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Introduction. Within the context of orthogonal geometry, isometries of a real inner
product space induce Bogoliubov automorphisms of its associated Clifford algebras. The
question whether or not such automorphisms are inner is of considerable interest and
importance. Inner Bogoliubov automorphisms were fully characterized for the C* Clifford
algebra by Shale and Stinespring [14] and for the W* Clifford algebra by Blattner [2]:
each case engenders a corresponding notion of spin group, constructed as a group of units
inside the Clifford algebra [4].

Symplectic automorphisms of a real symplectic vector space induce Bogoliubov
automorphisms of its various associated Weyl algebras. Segal [11] introduced what might
be called the tame C* Weyl algebra; its inner Bogoliubov automorphisms were analyzed
by Shale [13]. The minimal C* Weyl algebra was introduced by Manuceau [5] and Slawny
[15]; see also [6]. Here we determine the inner Bogoliubov automorphisms of this
minimal C* Weyl algebra. The result is perhaps a little disappointing: it may be phrased
as follows.

THEOREM. Among the Bogoliubov automorphisms of the minimal C* Weyl algebra,
only the identity is inner.

Actually, we establish rather more: the result remains true when the symplectic
automorphisms themselves are merely additive and when the minimal C* Weyl algebra is
replaced by the von Neumann algebra generated in its trace representation.

Thus, the minimal C* Weyl algebra really is quite small. In particular, it does not
contain an Mpc group or metaplectic group of units; as noted above, this is in contrast
with the situation for Clifford algebras. We should remark that Mpc groups and
metaplectic groups have been constructed externally as groups of unitary operators
implementing Bogoliubov automorphisms in Fock representations [9], [13].

Building upon our main theorem, we refine an earlier result of Plymen [7] concerning
outer automorphic group representations. In addition, we place the tame C* Weyl
algebra in context and compare it with the minimal C* Weyl algebra.

The author is grateful to the referee for encouraging suggestions and to the National
Science Foundation for partial financial support.

The minimal C* Weyl algebra. Let (V, Q) be a real symplectic vector space: the
real vector space V may be infinite-dimensional; the skew bilinear form Q is nonsingular
in having trivial kernel.

The (exponential) Weyl algebra A(V,Q) is the complex associative algebra of all
finitely-supported maps V—*C, with pointwise linear operations and with product given
by

(<t>V)(v) = 2 s(x,y)(t>(x)xp{y)
x+y~v

for </>, ip eA(V, Q) and v e V; here
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x, y e V => £(*, y) = exp — Q(x,y)

where h — 2nh is a positive scalar. It is known [8] that A(V, Q) is central simple and lacks
zero-divisors. Further, A(V, Q) carries a canonical involution given by

4>eA(y,Q), ve ^PiJ
and a canonical trace given by evaluation at zero:

It is convenient to denote by dv the element of A(V, Q) taking value 1 at v e V and 0
elsewhere. Note that

in particular, <50 = l is the multiplicative identity of A(V,Q) and each Sv is invertible;
indeed, each 6V is unitary. Moreover, it is known [8] that the invertibles in A(V, Q) are
precisely the elements having singleton support: those of the form A6U for OT^A eC and
v e V.

We remark that {«5,,: v e V} is a basis for A(V, Q) and that

=I, \<t>(v)\2-
veV

It follows that the prescription

defines a Hermitian form on A(V, Q). The Hilbert space completion of A(V, Q) in the
induced norm ||-||T will be denoted Hr; it has {6v:v e V] as a complete orthonormal set.

