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ABSTRACT. Numerical ice-sheet model experiments sometimes exhibit asymmetries in the solutions,
despite the symmetric conditions imposed. By first identifying arithmetic asymmetry in the models as
one of the reasons for symmetry-breaking through loss of trailing digits, this paper presents a numerical
procedure to preserve the symmetries by restructuring the order of the floating-point evaluation of
the equations in the numerical ice-sheet model. Re-examination of the series of experiments in the
HEINO topic of the ISMIP demonstrates that small perturbations triggered by arithmetic asymmetries
significantly amplify and cause qualitative differences in the simulated ice-sheet evolutions. This study
shows that it is imperative to apply a symmetric scheme to maintain overall symmetries in the simulation
of ice-sheet evolution, at least under a highly idealized configuration.

INTRODUCTION
Ice sheets constitute a system that may be sensitive to
certain external forcings. The same is true for the set of
differential equations that describe the thermomechanically
coupled dynamics of ice sheets. It is thus not surprising that
different numerical ice-sheet models yield different results
for the same experimental set-up. This is partly because
the numerical models can differ in many aspects, such
as discretization methods (finite-difference method, finite-
volume method, etc.) or the derivation routes from the
governing equations to the actual equations represented
in the numerical models. However, even if these aspects
are the same, different results can be yielded by different
handling of numerical operations and numbers, due to the
finite accuracy of computing machines.
Numerical ice-sheet model experiments sometimes ex-

hibit strange features in the solutions that are unexpected
under the imposed conditions. Payne and others (2000),
using numerical ice-sheet models of regular quadratic grids,
showed that the radial symmetry implied in the experimental
design can break down with the formation of distinct spokes
of cold ice under certain circumstances. Saito and others
(2006, 2007) demonstrated that the errors due to poor
representation of radial symmetry with a regular quadratic
grid lead to the simulated spokes and the breaking of
symmetry. These errors originate in the limited accuracy with
which computers represent numbers, which is inevitable in
principle.
However, even when mirror symmetry is implied in the

experimental design, which is expected to be represented
by numerical models with a quadratic grid, asymmetric
solutions sometimes emerge in the simulation. The ISMIP-
HEINO (Ice-Sheet Model Intercomparison Project–Heinrich
Event INtercOmparison) experiments (Greve and others,
2006; Calov and others, 2010) simulate an ice sheet with
a mirror symmetry with respect to the center line of the
ice-stream region. In the HEINO simulations, seven of
the nine models exhibit oscillatory surges with periods
of 5000 to 20000 years for a broad range of climate
and sliding parameters; however, there are differences in
their amplitudes and recurrence times. Depending on the
details of the model runs, almost all of the models that

exhibited oscillations also showed some deviations from
mirror symmetry imposed by the boundary conditions.
Three possible reasons for deviations in symmetry were

listed, but not discussed in detail, by Calov and others
(2010): real bugs in the coding; asymmetrical discretization
numerical schemes; and the limited accuracy of computers,
i.e. small asymmetries triggered by the limited accuracy of
numerical operations by computers grow to macroscopic
size, as discussed below. In addition, Hindmarsh (2011)
pointed out a fourth possibility, which may be termed the
small amplitude instability of thermoviscous flow. Souček
and Martinec (2011) discussed a fifth possibility, that the
extreme sensitivity of basal sliding activation to temperature
variations causes random behavior in the results, which
breaks symmetry in the long-term model behavior, due
to rounding errors of the order of machine precision in
such a chaotic dynamical system. None of these studies
have discussed in detail how such breaking of symmetry
influences the simulation.
A phenomenon called ‘loss of trailing digits’ often occurs

