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FINITARY REDUCIBILITY ON EQUIVALENCE RELATIONS

RUSSELLMILLER ANDKENGMENGNG

Abstract. We introduce the notion of finitary computable reducibility on equivalence relations on the
domain�. This is a weakening of the usual notion of computable reducibility, and we show it to be distinct
in several ways. In particular, whereas no equivalence relation can be Π0n+2-complete under computable
reducibility, we show that, for every n, there does exist a natural equivalence relation which isΠ0n+2-complete
under finitary reducibility. We also show that our hierarchy of finitary reducibilities does not collapse, and
illustrate how it sharpens certain known results. Along the way, we present several new results which use
computable reducibility to establish the complexity of various naturally defined equivalence relations in
the arithmetical hierarchy.

§1. Introduction. Computable reducibility provides a natural way of measuring
and comparing the complexity of equivalence relations on the natural numbers.
Like most notions of reducibility on sets of natural numbers, it relies on the concept
of Turing computability to rank objects according to their complexity, even when
those objects themselves may be far from computable. It has found particular use-
fulness in computable model theory, as a measurement of the classical property of
being isomorphic: if one can computably reduce the isomorphism problem for com-
putable models of a theory T0 to the isomorphism problem for computable models
of another theory T1, then it is reasonable to say that isomorphism on models of T0
is no more difficult than on models of T1. The related notion of Borel reducibility
was famously applied this way by Friedman and Stanley in [10], to study the isomor-
phism problem on all countable models of a theory. Yet computable reducibility has
also become the subject of study in pure computability theory, as a way of ranking
various well-known equivalence relations arising there.
Recently, as part of our study of this topic, we came to consider certain reducibil-
ities weaker than computable reducibility. This article introduces these new, finitary
notions of reducibility on equivalence relations and explains some of their uses.
We believe that researchers familiar with computable reducibility will find finitary
reducibility to be a natural and appropriate measure of complexity, not to supplant
computable reducibility but to enhance it and provide a finer analysis of situations
in which computable reducibility fails to hold.
Computable reducibility is readily defined. It has gone by many different names
in the literature, having been called m-reducibility in [1, 2, 11] and FF-reducibility
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1226 RUSSELLMILLER ANDKENGMENGNG

in [7–9], in addition to a version on first-order theories which was called Turing-
computable reducibility (see [3,4]).

Definition 1.1. Let E and F be equivalence relations on �. A reduction from E
to F is a function g : � → � such that

∀x, y ∈ � [x E y ⇐⇒ g(x) F g(y)]. (1)

We say that E is computably reducible to F , written E ≤c F , if there exists a
reduction from E to F which is Turing-computable. More generally, for any Turing
degree d , E is d -computably reducible to F if there exists a reduction from E to F
which is d -computable.

There is a close analogy between this definition and that of Borel reducibility:
in the latter, one considers equivalence relations E and F on the set 2� of real
numbers, and requires that the reduction g be a Borel function on 2�. In another
variant, one requires g to be a continuous function on reals (i.e., given by a Turing
functional ΦZ with an arbitrary real oracle Z), thus defining continuous reducibility
on equivalence relations on 2� .
So a reduction from E to F maps every element in the field of the relation E
to some element in the field of F , respecting these equivalence relations. Our new
notions begin with binary computable reducibility. In some situations, while it is not
possible to give a computable reduction fromE to F , there does exist a computable
function which takes each pair 〈x0, x1〉 of elements from the field of E and outputs
a pair of elements 〈y0, y1〉 from that of F such that y0 F y1 if and only if x0 E x1.
(The reader may notice that this is simply an m-reduction from the set E to the
set F .) Likewise, an n-ary computable reduction accepts n-tuples �x from the field of
E and outputs n-tuples �y from F with (xi E xj ⇐⇒ yi F yj) for all i < j < n,
and a finitary computable reduction does the same for all finite tuples. Intuitively, a
computable reduction (as in Definition 1.1) does the same for all elements from the
field of E simultaneously.
A computable reduction clearly gives us a computable finitary reduction, and
hence a computable n-reduction for every n. Oftentimes, when one builds a com-
putable reduction, one attempts the opposite procedure: the first step is to build a
binary reduction, and if this is successful, one then treats the binary reduction as a
basic module and attempts to combine countably many basic modules into a single
effective construction. Our initial encounter with finitary reducibility arose when we
found a basic module of this sort, but realized that it was only possible to combine
finitely many such modules together effectively.
At first we did not expect much from this new notion, but we found it to be
of increasing interest as we continued to examine it. For example, we found that
the standard Π0n+2 equivalence relation defined by equality of the sets W

