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Abstract

Let M be a Puiseux monoid, that is, a monoid consisting of nonnegative rationals (under standard addition).
In this paper, we study factorisations in atomic Puiseux monoids through the lens of their associated Betti
graphs. The Betti graph of b ∈ M is the graph whose vertices are the factorisations of b with edges between
factorisations that share at least one atom. If the Betti graph associated to b is disconnected, then we call b
a Betti element of M. We explicitly compute the set of Betti elements for a large class of Puiseux monoids
(the atomisations of certain infinite sequences of rationals). The process of atomisation is quite useful in
studying the arithmetic of Puiseux monoids, and it has been actively considered in recent literature. This
leads to an argument that for every positive integer n, there exists an atomic Puiseux monoid with exactly
n Betti elements.

2020 Mathematics subject classification: primary 13F15; secondary 13A05, 13F05, 20M13.

Keywords and phrases: nonunique factorisations, Puiseux monoid, atomicity, Betti graph, Betti element,
atomisation.

1. Introduction

Let M be an (additive) monoid that is cancellative and commutative. We say that a
noninvertible element of M is an atom if it cannot be written in M as a sum of two
noninvertible elements, and we say that M is atomic if every noninvertible element
of M can be written as a sum of finitely many atoms (allowing repetitions). A formal
sum of atoms which add up to b ∈ M is called a factorisation of b, while the number
of atoms in a factorisation z (counting repetitions) is called the length of z. Assume
now that M is an atomic monoid. If b is a noninvertible element of M, then the Betti
graph of b is the graph whose elements are the factorisations of b and whose set of
edges consists of all pairs of factorisations having at least one atom in common. A
noninvertible element of M is called a Betti element if its Betti graph is disconnected.
For a more general notion of a Betti element, namely, the syzygies of an Nk-graded
module, see [29]. Following [19], we say that an additive submonoid of Q is a Puiseux
monoid if it consists of nonnegative rationals. Factorisations in the setting of Puiseux
monoids have been actively investigated in the past few years (see [8, 15]). The primary
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purpose of this paper is to further understand factorisations in Puiseux monoids, now
through the lens of Betti graphs. Using Theorem 4.2, we construct a large class
of atomic Puiseux monoids for which we can explicitly describe the sets of Betti
elements. In fact, we show in Proposition 4.5 that any positive integer b can serve
as the cardinality of the set of Betti elements of a Puiseux monoid.

Betti graphs are relevant in the theory of nonunique factorisation because several of
the most relevant factorisation and length-factorisation (global) invariants are either
attained at Betti elements or can be computed using Betti elements. For instance,
Chapman et al. [6] proved that the catenary degree of every finitely generated
reduced monoid is attained at a Betti element. In addition, Chapman et al. [7] used
Betti elements to describe the delta set of atomic monoids satisfying the bounded
factorisation property (the catenary degree and the delta set are two of the most
relevant factorisation invariants). Betti elements have been studied by García-Sánchez
and Ojeda [13] in connection with uniquely presented numerical semigroups. In
addition, García-Sánchez et al. [12] characterised affine semigroups having exactly
one Betti element and, for those semigroups, they explicitly found various factorisation
invariants, including the catenary degree and the delta set. In the same direction,
Chapman et al. [5] recently proved that every length-factorial monoid that is not a
unique factorisation monoid has a unique Betti element. Even more recently, the sets of
Betti elements of additive monoids of the form (N0[α],+) for certain positive algebraic
numbers α have been explicitly computed by Ajran et al. [2].

This paper is organised as follows. In Section 2, we discuss most of the terminology
and nonstandard results needed to follow the subsequent sections. In Section 3, we pro-
vide some motivating examples and perform explicit computations of the sets of Betti
elements of some Puiseux monoids. These examples should provide certain intuition
to better understand our main results. In Section 4, which is the section containing
our main results, we discuss the notion of atomisation, which is a method introduced
by Gotti and Li in [26] that one can use to construct atomic Puiseux monoids with
certain desired factorisation properties. Indeed, most of the Puiseux monoids with
applications in commutative ring theory can be constructed using atomisation (see
[26, 27]). However, techniques involving atomisation reach far more deeply. For
instance, these ideas play a key role in obtaining realisation theorems for full systems
of sets of lengths in the setting of both numerical monoids and Puiseux monoids (see
[17, 21]). As the main result of this paper, we describe the set of Betti elements of
Puiseux monoids constructed by atomisation, and we completely determine the sets
of Betti elements for certain special types of atomised Puiseux monoids. Finally, we
provide the following application of our main result: for any possible size b, there
exists an atomic Puiseux monoid having precisely b Betti elements.