in numerical computations with finite accuracy. Suppose the
decimal precision is 2, for example. Then, the arithmetic sum
of three summands 10, 0.5 and 0.5 depends on the order of
operation: either (10+0.5)+0.5→ 10+0.5→ 10; or 10+
(0.5+0.5)→ 10+1→ 11. In the former case, the digit after
the decimal point is lost. Although the number of significant
digits is much greater than in this example for practical cases,
it demonstrates that numerical operations by a computing
machine with finite accuracy can, in principle, have slightly
different representations of the answer, depending on the
order of numerical operations performed by the computer,
which are perfectly commutative and associative in an
analytic formulation. This small difference may be negligible
in many numerical solutions; however, it may accumulate to
orders of magnitude – enough to be ‘visible’ in the simulation
for highly sensitive systems, such as the ice-sheet/ice-stream
system in the ISMIP-HEINO experiments – and is a possible
reason for the breaking of symmetry. This problem is well
known to numerical modelers in other fields, but Calov and
others (2010) were the first to draw attention to it in the
context of numerical ice-sheet models. Prior to that paper,
Greve and others (2006) described the asymmetric result
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only briefly. Payne and others (2000) also included some
results showing the breaking of ‘mirror’ symmetry (e.g. their
fig. 11), which is not, however, explicitly mentioned in the
paper because the focus was instead on the breaking of
‘radial’ symmetry.
Here I present a numerical method to prevent such

unexpected symmetry-breaking in the solutions. To be
precise, the method guarantees the identical representation
of numbers by computers when the corresponding analytic
formulation is identical, by careful handling of the order
in which numerical additions are carried out, which is
hereinafter referred to as ‘arithmetic symmetry’. The loss of
trailing digits is inevitable in numerical computing; however,
this method guarantees that symmetry in the computed field
(thickness and temperature) at one time-step is maintained
at the next time-step during the time integration, if all the
boundary conditions are also symmetric when the symmetry
can be fully represented by numerical models with a
quadratic grid, such as mirror symmetry in the ISMIP-HEINO
configuration. In addition, the method is not an artificial
method forcing an asymmetric result into a symmetric field
by using, for example, additional terms or smoothing.
This paper re-examines the HEINO experiments with a

numerical ice-sheet model using a ‘symmetric scheme’ and,
for comparison and discussion, an ‘intentionally asymmetric
scheme’ that is identical in all other aspects. In the
next section, the ice-sheet model used in this study and
the applied implementation of arithmetic symmetries are
described. In the following sections, model results for
symmetric and ‘normal’ asymmetric schemes show the
extent to which asymmetries may influence the solution of
the equations, and the conclusions concerning symmetric
and asymmetric schemes are discussed. It is demonstrated
that small differences triggered by a different order of arith-
metic operations may accumulate sufficiently to invalidate
the results for highly sensitive systems, such as the ice-
sheet/ice-stream system in the ISMIP-HEINO experiments.
To some extent, the findings of this study also question the
possibilities proposed above for symmetry-breaking, as they
suggest a method to avoid symmetry-breaking in the HEINO
simulations, simply by using proper numerical computations.

MODEL DESCRIPTION
The numerical model, IcIES (Ice sheet model for Inte-
grated Earth system Studies; Saito and Abe-Ouchi, 2004),
used in this paper is a time-dependent, three-dimensional
(3-D) thermomechanically coupled ice-sheet model in the
shallow-ice approximation (SIA; see, e.g., Ritz and others,
2001; Abe-Ouchi and others, 2007). It computes the evolu-
tion of ice thickness, bedrock elevation and ice temperature
under a prescribed scenario of climate forcing in terms of
the surface mass balance and the surface temperature.
Shallow-ice approximation models are based on the

following two equations to solve the time-derivative of the
thickness (H) and temperature (T ) distributions:

∂H
∂t

= −∇h ·
∫ S

b
�vh dz +MB , (1)

∂T
∂t

=
ki

ρicp
∇ · ∇T − (

�v · ∇)
T +

Φ
ρicp

+
L

ρicp
, (2)

where b and S are the ice base and surface elevations,
respectively, MB is the net surface/basal mass-balance term,