Any nonzero representation of the simple algebra A(V, Q) is of course automatically
faithful. All such Hilbert space representations of A(V, Q) as an involutive algebra
induce the same pre C* norm on A(V, Q): if a eA(V, Q) then the operator norm ||jr(a)||
is independent of n:A{V, Q)-^B(H) and will be denoted ||a||. The completion of
A(V, Q) in the norm ||-|| is called the minimal C* Weyl algebra of (V, Q) and will be
denoted Sl(V, Q). Minimality of 2l(V,Q) may be expressed in terms of the following
universal property: by extension, any nonzero star-homomorphism n from A(V,Q) to a
C* algebra 93 induces an isomorphism from 2l(V, Q) to the norm closure of the image of
K in 93. We remark that 5l(V, Q) is a central simple C* algebra with a unique central
state; this faithful state agrees with x on A(V,Q) and will be denoted by the same
symbol. See [6] for details on these matters.

A specific (left regular) representation is determined by allowing A(V, Q) to act on
itself by left multiplication. This extends to define the trace representation

whose state corresponding to the cyclic vector 60 e A(V, Q) a HT is precisely r. Of course,
nx is essentially the GNS representation of 2I(V, Q) constructed from the state x. Note
that

As a consequence, the identity map on A(V, Q) extends to a contractive linear map

T:%(V,Q)-*UT;
of course, this is the map given by
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Our analysis will be facilitated by the decomposition of elements from 2l(V, Q).
Rather than develop decompositions in 2l(V\ Q) itself, we prefer to make use of the
Fourier decomposition in the Hilbert space HT relative to its complete orthonormal
system {6V: v e V}; the details are as follows. If a e 9l(K, Q) then T(a) e HT has Fourier
decomposition

T(a) = 2 «A
VSV

in which
v e V=>av = (T(a) \6v)t = (nt(a)60 \6v)r = T(d_va).

From this it follows that T is injective: indeed, if T(a) = 0 then t(6-va) = 0 for all
v e V so that x{a'a) = 0 for all a' € 2l(V, Q) by linearity and continuity of r; thus a = 0 by
faithfulness of T.

THEOREM. The contractive linear map

T:

is injective; if a e 3l(V, Q), then

T(a)=2 r(6.va)dv.
veV

A basic commutation property will conclude our preliminary material on the minimal
C* Weyl algebra. We claim that if a e St(K, Q) and x,y e V then adx = dya forces either
a = 0 or x = y. To see this, pass to Hr by application of T: thus, T(adx) = T(6ya) so that

v e V => r(d-ua6x) = r(6_vdya) => e(y, x)T(dx_va) = e(y, v)T{dy_ji)

since t is central. Taking absolute values now yields

veV^\T(6x-va)\ = \T(dy-va)\
since |e| = 1. Thus

\r(5_v+n(y^x)a)\ = \r(6_va)\

whenever v e V and n e Z . If « # 0 then T(a)¥=0 so that some r(d-va)¥=0; if also x¥=y
then an infinity of the Fourier coefficients of T(a) have equal nonzero modulus. This is
absurd.

T H E O R E M . Let a e %(V, Q) and x,y e V. If adx = 8ya, then either a = 0 or x =y.

This result forms the basis for our determination of the inner Bogoliubov auto-
morphisms of the minimal C* Weyl algebra.

Inner Bogoliubov automorphisms. Denote by Sp+(V, Q) the group of all additive
automorphisms g of V such that Q(gx,gy) = Q(x,y) for all x,yeV and denote by
Sp(V,Q) its subgroup of real-linear elements. Each geSp+(V,Q) induces an auto-
morphism 6g of the involutive algebra A(V, Q) by the rule

(t
so that in particular
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In turn, dg extends to an automorphism 0 g of the minimal C* Weyl algebra 2l(K,Q).
Traditionally, the term Bogoliubov automorphism is applied to an automorphism of
2l(K, Q) having the form Qg for some g in the real symplectic group Sp(V, Q); we shall
be more liberal, referring to ©g as a Bogoliubov automorphism whenever g lies in the
additive symplectic group Sp+(V, Q).

Our main result concerns necessary and sufficient conditions on geSp+(V,Q) in
order that the Bogoliubov automorphism @g of 9l(V, Q) be inner. These conditions turn
out to be rather stringent.

