very close to seedlings, since bounding boxes cannot 

perfectly match crop boundaries. To enhance this process, the weed segmentation index 

proposed by Jin et al. (2021) was adopted and further optimized. Specifically, pixels were 

evaluated using the color index technique only if their green (G) component exceeded the red 

(R) or blue (B) components; otherwise, they were directly classified as non-weed pixels. This 

optimization improved segmentation accuracy while reducing computational complexity, 

resulting in a more efficient and precise weed detection workflow. 
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Results and Discussion 

Ablation experiments of each module 

Table 3 summarizes the performance metrics of the model after replacing individual 

components. The experimental results demonstrate that both the C2f-DBB and DySample 

strategies positively impacted model performance, with the C2f-DBB module achieving an 

mAP of 97.3% and the DySample module reaching 97.6%, compared with 96.9% for the 

baseline YOLOv10n before adding these modules. However, it is noteworthy that while the 

DySample module improved overall detection accuracy, it led to a 1.2% reduction in recall. 

Both optimization components effectively reduced the model complexity, significantly 

decreasing the number of parameters and GFLOPs. DySample exhibited the most pronounced 

impact on performance when replacing the neck network, whereas C2f-DBB achieved the 

greatest reduction in parameter count when replacing the backbone network. Both 

components contributed to a decrease in GFLOPs, indicating a reduction in the computational 

load of the neural network. 

To validate the effectiveness of the proposed optimization strategies, ablation 

experiments were conducted for each module, with detailed results presented in Table 4. The 

findings reveal that the improved CD-YOLOv10n model demonstrates exceptional and 

efficient feature extraction capabilities. Built on a lightweight core architecture, the model 

achieves significant improvements in operational efficiency without compromising 

performance. Additionally, both computational costs and parameter counts are effectively 

reduced. 

While the Dysample module enhances overall performance, it comes at the expense of a 

slight reduction in recall value. In contrast, the C2f-DBB module improved performance 

without sacrificing recall. By leveraging the strengths of both components, the proposed 

model achieved a balanced trade-off, reducing overall parameters while enhancing 

performance.  The proposed model outperformed YOLOv10n across key metrics, achieving 

improvements of +1.2% in mAP50, +2.1% in mAP50-95, +1.4% in precision, and +1.6% in 

recall. Meanwhile, the parameter counts and GFLOPs were reduced by 15.87% and 22.62%, 

respectively. These results highlight the significant advancements in both model performance 

and lightweight design, indicating the effectiveness of the proposed optimization strategies. 
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Training performance of the proposed method compared to YOLOv10n 

As shown in Figure 2, CD-YOLOv10n achieved higher accuracy than YOLOv10n 

throughout training, with a consistently superior mAP50 curve. First, the model exhibited a 

faster convergence rate, with its mAP50 value surpassing that of YOLOv10n during the early 

training stages (around the 7th to 10th epoch). This indicates that CD-YOLOv10n is capable 

of extracting effective features at an earlier stage. Second, the training process of CD-

YOLOv10n was notably more stable: as the mAP50 value approached 1, the curve showed 

smaller fluctuations and greater smoothness, suggesting improved reliability in later-stage 

predictions. Lastly, although the final mAP50 values of the two models were very close, CD-

YOLOv10n consistently maintained a slight advantage throughout most of the training 

process, consistently outperforming YOLOv10n. Overall, CD-YOLOv10n demonstrates 

superior performance in terms of convergence speed, stability, and training efficiency, 

highlighting the effectiveness of the proposed optimizations. 

CD-YOLOv10n demonstrated significant advantages in training loss performance. The 

training loss curve reflects the optimization process of bounding box regression, where lower 

values indicate more accurate localization of objects. As shown in the training loss curve in 

Figure 3, CD-YOLOv10n exhibited a faster decline in loss during the initial training stages. 

Although its initial loss was slightly higher than that of YOLOv10n, it quickly surpassed 

YOLOv10n, indicating higher efficiency in the early learning phase. Further analysis 

revealed that the loss curve of CD-YOLOv10n remained smoother throughout the training 

process. In particular, during the mid-to-late stages of training, the fluctuation amplitude was 

noticeably reduced, reflecting greater stability in the training process. Training stability refers 

to the smoothness and consistency of the optimization process, where fewer oscillations in 

the loss curve indicate more reliable convergence and reduced risk of overfitting. By the end 

of training, the loss value of CD-YOLOv10n was slightly lower than that of YOLOv10n, 

suggesting superior performance in bounding box precision and optimization. Overall, these 

findings highlight that CD-YOLOv10n outperforms YOLOv10n in both localization accuracy 

and training stability. 