∇h =
(

∂
∂x ,

∂
∂y

)
is the horizontal divergence operator,

�vh = (u, v ) is the horizontal velocity vector, �v = (u, v ,w )
is the 3-D velocity vector, ki, ρi and cp are, respectively,
the thermal conductivity, density and heat capacity of the
ice, Φ is the strain-heating term and L is the latent heat
capacity of ice. Equation (1) is derived from the vertical
integration of the continuity equation under the assumption
of an incompressible fluid, while Eqn (2) is derived from
energy conservation.
In IcIES, the governing equation (Eqn (1)) is finally written

in matrix form for the ice thickness using matrix M and its
elements,Mi,j ,

Mn
i,jHi,j+1 +Ms

i,jHi,j−1 +Me
i,jHi+1,j

+Mw
i,jHi−1,j +Mo

i,jHi,j = Bi,j , (3)

where Mo are the matrix elements to multiply variables at
(i, j), and Mn, Ms, Me and Mw are the matrix elements
to multiply corresponding variables at its neighboring
gridpoints. Equation (3) holds for all gridpoints, except for
those with constant thickness where only the Mo terms are
nonzero,

Mo
i,jHi,j = Bi,j . (4)

Equations (3) and (4) form a linear system of equations.
All summation operations used in IcIES can be categorized

into five patterns:

F (l) = αX (i, j) + C , (5)

F (l) = α1Z(i, j) + α2X (i, j) + α3Y (i, j) + C , (6)

F (l) = α4X (i, j) + α5X (i + 1, j) + C , (7)

F (l) = α6X (i, j) + α7X (i + 1, j)
+ α8X (i, j + 1) + α9X (i + 1, j + 1) + C , (8)

F (l) = α10X (i, j) + α11X (i + 1, j) + α12X (i − 1, j)
+ α13X (i, j + 1) + α14X (i, j − 1) + C , (9)

where F is a field variable depending on the spatial position,
l is an arbitrarily spatial index and the coefficients, αk ,
depend on the index (i.e. αk = αk (l)), X , Y and Z are
scalar field variables, which are components of a vector
field variable, and C is a position-independent constant. For
example, the linear interpolation operation from gridpoint
(i, j) to the gridpoint (i + 1/2, j + 1/2) corresponds to
the pattern of Eqn (8), the finite-difference operation at
staggered gridpoints corresponds to that of Eqn (7), the
matrix operations of thickness, Eqn (3), correspond to that of
Eqn (9), and the 3-D temperature advection term in Eqn (2)
corresponds to Eqn (6). Computation of all the coefficients,
αk , in Eqns (5–9) can also be categorized into one of the five
patterns.
If the model domain satisfies three axial symmetries with

respect to x = 0, y = 0 and x = y , then an equation at
any gridpoint must be equivalent to the equations at seven
equivalent symmetric gridpoints, except for the center grid
(zero equivalent gridpoints) and for the grids on the axis and
the diagonal lines (three equivalent gridpoints). Figure 1 is a
schematic diagram of the three symmetries and an example
of symmetric gridpoints. All gridpoints labeled 0 (in red or
black boxes) must hold identical equations under the given
symmetry. An equation at the reference gridpoint, (+i, +j)
(the red box), of the pattern of Eqn (9) is accompanied by
the variables at its four adjacent gridpoints, marked as N, E,
W and S in the figure, whose respective coefficients in the
operation correspond to α13, α11, α12 and α14 in Eqn (9).
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Usually, the accumulation order of Eqn (9) in numerical
additions is performed in a prescribed order, such as from
left to right,

F (l) =
({[

α10X (i, j) + α11X (i + 1, j)
]

+ α12X (i − 1, j)
}
+ α13X (i, j + 1)

)
+α14X (i, j − 1) + C .

(10)

At one of the symmetric gridpoints, such as (−j,−i), Eqn (9)
yields

F (−j,−i) =
({[

α10(i, j)X (i, j) + α14(i, j)X (i, j − 1)
]

+ α13(i, j)X (i, j + 1)
}
+ α12(i, j)X (i − 1, j)