THEOREM. Let g e Sp+(V, Q). The Bogoliubov automorphism @g of the minimal C*
Weyl algebra Sl(V, Q) is inner if and only if g = I.

Proof. If &g is the inner automorphism determined by the unit a e ?l(V, Q) then

v eV^>adv = 6^0;

since a ± 0, it follows from our closing result in the preceding section that gv = v
whenever v e V and so g = I. The converse is plain. •

In fact, this result can be pressed somewhat further. The von Neumann algebra
$£T(V, Q) generated by 9I(V, Q) or A(V, Q) in the trace representation nT on HT will be
called the tracial W* Weyl algebra of (V, Q). Each g eSp+(V, Q) induces a Bogoliubov
automorphism of sdT(V, Q) which we shall again denote by @g. Being a cyclic trace
vector, <50eHT is separating for s£T(V, Q) in its action on HT; as a consequence, the
contractive linear map T:MT(V,Q)—*Ht defined by evaluation against 6,, is injective.
Arguing as for the minimal C* Weyl algebra, if a e s£r(V, Q) and x,y eV then adx = 6ya
forces either a = 0 or x =y. Thus the Bogoliubov automorphism ®g of Mt{V, Q) is inner
if and only if g = I.

THEOREM. Let geSp+{V,Q). The Bogoliubov automorphism &g of the tracial W*
Weyl algebra sdT(V ,Q) is inner if and only if g = I.

Of course, the result for the minimal C* Weyl algebra is a direct corollary of this
result for the tracial W* Weyl algebra; however, we wished to offer a separate proof. In
the interests of variety, we give an independent proof of the weaker analogous result for
the plain Weyl algebra A(V, Q). Write bar($) for the barycentre of the support of a
nonzero (peA(V,Q); note that if v e V then multiplication by dv on left or right
translates barycentres through v. Now, if O^a eA(V, Q) and x,y e V, then

adx = 6ya => bar(adx) = bar(6>,fl) => bar(a) + x = y + bar(a) ^>x = y.

As with the minimal C* Weyl algebra, this commutation property forces g = / if
g e Sp+(V, Q) and 6g is inner.

Thus, among the Bogoliubov automorphisms of the Weyl algebras ?l(K, Q) and
s£T(V, Q) naturally associated to the real symplectic vector space (V,Q), only the
identity is inner. These results provoke mixed reactions. On the one hand, they are
satisfying in their decisive nature. On the other hand, they demonstrate that ?l(V, Q) and
dt{V, Q) are really rather small. Contrary to what might be expected by analogy with the
case for Clifford algebras, these Weyl algebras do not contain metaplectic groups as
groups of units.
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As an application of our result on inner Bogoliubov automorphisms of the minimal
C* Weyl algebra, we simplify and extend a result of Plymen [7] on automorphic group
representations. Thus, let p.K—*Sp(V,Q) be a faithful symplectic representation of a
group K on the real symplectic vector space (V, Q). The composite &°p is then a faithful
representation of K by Bogoliubov automorphisms of the minimal C* Weyl algebra
2l(K,Q); our main theorem automatically ensures that if k e K then Q°p(k) is inner if
and only if k is the identity. We record this as follows.

THEOREM. Each faithful symplectic representation p of a group K on (V, Q) induces a
faithful outer automorphic representation ®°p of K on the minimal C* Weyl algebra

To be specific, we might let K be a locally compact Hausdorff group and let p be its
unitary (left) regular representation, with Q the imaginary part of the Hilbert space inner
product onV = L2(K). In fact, K might be any group at all if we equip it with the discrete
topology and counting measure, letting V be the space of all finitely-supported maps
K—*C, letting Q be the imaginary part of the Hermitian inner product given by
(/I l /2) = 11/1(0/2(0 f°r /1J2EV, and letting p be the representation given by

lK

~1l(p{k)f)(l) =f(k~1l) for/ e V and k,l e K; here, V can be completed if desired.
Our theorem both extends and simplifies Proposition 2 of [7]: on the one hand, the

real symplectic vector space can be arbitrary and we lift the hypothesis that the group be
separable; on the other hand, we do not need to take a countably infinite direct sum of
copies of the regular representation. In reference to this last point, such a summation was
called for in [7] because the inner Bogoliubov automorphisms of the minimal C* Weyl
algebra itself were not then known precisely: use was made instead of the characterization
of inner Bogoliubov automorphisms of the (larger) tame C* Weyl algebra.