∅(n)
i and

W ∅(n)
j is complete among Π0n+2 equivalence relations under finitary reducibility.
This is of particular interest because, for precisely these classes, no equivalence
relation can be complete under computable reducibility (as shown recently in [13]).
Extending our study to certain relations from computable model theory, we found
that the isomorphism problem F AC∼= for computable algebraically closed fields of
characteristic 0, while Π03-complete as a set, fails to be complete under finitary
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reducibility: it is complete for 3-ary reducibility, but not for the 4-ary version. This
confirms one’s intuition that isomorphism on algebraically closed fields, despite
being Π03-complete as a set, is not an especially difficult problem, requiring only
knowledge of the transcendence degree of the field. In contrast, the isomorphism
problem F alg∼= for algebraic fields of characteristic 0, while only Π

0
2, does turn out to

be complete at that level under finitary reducibility.
This paper proceedsmuch as our investigations proceeded. In Section 2we present
the equivalence relations on � which we set out to study. We derive a number
of results about them, and by the time we reach Proposition 2.8, it should seem
clear to the reader how the notion of finitary reducibility arose for us, and why it
seems natural in this context. The exact definitions of n-ary and finitary reducibility
appear asDefinition 3.1. In Sections 3 and 4, we study finitary reducibility in its own
right. We produce the natural Π0n+2 equivalence relations described above, defined
by equality among Σ0n sets, which are complete under finitary reducibility among
all Π0n+2 equivalence relations. Subsequently we show that the hierarchy of n-ary
reducibilities does not collapse, and that several standard equivalence relations on
� witness this non-collapse for certain n.

§2. Background in computable reducibility. The purpose of this section is
twofold. First, for the reader who is not already familiar with the framework
and standard methods used in its study, it introduces some examples of results
in computable reducibility, with proofs. The examples, however, are not intended
as a broad outline of the subject; they are confined to one very specific subclass of
equivalence relations (those which, as sets, are Π04), rather than offering a survey
of important results in the field. In fact the results we prove here are new, to our
knowledge. They use computable reducibility to establish the complexity of various
naturally defined equivalence relations in the arithmetical hierarchy. In doing so, we
continue the program of work already set in motion in [1,2,5,6,11,13] and augment
their results. However, the second and more important purpose of these results is to
help explain how we came to develop the notion of finitary reducibility and why we
find that notion to be both natural and useful. By the end of the section, the reader
will have an informal understanding of finitary reducibility, which is then formally
defined and explored in the ensuing two sections.
The following definition introduces several natural equivalence relationswhichwe
will consider in this section. Here, for a set A ⊆ �, we write A[n] = {x : 〈x, n〉 ∈ A}
for the n-th column of A when � is viewed as the two-dimensional array �2 under
the standard computable pairing function 〈·, ·〉 from �2 onto �.
Definition 2.1. First we define several equivalence relations on 2�.

• Eperm = {〈A,B〉 | (∃ a permutation p : � → �)(∀n)A[n] = B [p(n)]}.
• ECof = {〈A,B〉 | For every n, A[n] is cofinite iff B [n] is cofinite}.
• EFin = {〈A,B〉 | For every n, A[n] is finite iff B [n] is finite}.
Each of these relations induces an equivalence relation on �, by restricting to the
c.e. subsets of � and then allowing the index e to represent the set We , under the
standard indexing of c.e. sets. The superscript “ce” denotes this, so that, for instance,

Eceperm = {〈i, j〉 | (∃ a permutation p : � → �)(∀n)W [n]
i =W

[p(n)]
j }.

https://doi.org/10.1017/jsl.2016.23 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.23


1228 RUSSELLMILLER ANDKENGMENGNG

Similarly we define EceCof and E
ce
Fin, and also the following two equivalence relations

on � (where the superscripts denote oracle sets, so thatWD
i = dom(Φ

D
i )):

• En= = {(i, j) |W ∅(n)
i =W ∅(n)

j }, for each n ∈ �.
• Enmax = {(i, j) | maxW ∅(n)

i = maxW ∅(n)
j }, for each n ∈ �.