)
+α11(i, j)X (i + 1, j) + C ,

(11)
which is analytically identical to Eqn (10) at the reference
gridpoint, (+i, +j). However, the identity is not guaranteed
in a finite-precision numerical computation, due to the
difference of the order of accumulation, even if all the
coefficients, α, and the field variables, X , are identical. It
is possible to have eight different answers for each of the
symmetric gridpoints due to the loss of trailing digits, because
the accumulation order differs among them.
This problem can be avoided by special treatment of the

arithmetic order. The method presented here is based on
one assumption: if an operation is the sum of two terms,
then these two terms are interchangeable, i.e. the relation
a + b ≡ b + a is always true in floating-point arithmetic. It
is possible, however, to have different answers between the
two operations if some optimization method is applied in the
compiler. Whether such a situation occurs depends upon
the computing environment (compiler and/or computers)
used to perform the numerical experiment. If asymmetric
results still occur after introducing symmetric schemes to
all the equations in the numerical model, the optimization
level needs to be tuned in compiling processes in order to
work the scheme effectively. For example, the GNU Fortran
compiler may require the option -ffloat-store at the
compiling stage to prohibit storage of floating-point variables
in registers, as this may maintain more precision than these
are supposed to have, and as a consequence two numbers
before and after the operator are represented with different
precision.
To guarantee identical results at all eight symmetric

gridpoints, the operation order must be explicitly redesigned
as:

F (l) =α10X (i, j)
+
{[

α11X (i + 1, j) + α12X (i − 1, j)
]

+
[
α13X (i, j + 1) + α14X (i, j − 1)

]}
+ C ,

(12)

which is again analytically identical to the asymmetric oper-
ation, Eqn (10), but numerically different. This formulation
ensures that errors caused by the loss of trailing digits are now
identical at all eight symmetric gridpoints, even with finite-
precision numerical computation, if all of the coefficients,
α, and the field variables, X , are identical. In other words,
arithmetic symmetry with respect to x, y and the diagonal
direction is preserved in Eqn (12).

y = 0

x = 0x = y

+i−i

+j

−j

0 EW

N

S

0 WE

N

S

0 EW

S

N

0 WE

S

N

0 NS

E
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E

W

0 NS

W

E

0 SN

W

E

Fig. 1. Schematic diagram illustrating the symmetric gridpoints if
the domain is symmetric with respect to x = 0, y = 0 and x = y .
Fine square grids in the background correspond to example model
grids. All eight cells with the same label (E, N, S, W or 0) must be
identical under this configuration. Example gridpoints are (+i, +j)
and its corresponding symmetric points.

Equation (12) is the unique method to establish symmetry
for the pattern in Eqn (9), which relates one gridpoint to
only four neighbors. If one gridpoint relates to two or
more gridpoints in one or more of the four directions,
then there are several distinct possibilities to preserve
the symmetry.
Corresponding methods can be applied for the other

operation patterns (e.g. Eqns (6) and (8)). The following
equations show an asymmetric and the corresponding
symmetric operation order of the pattern in Eqn (6),

F (l) = [
α1Z(i, j) + α2X (i, j)

]
+ α3Y (i, j) + C , (13)

F (l) = α1Z(i, j) +
[
α2X (i, j) + α3Y (i, j)

]
+ C , (14)

and Eqn (8),

F (l) =
{[

α6X (i, j) + α7X (i + 1, j)
]

+ α8X (i, j + 1)
}
+ α9X (i + 1, j + 1) + C , (15)

F (l) =
{[

α6X (i, j) + α9X (i + 1, j + 1)
]

+
[
α7X (i + 1, j) + α8X (i, j + 1)

]}
+ C , (16)

where the first and second equations are examples of
asymmetric and symmetric operations, respectively.
Using this algorithm, if all the field variables and

coefficients and all boundary conditions are symmetric to the
last digit at one time-step, and all the numerical operations
are symmetric, symmetric solutions can be maintained
throughout the simulation.
The categorization above (Eqns 5–9) is sufficient for a

typical numerical ice-sheet model of SIA which adopts
second-order central difference schemes (e.g. for thickness
evolution) and the first-order forward difference (e.g. for
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Fig. 2. Model domain of experiments in ISMIP HEINO. Two
types of land area are distinguished: hard rock (white) and
sediment (light gray). The domain is symmetric with respect to
the x-axis (y = 0).

temperature advection); however, this is not so for other
types of models generally. Numerical models using higher-
order finite-difference schemes, which include SIA models
(e.g. Saito and others, 2007) as well as ‘higher-order’
numerical ice-sheet models (e.g. Colinge and Rappaz,
1999; Pattyn, 2003), require two or more gridpoints
relating to one gridpoint, so more patterns are necessary.
In addition, numerical models using other discretization
techniques, such as the finite-element method, need a
different categorization. However, the method to preserve
arithmetic symmetries in the present paper can be extended
to other such model types by careful design of the operation
orders to guarantee an identical result over equivalent
gridpoints or elements.