Having reached this stage, it is appropriate that we discuss the tame C* Weyl algebra
and place it in context. Our account will be primarily descriptive; for details, we refer to
the original papers of Segal [11] and Shale [13].

We shall say that the (nonzero) Hilbert space representation n :A(V, Q)—» fl(IH) is
tame (or regular) if and only if, for each v eV, the one-parameter unitary group
/>-» 71(6^) is (weakly or strongly) continuous; note that these one-parameter groups then
have (Stone) infinitesimal generators satisfying the Heisenberg commutation relations. In
these terms, the celebrated uniqueness theorem due to Stone and von Neumann asserts
that if V is finite-dimensional then A(V, Q) admits precisely one irreducible tame
representation, of which any tame representation is a multiple (up to unitary equivalence,
of course).

Denote by &(V, Q) the set of all finite-dimensional symplectic subspaces of (V, Q)
and note that &(V, Q) is directed under inclusion. If Me&(V,Q) then the von
Neumann algebra si^(M, Q)=)A(M, Q) generated in any tame representation
fi:A(M, Q)-»fl(HM) is actually a factor of type I, as follows from the uniqueness
theorem of Stone and von Neumann: indeed, M^M, Q) = B(HM) when n is irreducible,
and von Neumann algebras generated in multiple representations are isomorphic. If also
JVef(V,Q) and McN, then the uniqueness theorem canonically associates to each
tame representation v:A(N, Q)-»fl(Hv) an injective star-homomorphism sifl{M,Q)^f
s£v(N, Q) such that the diagram of inclusions commutes.
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jtfM(M, Q) —» jiv(N, Q)

1 1
A(M, Q) » A(N, Q)

By definition, the tame C* Weyl algebra $4(V, Q) is the C* inductive limit of the
system of von Neumann algebras M^{M, Q) as M ranges over the directed set ^(V, Q);
here, the choice of tame representation ft :A(M, Q)—» B(Mfl) is ultimately immaterial. Of
course, as M ranges over SF{V, Q) the inclusions A(M, Q)—• M^M, Q) match together to
provide a canonical inclusion A(V, Q)^> s£(V, Q); the C* algebra generated by the
image of this inclusion is a copy of the minimal C* Weyl algebra 2l(K, Q). Note that if
g eSp(V,Q) then 6g extends to define a Bogoliubov automorphism 0 g of the tame C*
Weyl algebra sl{V, Q); the real-linearity of g ensures that it carries tame representations
to tame representations.

We should point out that if n :A(V, Q)—> fi(H) is a tame representation of A(V, Q)
itself then si(V, Q) can be realized more directly as follows. For each M e SP^V, Q) let
$£x(M, Q) denote the von Neumann algebra generated by {n(dv):v eM} in B(H); now
M(V,Q) is the uniform closure in fl(H) of the union U{4( jW,Q) :Mef (V,Q)} .
Naturally, this fact can be reformulated as a universal mapping property. As noted above,
we refer to Segal [11] for details on the tame C* Weyl algebra s&{V, Q) and its
significance as a universal C* algebra of field observables over (V, Q).

Incidentally, if (V, Q) is arbitrary then the existence problem for tame repre-
sentations of A(V, Q) is substantial: see Chapter IV of Segal [12]. If (V, Q) admits a
unitary structure—that is, a Hermitian inner product (complete or not) of which Q is the
imaginary part—then the corresponding Fock representation of A(V, Q) is certainly
tame. The question of whether or not (V, Q) admits unitary structures is itself not
fatuous. In general, unitary structures can definitely fail to exist: see [10]. However, in
applications it is often justifiable to assume the existence of a complete unitary structure:
see [1], [3], [12].