Comparison of CD-YOLOv10n and YOLOv10n in vegetable detection 

As illustrated in Figure 4, the experimental results clearly demonstrate that CD-YOLOv10n 

achieved higher accuracy compared to YOLOv10n, particularly in terms of bounding box 
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localization. Moreover, CD-YOLOv10n exhibited significantly greater robustness in handling 

complex scenarios, such as occlusion and overlapping targets. These improvements highlight 

the model’s enhanced capability for precise detection under challenging conditions. 

Weed detection 

As shown in Figure 5, the proposed method accurately detected vegetable seedlings and 

effectively segmented weeds, even in visually complex agricultural scenes. The pipeline 

maintained robustness under challenging conditions such as occlusion, illumination variation, 

and overlapping plants, highlighting its potential for practical weed management in real field 

environments. 

Model Comparison Experiments 

To comprehensively evaluate the efficiency, accuracy, and superiority of the CD-YOLOv10n 

model, this study compared its performance with various object detection models for 

vegetable detection. The results are summarized in Table 5. To gain deeper insights into the 

performance of each model, a comparative analysis was conducted using key metrics, 

including mAP, Recall, parameter count, and GFLOPs. The reported values correspond to the 

worst-case results among 10 independent runs for each model, thereby providing a 

conservative evaluation of performance. 

Although some models, such as YOLOX-Tiny (mAP50 98.2%) and Real-Time Detection 

Transformer ResNet-18 (RT-DETR-R18) (mAP50 98.2%), achieved slightly higher mAP50 

values compared to CD-YOLOv10n (mAP50 98.1%), they exhibited clear disadvantages in 

other critical areas. Specifically, YOLOX-Tiny had a 13.8% lower recall, along with higher 

parameter counts and GFLOPs, thereby limiting its suitability for resource-constrained 

environments. RT-DETR-R18, despite its impressive mAP50 and recall (94.7%), required 

significantly higher parameter counts and GFLOPs than CD-YOLOv10n, leading to 

increased computational burdens and reduced efficiency for real-time applications. For other 

models, the performance gap with CD-YOLOv10n was even more pronounced, particularly 

in terms of recall, parameter count, and GFLOPs, further underscoring the advantages of CD-

YOLOv10n. 

In summary, although models like YOLOX-Tiny and RT-DETR-R18 achieve slightly 

higher mAP50, their lower recall or significantly higher computational demands make them 

less suitable for lightweight and deployment solutions. Considering all performance 
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indicators, and given that even the worst-case results of CD-YOLOv10n remain competitive, 

the model achieves an optimal balance between accuracy, recall, and resource efficiency, 

making it the most robust and practical detection model for precision agriculture applications. 

The proposed method demonstrates strong robustness and adaptability by combining deep 

learning-based vegetable detection with a color-based segmentation approach for weed 

identification. By leveraging bounding box information to isolate non-crop areas, the method 

narrows the scope of weed segmentation, effectively avoiding the challenges associated with 

directly recognizing diverse weed species. This design reduces reliance on large-scale 

annotated weed datasets, simplifying the data collection process and improving the method’s 

practicality in various agricultural scenarios. 

Furthermore, the two-stage framework reduces potential errors in weed identification by 

focusing segmentation efforts on non-crop areas. This targeted approach enhances the 

method’s reliability and ensures its applicability across diverse farming environments. By 

streamlining the weed identification process and eliminating the need for extensive weed 

datasets, the proposed method provides an efficient and practical solution for precision 

agriculture, addressing critical challenges in weed management with high accuracy. 

It should be noted that a limitation of the proposed color-based segmentation approach is 

its sensitivity to illumination variations and the presence of non-weed green objects such as 

crop residues or algae. While the current implementation incorporates a green-dominance 

guard condition to mitigate some false positives, further improvements are needed. Future 

work could explore adaptive thresholding or color normalization in HSV/HSL spaces to 

enhance robustness under varying light conditions. In addition, integrating multispectral or 

near-infrared information may further help discriminate weeds from non-weed vegetation in 

complex field environments. 