In Enmax, for any two infinite setsW
∅(n)
i andW ∅(n)

j , this defines 〈i, j〉 ∈ Enmax, since
we consider both sets to have the same maximum +∞.
2.1. Π04 equivalence relations. Herewewill clarify the relationship between several
equivalence relations occurring naturally at the Π04 level. Recall the equivalence
relations E3, Eset , and Z0 defined in the Borel theory. Again the analogues of
these for c.e. sets are relations on the natural numbers, defined using the symmetric
difference :

i Ece3 j ⇐⇒ ∀n [|(Wi)[n]  (Wj)[n]| <∞]
i Eceset j ⇐⇒ {(Wi)[n] | n ∈ �} = {(Wj)[n] | n ∈ �}

i Zce0 j ⇐⇒ lim
n

|(Wi Wj) � n|
n

= 0.

The aim of this section is to show that the situation in the following picture holds
for computable reducibility.

Eceset ≡c Eceperm ≡c EceCof ≡c E2=

Ece3 ≡c Zce0 .

Hence all these classes fall into two distinct computable-reducibility degrees, one
strictly below the other. Even though no Π04 class is complete under ≤c , we will
show that each of these classes is complete under a more general reduction.
The three classes Ece3 , E

ce
set, andZ

ce
0 are easily seen to be Π

0
4. This is not as obvious

for Eceperm.

Lemma 2.2. The relation Ecepermis Π
0
4, being defined on pairs 〈e, j〉 by:

∀k∀n0 < · · · < nk ∃ distinct m0, . . . , mk ∀i ≤ k (W [ni ]
e =W [mi ]

j ),

in conjunction with the symmetric statement withWj andWe interchanged.

Proof. Since “W [ni ]
e = W [mi ]

j ” is Π02, the given statement is Π
0
4, as is the inter-

changed version. The statements clearly hold for all 〈e, j〉 ∈ Eceperm. Conversely, if
the statements hold, then each c.e. set which occurs at least k times as a column in
We must also occur at least k times as a column in Wj , and vice versa. It follows
that every c.e. set occurs equally many times as a column in each, allowing an easy
definition of the permutation p to show 〈e, j〉 ∈ Eceperm. �
Theorem 2.3. Eceperm and E

ce
set are computably bireducible. (We write E

ce
perm ≡c Eceset

to denote this.)

Proof. For the easier direction Eceset ≤c Eceperm, given a c.e. set A, define uniformly
the c.e. set Â by setting (for each e, i, x) x ∈ Â [〈e,i〉] iff x ∈ A[e]. That is, we repeat
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each column of A infinitely many times in Â. Then A Eset B iff Â Eperm B̂ . (Since
the definition is uniform, there is a computable function g which maps each i with
Wi = A to g(i) withWg(i) = Â. This g is the computable reduction required by the
theorem, with i Eceset j iff g(i) E

ce
perm g(j) for all i, j.)

We now turn to Eceperm ≤c Eceset. Fix a c.e. set A. We describe a uniform procedure
to build Â from A. We must do this in a way where for any pair of c.e. sets W,V ,
W EcepermV iff Ŵ E

ce
set V̂ . The computable function q that givesWq(i) = Ŵi will then

be a witness for the reduction Eceperm ≤c Eceset.
For each x let F (x) be the number of columns y ≤ x such thatA[x] = A[y]. There
is a natural computable guessing function Fs(x) such that for every s , Fs(x) ≤ x
and F (x) = lim sups Fs(x).
Associated with x are the c.e. sets C [x, n] for each n > 0 and D[x, i, j] for each
i > 0, j ∈ �, defined as follows. D[x, i, j] is the set D such that

D[k] =

⎧⎪⎨⎪⎩
A[x], if k = 0,
{0, 1, . . . , j − 1}, if k = i ,
∅, otherwise.

and C [x, n] is the set C such that

C [k] =

⎧⎪⎨⎪⎩
A[x], if k = 0,
{t : (∃s ≥ t)(Fs (x) ≥ n)} , if k = n,
∅, otherwise.