2. Background

2.1. General notation and terminology. We use terminology standard in the
general area of nonunique factorisation theory. We briefly review some of these
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definitions and direct the reader to [16] for any undefined notation. We let N denote the
set of positive integers and we set N0 := N ∪ {0}. In addition, we let P stand for the set
of primes. As it is customary, we let Z and Q denote the set of integers and the set of
rationals, respectively. If b, c ∈ Z, then we let �b, c� denote the discrete closed interval
from b to c; that is, �b, c� := {n ∈ Z | b ≤ n ≤ c} (observe that �b, c� is empty if b > c).
For a subset X consisting of rationals and q ∈ Q, we set

X≥q := {x ∈ X | x ≥ q},

and we define X>q in a similar manner. For q ∈ Q>0, we let n(q) and d(q) denote the
unique elements of N satisfying gcd(n(q), d(q)) = 1 and q = n(q)/d(q). For p ∈ P and
n ∈ N, the value vp(n) is the exponent of the largest power of p dividing n. Moreover,
the p-adic valuation is the map vp : Q≥0 → Z defined by vp(q) = vp(n(q)) − vp(d(q))
for q ∈ Q>0 and vp(0) = ∞. One can verify that the p-adic valuation satisfies the
inequality vp(q1 + · · · + qn) ≥ min{vp(q1), . . . , vp(qn)} for every n ∈ N and q1, . . . ,
qn ∈ Q>0.

2.2. Monoids. Throughout this paper, we tacitly assume that the term monoid refers
to a cancellative and commutative semigroup with an identity element. Unless we
specify otherwise, monoids in this paper will be additively written. Let M be a monoid.
We let M• denote the set M\{0}. The group of invertible elements of M is denoted
by U(M). A subset S of M is called a generating set if the only submonoid of M
containing S is M itself, in which case we write M = 〈S〉. For b, c ∈ M, we say that b
divides c in M and write b |M c if there exists b′ ∈ M such that c = b + b′. The monoid
M is called a valuation monoid if for any pair of elements b, c ∈ M, either b |M c or
c |M b.

A noninvertible element a ∈ M is called an atom provided that for all u, v ∈ M, the
fact that a = u + v implies that u ∈ U(M) or v ∈ U(M). The set consisting of all the
atoms of M is denoted by A(M). Following Coykendall et al. [10], we say that M is
antimatter ifA(M) is empty. An element b ∈ M is called atomic if either b is invertible
or b can be written as a sum of atoms (with repetitions allowed), while the whole
monoid M is called atomic if every element of M is atomic. It is well known that every
monoid satisfying the ascending chain condition on principal ideals (ACCP) is atomic
[16, Proposition 1.1.4]. The converse does not hold and we will discuss such examples
in the following sections.

2.3. Factorisations. Let M be a monoid. The set Mred := {b +U(M) | b ∈ M} is also
a monoid under the natural addition induced by that of M. (One can verify that Mred is
atomic if and only if M is atomic.) We let Z(M) denote the free commutative monoid
on the setA(Mred), that is, the monoid consisting of all formal sums of atoms in Mred.
The monoid Z(M) plays an important role in this paper, and the formal sums in Z(M)
are called factorisations. The greatest common divisor of two factorisations z and z′

in Z(M), denoted by gcd(z, z′), is the factorisation consisting of all the atoms z and
z′ have in common (counting repetitions). If a factorisation z ∈ Z(M) consists of �
atoms of Mred (counting repetitions), then we call � the length of z, in which case we
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often write |z| as an alternative for �. We say that a ∈ A(M) appears in z provided that
a +U(M) is one of the formal summands of z.