EXPERIMENTS
Most of the experiments presented in this study follow
the original ISMIP-HEINO set-up (Calov and others, 2010).
Figure 2 shows the model domain, which is a horizontal
square with a 4000km side length and has an ice sheet in
a circular area of 2000km radius. A soft sediment area is
surrounded by hard-rock areas. The bedrock topography is
set to be flat and constant throughout the simulation.
The surface mass balance, MB, and the surface tempera-

ture, Ts, are functions of the distance to the center, d :

MB =
(
Mmin +

Mmax −Mmin

R
× d

)
×Mf , (17)

Ts = Tmin + STd
3 , (18)

whereMmin = 0.15ma
−1,Mmax = 0.3ma−1, R = 2000km

is the radius, Mf is a factor used for sensitivity experiments,
Tmin = 233.15K and ST = 2.5 × 10−9 K km−3 is the
horizontal gradient. Basal sliding is assumed to occur only
when the basal ice is at pressure-melting point, and different

Table 1. Experiment configuration in ISMIP HEINO. The coefficients
Mf , Tmin and CS are the factors for accumulation, minimum surface
temperature and sliding parameter over soft sediment, respectively
(Eqns (17–19)). Experiment names follow the ISMIP-HEINO set-up
(Calov and others, 2010)

Experiment Mf Tmin CS Conditions

K a−1

ST 1 233.15 500 Standard;
sediment/hard-rock bases

T1 1 223.15 500 10K colder;
sediment/hard-rock bases

NH 1 233.15 500 Sediment only,
no hard-rock

formulations of this sliding are adopted for sediment and
hard-rock areas,

�vb =

⎧⎨
⎩

−CRH|∇hS|2∇hS for Tb = T0 and hard rock,
−CSH∇hS for Tb = T0 and soft sediment,
0 otherwise,

(19)
where Tb is the temperature at the ice base, CR = 105 a−1

is the sliding parameter over hard rock and CS = 500 a−1

is the sliding parameter over soft sediment in the standard
configuration.
All experiments presented by Calov and others (2010)

are re-examined; their domain and boundary conditions are
symmetric with respect to the y = 0 line. An additional
experiment (NH) is performed over a model domain with
three symmetries with respect to x = 0, y = 0 and x = y ,
in which all gridpoints are assumed to be sediment, to
demonstrate preservation of symmetry with respect to two
more lines than the HEINO set-up. Three representative
experiments, ST, T1 and NH, which are summarized in
Table 1, are performed in the present paper.
The experiments are performed with four different nu-

merical schemes, with suffix 0, 1, 2 or 3 added to the
experiment name (e.g. ST-0). Scheme 0 contains arith-
metic symmetry operations only, and scheme 1 applies an
arithmetic asymmetry operation on the computation of the
matrix coefficients of the thickness evolution. Scheme 2
applies an arithmetic asymmetry operation on the matrix-
vector multiplication used in the matrix solver, i.e. it
applies Eqn (10) on matrix-vector multiplications and similar
operations on the transpose multiplication at every iteration
step in the biconjugate gradient method to integrate thickness
at the next time-step. During one time-step of thickness
integration, only one asymmetric operation is performed in
scheme 1, while several asymmetric operations, depending
on the solution criteria, are performed in scheme 2. Scheme 3
is the combination of schemes 1 and 2.
To evaluate the degree of asymmetry in the solutions, the

score of field variable F is introduced. A local score, ΓF (l),
for a given gridpoint, l, is defined as

ΓF (l) =

√∑
k∈Ldup(l) ||F (k )| − |F0(l)||2

N(l)
, (20)
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and a global score for the entire domain as

ΓF =
maxl∈Luniq

√∑
k∈Ldup(l )

||F (k )|−|F0(l)||2

N(l )

maxl∈Luniq {|F0(l)|}
. (21)