Now let Â be obtained by copying all the sets C [x, n] and D[x, i, j] into the
columns. That is, let Â [2〈x,n〉] = C [x, n] and Â [2〈x,i,j〉+1] = D[x, i, j]. Now suppose
that A EpermB. We verify that Â EsetB̂ , writing C [A, x, n], C [B, x, n], D[A, x, i, j],
and D[B, x, i, j] to distinguish between the columns of Â and B̂ .
Fix x and consider D[A, x, i, j]. Since there is some y such that A[x] = B [y] it
follows that D[A, x, i, j] = D[B, y, i, j] for every i, j. Now we may pick y such
that F (A, x) = F (B, y). It then follows that C [A, x, n] = C [B, y, n] for every
n ≤ F (A, x), and for n > F (A, x) we have C [A, x, n] = D[B, y, n, j] for some
appropriate j. Hence every column of Â appears as a column of B̂. A symmetric
argument works to show that every column of B̂ is a column of Â.
Now suppose that Â Eset B̂ . We argue that A Eperm B. Fix x and n such that
there are exactly n many different numbers z ≤ x with A[z] = A[x]. We claim that
there is some y such that A[x] = B [y] and there are at least n many z ≤ y such that
B [z] = B [y].
The column C [A, x, n] of Â is the set C such thatC [0] = A[x] andC [n] = �. Now
C [A, x, n] cannot equal D[B, y, i, j] for any y, i, j since D-sets have every column
finite except possibly for the 0th column. So C [A, x, n] = C [B, y, n] for some y. It
follows that A[x] = (C [B, y, n])[0] = B [y], and we must have lim sups Fs(B, y) ≥ n.
So each A[x] corresponds to a column B [y

′] of B with F (B, y′) = F (A, x). Again a
symmetric argument follows to show that eachB [y] corresponds to a columnA[x] of
Awith F (A, x) = F (B, y). HenceA andB agree up to a permutation of columns. �
Theorem 2.4. EceCof ≡c Eceset ≡c E2=.
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Proof. We first show that Eceset ≤c E2=. There is a Σ03 predicate R(i, x) which
holds iff ∃n(W [n]

x = Wi). Let f(x) be a computable function such that R(i, x) iff
i ∈W ∅′′

f(x). It is then easy to verify that x E
ce
set y ⇔ f(x)E2= f(y).

Next we show E2= ≤c EceCof. There is a single Σ03 predicate R such that for every
a, x, we have a ∈ W ∅′′

x ⇔ R(a, x). Since every Σ03 set is 1-reducible to the set
Cof = {n : Wn = dom(ϕn) is cofinite}, let g be a computable function so that
a ∈ W ∅′′

x ⇔ Wg(a,x) is cofinite. Now for each x we produce the c.e. set Wf(x)
such that for each a ∈ � we haveW [a]

f(x) = dom(ϕg(a,x)). Hence f is a computable

function witnessing E2= ≤c EceCof.
Finally we argue that EceCof ≤c Eceset. Given a c.e. set A, and i, n, we let C (i, n) =
[0, i ] ∪ [i + 2, i +M + 2], whereM is the smallest number ≥ n such thatM �∈ A[i].
Hence the characteristic function of C (i, n) is a string of i + 1 many 1’s, followed
by a single 0, and followed by M + 1 many 1’s. Since the least element not in a
c.e. set never decreases with time, C (i, n) is uniformly c.e. Note that if i �= i ′ then
C (i, n) �= C (i ′, n′). Now let D(a, b) = [0, a] ∪ [a + 2, a + b + 1].
Now let Â be a c.e. set having exactly the columns {C (i, n) | i, n ∈ �}∪{D(a, b) |
a, b ∈ �}. We verify thatAECof B iff Â Eset B̂ . Again we write C (A, i, n), C (B, i, n)
to distinguish between the different versions. Suppose that AECof B. Since D(a, b)
appear as columns in both Âand B̂, it suffices to check theC columns.FixC (A, i, n).
If this is finite then it must equalD(i, b) for some b, and so appears as a column of
B̂ . If C (A, i, n) is infinite then it is in fact cofinite and so every number larger than
n is eventually enumerated in A[i]. Hence B [i] is cofinite and so C (B, i,m) is cofinite
for some m. Hence C (A, i, n) = C (B, i,m) = � − {i + 1} appears as a column
of B̂ . A symmetric argument works to show that each column of B̂ appears as a
column of Â.
Now assume that Â Eset B̂ . Fix i such that A[i] is cofinite. Then C (A, i, n) =
�−{i+1} for some n. This is a column of B̂ . Since eachD(a, b) is finiteC (A, i, n) =
C (B, j,m) for some j. Clearly i = j, which means that B [i] is cofinite. By a
symmetric argument we can conclude that A ECof B. �
Theorem 2.5. Ece3 ≡c Zce0 .
Proof. Ece3 ≤c Zce0 was shown in [5, Proposition 3.7]. We now proveZce0 ≤c Ece3 .
Let Fs(i, j, n) =