There is a unique monoid homomorphism πM : Z(M)→ Mred satisfying π(a) = a
for all a ∈ A(Mred), which is called the factorisation homomorphism of M. When there
seems to be no risk of ambiguity, we write π instead of πM . The set

ker π := {(z, z′) ∈ Z(M)2 | π(z) = π(z′)}

is called the kernel of π, and it is a congruence in the sense that it is an equiva-
lence relation on Z(M) such that if (z, z′) ∈ ker π, then (z + w, z′ + w) ∈ ker π for all
w ∈ Z(M). An element (z, z′) ∈ ker π is called a factorisation relation. For each b ∈ M,
we set

Z(b) := ZM(b) := π−1(b +U(M)) ⊆ Z(M)

and we call Z(b) the set of factorisations of b. Observe that Z(u) = {0} if and only
if u ∈ U(M). If |Z(b)| = 1 for every b ∈ M, then M is called a unique factorisation
monoid (UFM). For each b ∈ M, we set

L(b) := LM(b) := {|z| : z ∈ Z(b)} ⊂ N0

and we call L(b) the set of lengths of b. If |L(b)| = 1 for every b ∈ M, then M is called a
half-factorial monoid (HFM). Note that every UFM is an HFM (see [4] for examples
of HFMs that are not UFMs). Moreover, if 1 ≤ |L(b)| < ∞ for every b ∈ M, then M
is called a bounded factorisation monoid (BFM). Finally, if for each b ∈ M and each
distinct pair of factorisations z1 and z2 taken from Z(b) we have |z1| � |z2|, then M is
called a length-factorial monoid (LFM).

It follows directly from the definitions that every HFM is a BFM. Cofinite
submonoids of (N0,+) are called numerical monoids, and every numerical monoid
different from N0 is a BFM that is not an HFM. In addition, it is well known that every
BFM satisfies the ACCP [28, Corollary 1]. The converse does not hold as we will see in
Example 3.4. For a recent survey on factorisations in commutative monoids, see [18].

2.4. Betti elements and Betti graphs. A finite sequence z0, . . . , zk of factorisations
in Z(M) is called a chain of factorisations from z0 to zk provided that π(z0) = π(z1) =
· · · = π(zk). Let R be the subset of Z(M)2 consisting of all pairs (z, z′) such that there
exists a chain of factorisations z0, . . . , zk from z to z′ with gcd(zi−1, zi) � 0 for every
i ∈ �1, k�. It follows immediately that R is an equivalence relation on Z(M) that refines
ker π. Fix b ∈ M. We let Rb denote the set of equivalence classes of R inside Z(b),
and the element b is called a Betti element provided that |Rb| ≥ 2. The Betti graph ∇b
of b is the graph whose set of vertices is Z(b) having an edge between factorisations
z, z′ ∈ Z(x) precisely when gcd(z, z′) � 0. Observe that an element of M is a Betti
element if and only if its Betti graph is disconnected. We let Betti(M) denote the set
of Betti elements of M.
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FIGURE 1. For N = 〈14, 16, 18, 21, 45〉, the figure shows the Betti graph of 90 ∈ Betti(N) on the left and
that of 84 � Betti(N) on the right.

EXAMPLE 2.1. Consider the numerical monoid N := 〈14, 16, 18, 21, 45〉. Using the
SAGE package called numericalsgps GAP, we obtain |Betti(N)| = 9. Also,
90 ∈ Betti(N), while 84 � Betti(N). Figure 1 (taken from [25]) shows the Betti graphs
of both 84 and 90 in N.

3. Basic observations and motivating examples

It is clear that if a monoid is a UFM, then its set of Betti elements is empty.
Following Coykendall and Zafrullah [11], we say that a monoid M is an unrestricted
unique factorisation monoid (U-UFM) if its atomic elements have at most one
factorisation. It follows directly from the definitions that every UFM is a U-UFM
and that an atomic U-UFM is a UFM. We conclude this subsection by characterising
U-UFMs in terms of the existence of Betti elements.

PROPOSITION 3.1. A monoid is a U-UFM if and only if its set of Betti elements is
empty.

PROOF. The direct implication follows immediately because if a monoid is a U-UFM,
then the Betti graph of each element has at most one vertex and is, therefore, connected.