Ldup(l) is a group of corresponding symmetric gridpoints with
respect to gridpoint l (including l itself). For example, when
l corresponds to the gridpoint of index (+i, +j) (the red box
in Fig. 1), Ldup(l) is the group of all eight gridpoints labeled
0. Luniq is a group of all the unique horizontal gridpoints
taking into account the domain symmetries. In the case of
Figure 1, for example, Luniq is the group of all gridpoints
that satisfy both y ≥ 0 and x ≥ y . N(l) is the number of
symmetric gridpoints (or the size of Ldup), which is 1 at the
center gridpoint, 4 on the axis and the diagonal line and 8
elsewhere. F0(l) is a reference value of F at gridpoint l,

F0(l) =
∑
k∈Ldup(l) |F (k )|
N(l)

. (22)

The average is adopted for the reference value, so the score,
Γ, can be regarded as an analogue to the maximum ‘standard
deviation’ normalized by the maximum ‘average’ over the
whole domain.
The floating-point representation of the computer system

on which IcIES is executed is the widely used IEEE754
format of 64 bits, where the values of mantissa, sign and
exponent bits are 52, 1 and 11, respectively. In this format,
the precision is given by 15 decimal digits, so a difference
of ∼10−15 of the mantissa can be detected by the score.
If the absolute (numerical) symmetries are satisfied over the
model domain, the score becomes 0. Table 2 shows example
snapshots of simulated thicknesses at eight corresponding
gridpoints obtained by an experiment with the symmetric
scheme 0 and the asymmetric scheme 3. In this case, the
field variable, F , is thickness, H, l in Eqn (20) corresponds
to the index for (300, 100), N(l) = 8 and F0(l) corresponds
to the average of the value at eight gridpoints. As shown in
Table 2, all values of the symmetric model are identical to
the final digits, so the local score of this gridpoint, ΓH (l),
becomes truly zero. If the local scores are zero over the
whole of the domain, then the global score is also zero. The
asymmetric model, however, shows eight different results in
the four last digits, deviating from each other by the order of
10−10, so ΓH (l) ∼10−10. According to Eqn (21), the global
score is the maximum of the local score normalized by the
maximum of the reference (∼103), so the global score in this
case is ∼10−13.
Figure 3 shows the time series of the global score obtained

from the NH, T1 and ST experiments, together with the
average thickness over the sediment area, HSD. The global
score of experiment NH-0 is zero throughout the simulation
and is thus not shown. The scores of the other three
experiments are zero at the beginning of the simulation, but
soon grow to ∼10−14, where they stay for the rest of the run.
The deviation is so small that differences in the time series
of averaged thicknesses are barely visible.
Figure 3 also shows the time series obtained from

experiment T1, which do not show significant symmetry-
breaking. The scores of the three asymmetric schemes reach
at most 10−10, but do not grow further. Therefore, the time
series of the ice thicknesses are almost the same as in the
symmetric model.

Table 2. Snapshots of simulated thicknesses at 200 ka in experiments
NH-0 and NH-3. Thicknesses at the gridpoint (+300, +100) as
well as the seven corresponding symmetric gridpoints are shown.
Thirteen digits are shown after the decimal points, and different
digits are shown in bold

x y H by NH-0 H by NH-3

km km m m

+300 +100 3992. 618 435590 892 7 3992. 618 435 590878 1
+300 −100 3992. 618 435590 892 7 3992. 618 435 590894 5
−300 +100 3992. 618 435590 892 7 3992. 618 435 590887 2
−300 −100 3992. 618 435590 892 7 3992. 618 435 590899 0
+100 +300 3992. 618 435590 892 7 3992. 618 435 590882 2
+100 −300 3992. 618 435590 892 7 3992. 618 435 590896 8
−100 +300 3992. 618 435590 892 7 3992. 618 435 590872 2
−100 −300 3992. 618 435590 892 7 3992. 618 435 590900 8