This study developed an efficient vegetable recognition model, CD-YOLOv10n, which 

demonstrated exceptional performance with a mAP50 of 98.1% and a recall of 93.4%. The 

model also significantly reduced computational costs, as demonstrated by a notable decrease 

in GFLOPs, improving its resource efficiency and suitability for practical deployment. 

Furthermore, an innovative indirect weed detection strategy was introduced, requiring only 

crop annotations during training. By combining crop identification with image processing 

techniques, this approach effectively detected weeds in non-crop regions, addressing 

limitations of traditional direct weed detection methods that rely heavily on labor-intensive 

annotations. This proposed strategy improved robustness and adaptability to varying field 

conditions, effectively handling challenges such as species diversity, weed density, and 
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growth stages. Future research should focus on validating the method across diverse 

agricultural scenarios to further enhance its practical applicability, including other vegetable 

species and mixed cropping systems, since differences in morphology, planting patterns, and 

canopy structure may affect model performance. 

This study proposed CD-YOLOv10n, a lightweight detection model for indirect weed 

identification. By integrating C2f-DBB and DySample, the model achieved superior accuracy 

(mAP50 98.1%, recall 93.4%) while reducing parameters and GFLOPs compared with 

YOLOv10n. The indirect weed detection strategy, based on crop detection followed by 

optimized color-index segmentation, reduced annotation costs and improved robustness under 

complex conditions.  

While this study validated the approach on bok choy, the proposed pipeline has broader 

applicability. Because the method relies on detecting crops rather than classifying diverse 

weed species, it is less sensitive to the variability of weeds across environments. For 

adaptation to other vegetables or mixed cropping systems, the model would only require 

retraining on the limited set of crop classes relevant to the target field. Once the crop(s) are 

reliably identified, all non-crop vegetation can still be indirectly classified as weeds, 

regardless of species composition. This design reduces the need for extensive weed-specific 

annotations and highlights the scalability of the method. Nonetheless, additional validation 

across different vegetables and cropping patterns is necessary to confirm robustness under 

more diverse agronomic conditions. 
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Figure 1. CD-YOLOv10n architecture.  
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Figure 2. Training accuracy (mAP50) versus epoch (0–100) for YOLOv10n and CD-

YOLOv10n. The x-axis shows training epochs, and the y-axis shows mAP50. Curves are 

averaged across epochs and smoothed with a 3-epoch moving average for clarity. 
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Figure 3. Training loss versus epoch (0–100) for YOLOv10n and CD-YOLOv10n. Loss 

represents the weighted sum of box regression, objectness, and classification components. 

Lower values indicate more accurate bounding box regression.
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Figure 4. Vegetable detection results of YOLOv10n and CD-YOLOv10n on challenging field scenes. Columns show the original image, 

YOLOv10n output, and CD-YOLOv10n output. Smaller inset boxes highlight regions where the two models differ, with bounding boxes 

indicating predictions in difficult areas.  
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Figure 5. Vegetable detection and weed segmentation results. Columns show the original image, CD-YOLOv10n detection (vegetable bounding 

boxes), and the segmentation output where green pixels outside the boxes are classified as weeds.
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Table 1. Number of images used for training, validation, and testing. 

Dataset Number of images Proportion 

Training 1200 80% 

Validation 150 10% 

Testing 150 10% 
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Table 2. The hyperparameters for deep learning training.
a
 

Hyperparameter Parameter value 

Total epoch (n) 100 

Batch size (images/iteration) 16 

Number of workers (threads) 4 

Learning Rate (–)
b
 0.001 

Momentum (–) 0.937 

Optimizer (algorithm) SGD
c
 

a 
Hyperparameter settings follow common practice for YOLO-family detectors (Wang et al. 

2024a) and general principles of hyperparameter optimization (Yang and Shami 2020). 

b 
“–” indicates a dimensionless parameter (no units).  

c
 SGD, Stochastic Gradient Descent.
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Table3. Performance improvements achieved through the replacement of each component. 