For the reverse implication, assume that M is a monoid containing no Betti
elements. Now suppose, by way of contradiction, that M is not a U-UFM. This means
that there exists an element x0 ∈ M such that |Z(x0)| ≥ 2. Let z0 and z′0 be two distinct
factorisations of x0. After dropping the common atoms of z0 and z′0, we can assume
that gcd(z0, z′0) is the empty factorisation. Since x0 is not a Betti element, z0 and z′0
must be connected in ∇x0 , and so there exists a factorisation w0 of x0 with w0 � z0
such that gcd(z0, w0) is nonempty. Now set z1 := z0 − gcd(z0, w0). Note that z1 is a
sub-factorisation of z0 satisfying |z0| > |z1| (because gcd(z0, w0) is nonempty). Take
x1 ∈ M such that z1 is a factorisation of x1, and observe that x1 has at least two
factorisations, namely, z1 and w0 − gcd(z0, w0). Because x1 is not a Betti element, there
must be a factorisation w1 of x1 with w1 � z1 such that gcd(z1, w1) is nonempty. Now
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set z2 := z1 − gcd(z1, w1). Note that z2 is a sub-factorisation of z1 satisfying |z1| > |z2|
(because gcd(z1, w1) is nonempty). Proceeding in this fashion, we can find a sequence
(zn)n≥0 of factorisations in M such that |zn| > |zn+1| for every n ∈ N0. However, this
contradicts the well-ordering principle. Hence, M must be a U-UFM. �

We state the following simple corollary to Proposition 3.1 which may be of special
interest.

COROLLARY 3.2. If M is an atomic monoid which is not a UFM, then Betti(M) � ∅.
It is well known that a Puiseux monoid is a UFM if and only if it is an HFM.

This occurs if and only if it can be generated by one element, in which case it is
isomorphic to N0 (see [22, Proposition 4.3]). There are, however, non-HFM atomic
Puiseux monoids that contain finitely many Betti elements. The next two examples
illustrate this observation.

EXAMPLE 3.3. Let M be a finitely generated Puiseux monoid. If M � 〈q〉 for any
element q ∈ Q>0, then it follows from [13, Remark 2] that M contains at least one
Betti element. Since M is finitely generated, it must be isomorphic to a numerical
monoid and, therefore, M has finitely many Betti elements (see [14, Section 9.3]).
Thus, every finitely generated Puiseux monoid that is not generated by a single rational
has a nonempty finite set of Betti elements.

It was proved in [5, Proposition 3.5] that if a monoid is an LFM that is not
a UFM, then it contains exactly one Betti element, and it follows directly from
[5, Proposition 5.7] that a Puiseux monoid is an LFM if and only if it can be generated
by two elements. However, there are nonfinitely generated atomic Puiseux monoids
with exactly one Betti element. This is illustrated in the following example.

EXAMPLE 3.4. Consider the Puiseux monoid M := 〈1/p | p ∈ P〉. It is well known
that M is atomic with A(M) = {1/p | p ∈ P}. It follows from [3, Example 3.3] (see
[23, Proposition 4.2(2)] for more details) that every element q ∈ M can be written
uniquely as

q = c +
∑
p∈P

cp
1
p

,

where c ∈ N0 and cp ∈ �0, p − 1� for every p ∈ P (here, all but finitely many of the
coefficients cp are zero). From this, we can infer that for any element q ∈ M, the
conditions |Z(q)| = 1 and 1 �M q are equivalent. We claim that Betti(M) = {1}. To argue
this equality, fix q ∈ M•. If 1 �M q, then |Z(q)| = 1 and so ∇q is trivially connected,
whence q is not a Betti element. Assume, however, that 1 |M q and, therefore, that
|Z(q)| ≥ 2. Suppose first that q � 1. Because M is atomic, we can write q = 1 +

∑k
i=1 ai

for some k ∈ N and a1, . . . , ak ∈ A(M). Observe that any two factorisations in Z(q)
of the form p(1/p) + a1 + · · · + ak with p ∈ P are connected in the graph ∇q. In
addition, any other factorisation in Z(q) contains an atom 1/p0 for some p0 ∈ P, so
this factorisation must be connected in ∇q to the factorisation p0(1/p0) + a1 + · · · + ak.
Hence, ∇q is connected when 1 |M q and q � 1, and so q is not a Betti element. Finally,
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we see that q = 1 is a Betti element: indeed, in this case, Z(1) = {p(1/p) | p ∈ P}, so
the Betti graph of 1 contains no edges. Hence, Betti(M) = {1}.