Results of experiment ST, however, show significant
symmetry-breaking (Fig. 3). The scores of the three asymmet-
ric schemes are almost the same throughout the simulation.
The score is ∼10−14 during the first 55 ka, then jumps to
10−7 and decreases again to 10−13 by 120 ka. It then jumps
to 10−3 and finally stabilizes around 10−1. This results in a
difference of up to 10% in the thickness solutions. After the
score reaches 10−1, the difference in the average thickness
from the four experiments becomes visible in Figure 3, and
the oscillations show different phases and amplitudes.
Figure 4 focuses on the ST runs of Figure 3 during

the last 100ka. Although the details are different across
the time series simulated by the three variations of the
numerical ice-sheet model with asymmetric schemes 1, 2
and 3, the amplitudes of the ice thickness over the sediment
area show oscillations with significantly smaller amplitudes
and different phases than those of the symmetric model
(scheme 0).
Figure 4 also shows the variations of thickness averaged

over the y ≥ 0 and y ≤ 0 areas separately, plotted
with light- and dark-gray lines, respectively. Some periods
show relatively high-frequency oscillations (∼1 ka cycles)
but with opposite phases over the two areas, which cancel
the amplitude of the total average. Other periods show
oscillations over one side, with comparable periodicities
to ST-0 (>3 ka), while no oscillation occurs over the other
side, which leads to half the amplitude if the oscillations are
averaged over the whole sediment region. Thus, while some
oscillations still occur regionally, breaking of symmetries can
significantly affect the total behavior of the ice sheet, with
different patterns on either side.
Significant differences in the simulated oscillations be-

tween the two areas can be explained by the local feedback
mechanism proposed by Payne and Dongelmans (1997)
and Payne and Baldwin (2000) to develop spoke patterns.
During a long-term simulation, the basal temperature may
reach the pressure-melting point at one gridpoint but not at
its symmetrical gridpoint at the same time. At the former
gridpoint, basal sliding starts along with enhanced strain
heating, which further enhances ice velocity, while the ice
velocity at the latter is kept lower due to freezing of basal ice.
Thus, the contrast between the two areas is further enhanced
through thermodynamical feedback. In addition, interaction
between the two areas may further help to enhance the
contrast, in which the warmer and faster region influences
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Fig. 3. Time series of the global score, ΓH , and average ice thicknesses over the sediment area,HSD, simulated for the NH (upper), T1 (middle)
and ST (lower) experiments. The scores of NH-0, T1-0 and ST-0 are confirmed to be zero throughout the simulation (not shown). Simulated
average thicknesses of experiments NH and T1 are not distinguishable.

the colder and slower region by increasing the advection
of cold ice. These feedback mechanisms are thought to
sometimes induce the opposite phases over the two areas
and sometimes result in a large amplitude on one side while
it remains small on the other side. This hypothesis requires
further study and is left for future research.
Figure 5 shows snapshots of the basal temperature

distribution simulated by ST-0 and ST-3 at the time when
the score becomes largest in ST-3 (166.9 ka). An asymmetric
pattern is visible in the ST-3 result. There is a narrow pressure-
melting zone over the y ≥ 0 area, which is accompanied
by fast stream-like flow, while no melting occurs over the
y ≤ 0 area, which is accompanied by gradual recovery of

the ice thickness (Fig. 4). These different patterns reduce
the amplitude of the variations of the total thickness, as
explained above.

DISCUSSION AND CONCLUSIONS
A series of ISMIP-HEINO experiments with the IcIES
numerical ice-sheet model have been used to demonstrate
the extent to which numerical computations with floating-
point numbers of finite accuracy may accumulate small
numerical errors into large errors in computed ice-sheet/
ice-stream evolution. One reason for this error enhancement
is the order in which additions of more than three numbers
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Fig. 5. Snapshots of basal temperature relative to pressure-melting point simulated by experiments ST-0 (left) and ST-3 (right) at the time
when the global score, ΓH , is the maximum in experiment ST-3. Shaded areas indicate that the base is at the pressure-melting point. Contour
interval is 2 K.