Model mAP50 

(%) 

mAP50-95 

(%) 

Precision 

(%) 

Recall 

(%) 

Parameters 

quantity 

GFLOPs
b
 

(G) 

YOLOv10n 96.9 73.1 91.5 91.8 2707430 8.4 

+C2f-DBB
a
 97.3 74.8 94.4 91.8 2265363 6.5 

+Dysample 97.6 73.9 94.1 90.6 2277715 6.5 

a
 C2f-DBB, C2f with Dynamic Block Branching. 

b 
GFLOPs, Giga Floating-point Operations Per Second. 
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Table 4. Results of ablation experiments. 

Method C2f-

DBB

a
 

Dysampl

e 

mAP5

0 (%) 

mAP50~9

5 (%) 

Precisio

n (%) 

Recal

l (%) 

Paramete

r 

quantity 

GFLOPs

b
 (G) 

YOLOv10

n 

  96.9 73.1 91.5 91.8 2707430 8.4 

PM1
c
 √  97.3 74.8 94.4 91.8 2265363 6.5 

PM2  √ 97.6 73.9 94.1 90.6 2277715 6.5 

Ours √ √ 98.1 75.2 92.9 93.4 2277715 6.5 

a 
C2f-DBB, C2f with Dynamic Block Branching. 

b 
GFLOPs, Giga Floating-point Operations Per Second. 

c
 PM, Proposed method. 
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Table 5. Performance comparison of detection models.
a
 

Model mAP50 

(%) 

mAP50-

95 (%) 

Recall 

(%) 

Parameters 

quantity 

GFLOPs
n
 

(G) 

ATSS-R50
b
 (Zhang et al. 2020b) 95.4 63.6 72.1 32113000 171 

AutoAssign-R50
c
 (Zhu et al. 2020) 94.1 59.1 68.1 36244000 168 

Cascade R-CNN
d
-R50-FPN

e
 (Cai 

and Vasconcelos 2019) 

96.0 68.0 74.3 69152000 205 

DINO
f
 (Zhang et al. 2022) 87.8 66.9 84.0 47540000 235 

Dynamic R-CNN-R50 (Zhang et al. 

2020a) 

93.3 66.8 73.8 5033000 7.571 

Faster R-CNN-R50-FPN-CIOU
g
 

(Ren et al. 2016) 

96.5 67.1 73.6 41394000 178 

FreeAnchor-R50 (Zhang et al. 

2019) 

94.5 59.3 66.4 36330000 173 

FCOS
h
-R50 (Tian et al. 2019) 79.2 40.4 55.7 32113000 167 

FSAF
i
 (Zhu et al. 2019) 95.8 59.5 66.7 36238000 172 

GFL
j
 (Li et al. 2020) 95.1 64.8 73.7 32258000 174 

Grid R-CNN (Lu et al. 2019) 94.9 62.2 68.8 64467000 291 

TOOD
k
-R50 (Feng et al. 2021) 95.1 64.8 72.8 32018000 168 

YOLOX
l
-Tiny (Ge et al. 2021) 98.2 75.3 79.6 5033000 7.571 

YOLOv9t (Wang et al. 2024b) 97.9 76.5 93.8 1970979 7.6 

RT-DETR-R18
m

 (Jun et al. 2024) 98.2 78.8 94.7 19873044 56.9 

YOLOv10 (Wang et al. 2024a) 96.9 73.1 91.8 2707430 8.4 

CD-YOLOv10 98.1 75.2 93.4 2277715 6.5 

a 
Values represent the worst results from 10 independent runs for each model, providing a 

conservative assessment of performance. 

b 
ATSS, Adaptive Training Sample Selection. 

c 
R50, ResNet-50. 

d 
R-CNN, Region-Based Convolutional Neural Network 

e 
FPN, Feature Pyramid Network. 
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f 
DINO, DETR with Improved Denoising Anchor Boxes for End-to-End Object Detection. 

g 
CIOU, Complete Intersection over Union. 

h 
FCOS, Fully Convolutional One-Stage. 

i 
FSAF, Feature Selective Anchor-Free. 

j 
GFL, Generalized Focal Loss. 

k 
TOOD, Task-aligned One-stage Object Detection. 

l 
YOLO, You Only Look Once. 

m 
RT-DETR-R18, Real-Time Detection Transformer ResNet-18. 

n 
GFLOPs, Giga Floating Point Operations Per Second. 
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