Additionally, M offers us an example of a Puiseux monoid which satisfies the ACCP,
but is not a BFM. To see this, let c(q) denote the c in the canonical representation of
q established above, and let s(q) :=

∑
p∈P cp be the sum of the coefficients in the same

canonical representation of q. To argue that M satisfies the ACCP, let (qn +M)n≥1 be
an ascending chain of principal ideals. Observe that qn +M ⊆ qn+1 +M implies that
c(qn) ≥ c(qn+1), and so the sequence (c(qn))n≥1 must become stationary from some
point on. Then, after dropping finitely many terms from the initial ascending chain
of ideals, we can assume that the sequence (c(qn))n≥1 is constant, with all its terms
being c. After replacing each term qn +M by qn − c +M, we can further assume that
in the initial chain of principal ideals, c(qn) = 0 for every n ∈ N. Then, for each n ∈ N,
the uniqueness of the canonical representation of qn guarantees that qn has a unique
factorisation in M. Thus, the ascending chain of principal ideals (qn +M)n≥1 must
stabilise, and so M satisfies the ACCP. To see that M is not a BFM, it suffices to
observe that P ⊆ L(1).

The Puiseux monoids in the examples we have discussed so far have finitely many
Betti elements. However, there exist atomic Puiseux monoids having infinitely many
Betti elements. We provide an example showing this in the next section (Example 4.4).

4. Atomisation and Betti elements

It turns out that we can construct Puiseux monoids with any prescribed number
of Betti elements. Before doing so, we need to introduce the notion of atomisation,
which is a useful technique to construct Puiseux monoids satisfying certain desired
properties. Let (qn)n≥1 be a sequence consisting of positive rationals and let (pn)n≥1 be
a sequence of pairwise distinct primes such that gcd(pi, n(qi)) = gcd(pi, d(qj)) = 1 for
all i, j ∈ N. Following Gotti and Li [26], we say that

M :=
〈 qn

pn

∣∣∣∣ n ∈ N
〉

is the Puiseux monoid of (qn)n≥1 atomised at (pn)n≥1. It is not hard to argue that M is
atomic withA(M) = {qn/pn | n ∈ N} (see [26, Proposition 3.1] for the details). It turns
out that we can determine the Betti elements of certain Puiseux monoids obtained by
atomisation. We will pursue this further in Theorem 4.2. First, we need the following
technical lemma.

LEMMA 4.1. Let (qn)n≥1 be a sequence consisting of positive rational numbers and
let (pn)n≥1 be a sequence of prime numbers whose terms are pairwise distinct such
that gcd(pi, n(qi)) = gcd(pi, d(qj)) = 1 for all i, j ∈ N. Let M be the Puiseux monoid of
(qn)n≥1 atomised at (pn)n≥1. Then every element q ∈ M can be uniquely written as

q = nq +
∑
n∈N

cn
qn

pn
, (4.1)
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where nq ∈ 〈qn | n ∈ N〉 and cn ∈ �0, pn − 1� for every n ∈ N (here cn = 0 for all but
finitely many n ∈ N).

PROOF. It suffices to prove the existence and uniqueness of the decomposition in (4.1)
for every nonzero element q ∈ M. Fix q ∈ M•. Let N be the submonoid of M generated
by the sequence (qn)n≥1, that is,

N := 〈qn | n ∈ N〉.

It follows from [26, Proposition 3.1] that M is an atomic Puiseux monoid with

A(M) =
{ qn

pn

∣∣∣∣ n ∈ N
}
.