As a matter of fact, Shale [13] characterized the inner Bogoliubov automorphisms of
the tame C* Weyl algebra d{V, Q) in the case that (V, Q) is provided with a complete
unitary structure: if g e Sp(V, Q), then @g is inner if and only if g is tame in restricting to
the identity on Mx for some M e &(V, Q). We remark that the inner nature of
®g € Aut(V, Q) for tame g e Sp(V, Q) is essentially a consequence of the Stone and von
Neumann theorem together with the circumstance that si^M, Q) is constructed as a von
Neumann algebra for each M e &{V, Q); we remark further that the elements of
s£(V, Q) implementing 9 g are determined up to scalar multiples and may be assumed
unitary.

Now, let Spo(V, Q) signify the group of all tame real-linear symplectic automorph-
isms of (V, Q). The foregoing discussion has the following outcome: the group
Mpc

0(V, Q) of all unitary elements of s£(V, Q) implementing its inner Bogoliubov
automorphisms is a central extension of Spo(V, Q) by the circle T of unitary scalars; there
is a short exact sequence

where a sends ueMpo(V,Q) to geSpo(V,Q) in case ©g(a) = uau* whenever ae
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s£(V, Q). As is usual [9] for Mpc groups, Mpo(V, Q) has a distinguished unitary character
rj whose restriction to T is the squaring map; the kernel Mpo(V, Q) of rj is a double cover
of the tame symplectic group Spi}(V, Q) and so may be called the tame metaplectic group.

Thus, the tame C* Weyl algebra sd(V, Q) does contain the tame metaplectic group
Mpn(V, Q) as a group of unitaries implementing inner Bogoliubov automorphisms; of
course, it need hardly be said here that Sp()(V, Q) is a decidedly small subgroup of
Sp{V, Q) when V is infinite-dimensional. By way of contrast, recall that the minimal C*
Weyl algebra ?t(V, Q) has the identity as its only inner Bogoliubov automorphism and so
cannot possibly host a metaplectic group.

Still supposing V to be a complex Hilbert space of whose inner product Q is the
imaginary part, let us specialize and take JI:A(V, Q)—>B(H) to be the corresponding
Fock representation. The main result of Shale [13] now asserts that if g e Sp(V, Q) then
the Bogoliubov automorphism 0g of A(V, Q) is implemented in n by a unitary operator U
on H (in the sense that a eA(V, Q) implies n(6ga) = Ujz(a)U*) if and only if g lies in the
restricted symplectic group Sprcs(V) = Sp(V) denned by requiring the commutator [g,i]
to be Hilbert-Schmidt. The resulting group Mpc{V) of all such unitary implementers is a
non-split central circle extension of Sp(V); it splits over the unitary group of V since this
fixes the Fock state. For further details on Mpc(V) and a pertinent notion of metaplectic
group, see [9].

We close by remarking of an arbitrary real symplectic vector space (V, Q) that the
situation as regards unitary implementation of Bogoliubov automorphisms of A(V, Q) in
the trace representation nx is optimally good. By virtue of its uniqueness, the central state
T is invariant under all Bogoliubov automorphisms; consequently, these are all unitarily
implemented in nx. We can be more explicit: if g e Sp+(V, Q) then the automorphism 8g

of A(V, Q) extends to a unitary operator Ug on Hr fixing <50 and with the property that

a e A(V, Q)=> nx{Qsa) = Ugnt(a)U*;

needless to say, Ug lies in $&X{V, Q) if and only if g = I. In the terminology of C*
dynamical systems, the Bogoliubov automorphism group Sp+(V, Q) is naturally covari-
antly represented in JIX; note that here, the covariant representation U is a true
representation and not merely a projective one.
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