https://doi.org/10.3189/2012JoG11J247 Published online by Cambridge University Press

https://doi.org/10.3189/2012JoG11J247


774 Saito: Asymmetries in ice-sheet simulation

are carried out. It is worth emphasizing that the numerical
method to preserve mirror symmetry in the present paper
does not resolve the loss-of-trailing-digit problem, and so
numerical errors can still arise and propagate, but equally
over symmetric regions, which is beyond the scope of
the present paper. It can be concluded, however, that the
small perturbation triggered by arithmetic asymmetry in
numerical models may accumulate sufficiently to invalidate
the simulation.
The asymmetries that have emerged in several numerical

ice-sheet models in the ISMIP-HEINO experiments are not
acceptable numerical inaccuracies. They also influence the
numerically simulated pattern and periodicity of the ice-
sheet/ice-stream oscillations to such an extent as to make
the results questionable. It is thus certainly preferable to use
symmetric numerical schemes that maintain the symmetries
throughout the long-term evolution of ice-sheet model runs.
Besides the ISMIP-HEINO experiments, some experiments

proposed by Payne and others (2000) were re-examined (A, F
and H) using the same four variations of IcIES. None of these,
however, show ‘visible’ differences in the simulated results,
and the formation of ‘spokes’ as reported by Payne and others
(2000) is not affected. It is not surprising that the symmetry
scheme in the present paper does not preserve the radial
symmetry imposed by the configuration of Payne and others
(2000). The numerical scheme presented by Saito and others
(2007) may help to preserve the radial symmetry to some
extent, and inclusion of higher-order stress components may
also help (Saito and others, 2006). This subject is beyond the
scope of the present paper.
External program libraries may have advantages in

computational efficiency and ease of implementation in
model code. Some numerical ice-sheet models adopt such
libraries, but the matrix-vector multiplication requires careful
construction in terms of arithmetic symmetries, which means
that both the matrix storage system and the numerical
operations in the external library must be known. Such
libraries may be difficult (or even impossible) to change or
check in order to adjust the numerical symmetries.
There are several algorithms that cannot be recommended,

or that require special care, in order to preserve numerical
symmetry. The numerical scheme used in the present
paper is a biconjugate gradient method with a Jacobi
preconditioner (diagonal matrix). This preconditioner is so
simple that no special care is needed in the operations
related to the preconditioned matrix; it is thus easy to
maintain symmetries. One may adopt SOR (successive over-
relaxation) as a preconditioner, which may be more efficient
than a Jacobi preconditioner. However, the Gauss–Seidel
method in SOR is inherently asymmetric because the lower
triangular components and the strictly upper triangular
component (LU) of the matrix are separated into the left- and
right-hand side of the equations. One way to avoid these
asymmetries is to apply the Jacobi method in the iteration
of SOR. For the same reason, even a direct matrix solver
such as LU decomposition is not recommended in terms
of numerical symmetries. These numerical algorithms can
be found in standard textbooks of matrix computations (e.g.
Golub and Van Loan, 1996).
The thermomechanically coupled ice-sheet dynamics con-

stitute an ill-conditioned numerical problem (Hindmarsh,
2006, 2009, 2011), and the inherent oscillations due to the
evolving basal conditions in the ISMIP-HEINO experiments
seem to further enhance this ill-conditioning. It is also

possible that the ill-conditioning leads to lack of uniqueness
in the solution, where some solutions are unstable and/or
asymmetric, and all possible solutions appear and disappear
throughout a long-term simulation. In addition, the highly
symmetric HEINO model set-up increases the visibility of
potentially asymmetric model results. It is therefore difficult
to judge whether the numerical asymmetries presented
here also influence results of numerical ice-sheet models
computing ice-sheet dynamics with realistic, and thus highly
asymmetric, topography and other boundary conditions. It
is also possible that the modeled surging behavior is the
result of the highly idealized experimental set-up and that
numerical models (at least under SIA) cannot reproduce the
mechanism responsible for the Heinrich events. Therefore,
improvements in numerical ice-sheet models, such as in-
cluding higher-order stress terms or increasing the horizontal
resolution, may help to preserve the expected symmetry in
the simulation. Despite this, it is still preferable to avoid
as many numerical pitfalls as possible, in particular by
using the arithmetic symmetry algorithms introduced in
this paper.
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