For the existence of the decomposition in (4.1), we first decompose q as in (4.1)
without imposing the condition that cn < pn for all n ∈ N. Since M is atomic, there
is at least one way to decompose q in the specified way (with nq = 0). Among all
such decompositions, choose q = nq +

∑
n∈N cn(qn/pn) to be one minimising the sum∑

n∈N cn. We claim that in the chosen decomposition, cn < pn for every n ∈ N. Observe
that if there existed k ∈ N such that ck ≥ pk, then

q = n′q + (ck − pk)
qk

pk
+
∑

n∈N\{k}
cn

qn

pn
,

where n′q := nq + qk ∈ N would be another decomposition with smaller corresponding
sum, which is not possible given the minimality of

∑
n∈N cn. Hence, every element

q ∈ M has a decomposition as in (4.1) satisfying cn ∈ �0, pn − 1� for every n ∈ N.
For the uniqueness, suppose that q has a decomposition as in (4.1) and also

a decomposition q = n′q +
∑

n∈N c′n(qn/pn) satisfying n′q ∈ N and c′n ∈ �0, pn − 1� for
every n ∈ N (with c′n = 0 for all but finitely many n ∈ N). Observe that for each n ∈ N,
the pn-adic valuation of each element of N is nonnegative and the pn-adic valuation of
qk/pk is also nonnegative when k � n. Thus, for each n ∈ N, after applying the pn-adic
valuation to both sides of n′q − nq =

∑
n∈N(cn − c′n)(qn/pn), we find that pn | cn − c′n,

which implies that c′n = cn (here we are using the fact that cn, c′n ∈ �0, pn − 1�).
Therefore, c′n = cn for every n ∈ N and so n′q = nq. As a consequence, we can conclude
that the decomposition in (4.1) is unique. �

With notation as in the statement of Lemma 4.1, we call the equality in (4.1) the
canonical decomposition of q. We are now in a position to argue the main result of
this section. Our proof of the following theorem is motivated by the argument given in
Example 3.4.

THEOREM 4.2. Let (qn)n≥1 be a sequence consisting of positive rational numbers and
let (pn)n≥1 be a sequence of prime numbers whose terms are pairwise distinct such
that gcd(pi, n(qi)) = gcd(pi, d(qj)) = 1 for all i, j ∈ N. Let M be the Puiseux monoid of
(qn)n≥1 atomised at (pn)n≥1. Then the following statements hold.
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(1) For each j ∈ N, the length-pj factorisation pj(qj/pj) is an isolated vertex in ∇qj .
(2) Betti(M) ⊆ 〈qn | n ∈ N〉.
(3) {qn | n ∈ N} ⊆ Betti(M) if 〈qn | n ∈ N〉 is antimatter.
(4) Betti(M) ⊆ {qn | n ∈ N} if 〈qn | n ∈ N〉 is a valuation monoid.

PROOF. Set N := 〈qn | n ∈ N〉. As mentioned in Lemma 4.1, the Puiseux monoid M is
atomic with

A(M) =
{ qn

pn

∣∣∣∣ n ∈ N
}
.

(1) Fix j ∈ N and let us argue that z := pj(qj/pj) is an isolated factorisation in the
Betti graph of qj. If |Z(qj)| = 1, then we are done. Suppose, however, that |Z(qj)| ≥
2 and take c1, . . . , ck ∈ N0 such that z′ :=

∑k
i=1 ci(qi/pi) is a factorisation of qj in M

with z � z′ (we can assume, without loss of generality, that k ≥ j). Because vpj (qj) = 0,
we can apply the pj-adic valuation to both sides of the equality qj =

∑k
i=1 ci(qi/pi)

to find that pj | cj. Thus, the fact that z � z′ ensures that cj = 0. As a consequence,
gcd(z, z′) = 0. We can conclude, therefore, that z is an isolated factorisation in the
Betti graph ∇qj .

(2) Fix q ∈ M. It suffices to prove that if q � N, then q is not a Betti element. To do
so, assume that q � N. In light of Lemma 4.1, we can write q uniquely as

q = nq +
∑
n∈N

cn
qn

pn
,

where nq ∈ N and cn ∈ �0, pn − 1� for every n ∈ N. Since q � N, there exist k ∈ N
such that ck � 0. In this case, the pk-adic valuation of q is negative and, therefore,
every factorisation of q must contain the atom qk/pk, whence ∇q is connected. Hence,
Betti(M) ⊆ N.

(3) Assume that N is an antimatter monoid. For any j ∈ N, recall from part (1) that
z := pj(qj/pj) is an isolated factorisation in the Betti graph ∇qj . Also, since N is an
antimatter monoid, there exist k ∈ N and s ∈ N• such that qj = qk + s. Now set

z′ := pk
qk

pk
+ z′′,

where z′′ is a factorisation of s in M. Since k � j, we see that z′ is a factorisation of qj in
M that is different from z. Since z is isolated, gcd(z, z′) = 0 and so ∇qj is disconnected.
Hence, qj is a Betti element of M. As a result, the inclusion {qn | n ∈ N} ⊆ Betti(M)
holds.

(4) Lastly, assume that N is a valuation monoid. Fix q ∈ M• \ {qn | n ∈ N} and let
us argue that q is not a Betti element of M. If q � N, then it follows from part (2) that
q � Betti(M). Hence, we assume that q ∈ N. Fix two factorisations

z :=
∑
n∈N

cn
qn

pn
and z′ :=

∑
n∈N

c′n
qn

pn

of q (here, all but finitely many cn and all but finitely many c′n equal 0). For each
n ∈ N, the fact that q ∈ N implies that q has nonnegative pn-adic valuation, and
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so after applying the pn-adic valuation to both equalities q =
∑

n∈N cn(qn/pn) and
q =
∑

n∈N c′n(qn/pn), we find that pn | cn and pn | c′n. Because q is nonzero, we can take
k, � ∈ N such that ck ≥ pk and c′� ≥ p�. Since N is a valuation monoid, either qk |N q�
or q� |N qk. Assume, without loss of generality, that q� |N qk. Then there exists s ∈ N
such that qk = q� + s. Now take a factorisation zs of s in M and set

z′′ := z − pk
qk

pk
+ p�

q�
p�
+ zs.

Notice that z′′ is a factorisation of q in M. As q � {qn | n ∈ N}, it follows that
gcd(z, z′′) � 0. Also, the atom q�/p� has nonzero coefficients in both z′ and z′′, which
implies that gcd(z′, z′′) � 0. As the factorisations z and z′ are both adjacent to z′′ in the
Betti graph ∇q, there is a length-2 path between them. Since z and z′ were arbitrarily
taken, the graph ∇q is connected, which means that q is not a Betti element. Hence,
Betti(M) ⊆ {qn | n ∈ N}. �

As an immediate consequence of Theorem 4.2, we obtain the following corollary.

COROLLARY 4.3. Let (qn)n≥1 be a sequence consisting of positive rational numbers
and let (pn)n≥1 be a sequence of prime numbers whose terms are pairwise distinct such
that gcd(pi, n(qi)) = gcd(pi, d(qj)) = 1 for all i, j ∈ N. Let M be the Puiseux monoid of
(qn)n≥1 atomised at (pn)n≥1. If 〈qn | n ∈ N〉 is an antimatter valuation monoid, then

Betti(M) = {qn | n ∈ N}.

As an application of Corollary 4.3, we can easily determine the set of Betti elements
of Grams’ monoid.

EXAMPLE 4.4. Let (pn)n≥0 be the strictly increasing sequence whose underlying set
consists of all odd primes, and consider the Puiseux monoid

M :=
〈 1

2n pn

∣∣∣∣ n ∈ N0

〉
.

The monoid M is often referred to as Grams’ monoid as it was the crucial ingredient
in Grams’ construction of the first atomic integral domain not satisfying the ACCP
(see [27] for the details of the construction). Observe that M is the atomisation of the
sequence (1/2n)n≥0 at the sequence of primes (pn)n≥0. As a consequence, it follows
from [26, Proposition 3.1] that M is an atomic Puiseux monoid with

A(M) =
{ 1

2n pn

∣∣∣∣ n ∈ N0

}
.

However, M does not satisfy the ACCP because (1/2n +M)n≥0 is an ascending chain
of principal ideals of M that does not stabilise. Since 〈1/2n | n ∈ N0〉 is an antimatter
valuation monoid, it follows from Corollary 4.3 that

Betti(M) =
{ 1

2n

∣∣∣∣ n ∈ N0

}
.
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As a final application of Theorem 4.2, we construct atomic Puiseux monoids with
any prescribed number of Betti elements.

PROPOSITION 4.5. For each b ∈ N ∪ {∞}, there exists an atomic Puiseux monoid M
such that |Betti(M)| = b.

PROOF. We have seen in Example 4.4 that Grams’ monoid is an atomic Puiseux
monoid and we have also seen in the same example that the Grams’ monoid has
infinitely many Betti elements. Therefore, it suffices to assume that b ∈ N.

Fix b ∈ N. Now consider the sequence (qn)n≥1 whose terms are defined as
qkb+r := r + 1 for every k ∈ N0 and r ∈ �0, b − 1�. Now let (pn)n≥1 be a strictly
increasing sequence of primes such that pn > b for every n ∈ N. Then gcd(pi, n(qi)) =
gcd(pi, d(qj)) = 1 for all i, j ∈ N. Let M be the Puiseux monoid we obtain after
atomising the sequence (qn)≥1 at the sequence (pn)n≥1. It follows from [26, Proposition
3.1] that M is an atomic Puiseux monoid with

A(M) :=
{ qn

pn

∣∣∣∣ n ∈ N
}
.

Observe that 〈qn | n ∈ N〉 = 〈1, . . . , b〉 = N0, which is a valuation monoid. As a
consequence, it follows from Theorem 4.2(4) that Betti(M) ⊆ {qn | n ∈ N} = �1, b�.
Now fix m ∈ �1, b�, and let us check that m is a Betti element. To do this, first observe
that the Betti graph ∇m contains infinitely many vertices because

{
pkb+(m−1)

m
pkb+(m−1)

∣∣∣∣ k ∈ N
}
⊆ Z(m).

Therefore, ∇m must be disconnected as it follows from Theorem 4.2(1) that
pm−1(m/pm−1) is an isolated vertex in ∇m. Hence, Betti(M) = �1, b� and so
|Betti(M)| = b, as desired. �

We note that using [13, Example 14], given b � ∞ as in Proposition 4.5, one can
construct a numerical monoid N with |Betti(N)| = b. Obviously, these examples are
finitely generated and differ greatly from those presented above.

Among the examples of atomic Puiseux monoids we have discussed so far, the only
one having infinitely many Betti elements is Grams’ monoid, which does not satisfy the
ACCP. However, there are Puiseux monoids containing infinitely many Betti elements
that are finite factorisation monoids (FFMs). The following example illustrates this
observation.

EXAMPLE 4.6. Let q be a noninteger positive rational and consider the Puiseux
monoid Mq := 〈qn | n ∈ N0〉. It is well known that Mq is atomic provided that q−1 � N,
in which case, A(Mq) = {qn | n ∈ N0} (see [24, Theorem 6.2] and also [9, Theorem
4.2]). It follows from [2, Lemma 4.3] that Betti(Mq) = {n(q)qn | n ∈ N0}. Thus, Mq is
an atomic Puiseux monoid with infinitely many Betti elements. When q > 1, it follows
from [20, Theorem 5.6] that Mq is an FFM (in particular, Mq satisfies the ACCP).
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As we have mentioned in Example 3.3, every finitely generated Puiseux monoid
has finitely many Betti elements. Although the class of finitely generated monoids sits
inside the class of FFMs (see [16, Proposition 2.7.8]), we have seen in Example 4.6
that inside the class of Puiseux monoids, the finite factorisation property is not enough
to guarantee that the set of Betti elements is finite.

However, every atomic Puiseux monoid with finitely many Betti elements we have
discussed so far satisfies the ACCP: these include the Puiseux monoids discussed in
Examples 3.3 and 3.4 as well as the Puiseux monoids constructed in the proof of
Proposition 4.5, which satisfy the ACCP in light of [1, Theorem 4.5]. We have not been
able to construct an atomic Puiseux monoid with finitely many Betti elements that does
not satisfy the ACCP. Thus, we conclude this paper with the following question.

QUESTION 4.7. Does every atomic Puiseux monoid with finitely many Betti elements
satisfy the ACCP?
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