|(Wi,s�Wj,s )�n|
n . Note that for each i, j, n, Fs(i, j, n) changes at most

2n times. The triangle inequality holds in this case, that is, for every s, x, y, z, n, we
have Fs(x, z, n) ≤ Fs(x, y, n) + Fs(y, z, n).
Given i, j, n, p where i < j < n and p > 3 we describe how to enumerate the
finite c.e. sets Ci,j,n,p(k) for k ∈ �. We write C (k) instead of Ci,j,n,p(k). For each k,
C (k) is an initial segment of � with at most n2(n + 1) many elements.
If k ≥ n we permanently let C (k) = ∅. We enumerate C (0), . . . , C (n − 1)
simultaneously.Each set starts offbeing empty, andweassume thatF0(i, j, n) < 2−p.
At each stage, for every k < n, C (k) will be equal to either [0,M ] or [0,M + 1],
whereM is such that C (i) = [0,M ]. At stage s > 0 we act only if Fs(k0, k1, n) has
changed for some k0 < k1 < n. Assume s is such a stage. SupposeC (i) = [0,M−1].
We then set C (i) = [0,M ], and we will make every C (k) equal to either [0,M ] or
[0,M + 1]; this is possible as at the previous stage C (k) = [0,M − 1] or [0,M ].

https://doi.org/10.1017/jsl.2016.23 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.23


FINITARY REDUCIBILITY ON EQUIVALENCERELATIONS 1231

If Fs(i, j, n) < 2−p we set every C (k) to be equal [0,M ]. Otherwise suppose that
Fs(i, j, n) ≥ 2−p. Set C (j) = [0,M + 1], and for each k �= i, j we need to decide if
C (k) = [0,M ] or [0,M + 1].
To decide this, consider the graph Gi,j,n,p,s with vertices labelled 0, . . . , n − 1.
Vertices k and k′ are adjacent iff Fs(k, k′, n) < 2−(p+k+k

′+1), i.e., if Wk � n and
Wk′ � n are “close” in terms of the Hamming distance. It follows easily from the
triangle inequality that i and j must lie in different components (since Fs(i, j, n) ≥
2−p). If k is in the same component as j we increase C (k) = [0,M + 1] and
otherwise keep C (k) = [0,M ]. This ends the description of the construction.
It is clear thatCi,j,n,p(k) is an initial segment of� with at most 2n

(
n
2

)
= n2(n+1)

many elements. For each k, define the set Ŵk by letting Ŵ
[〈i,j,p〉]
k = Ci,j,j+1,p(k) �

Ci,j,j+2,p(k) � Ci,j,j+3,p(k) � · · · on column 〈i, j, p〉, where i < j and p > 3. Here
Ci,j,j+1,p(k) � Ci,j,j+2,p(k) denotes the set X where X (z) = Ci,j,j+1,p(k)(z) if z ≤
(j + 1)2(j + 2) and X (z + (j + 1)2(j + 2) + 1) = Ci,j,j+2,p(k)(z). Essentially
this concatenates the sets, with Ci,j,j+2,p(k) after the set Ci,j,j+1,p(k). The iterated
� operation is defined the obvious way (and � is associative). We call the copy of
Ci,j,n,p(k) in Ŵ

[〈i,j,p〉]
k the nth block of Ŵ [〈i,j,p〉]

k .
We now check that the reduction works. Suppose Wx Zce0 Wy , where x < y.
Hence we have lim supn F (x, y, n) = 0. Fix a column 〈i, j, p〉. We argue that for
almost every n, Ci,j,n,p(x) = Ci,j,n,p(y). There are several cases.

(i) {i, j} = {x, y}. There exists n0 > i, j such that for every n ≥ n0 we have
F (x, y, n) < 2−p. Hence Ci,j,n,p(x) = Ci,j,n,p(y) for all large n.

(ii) |{i, j} ∩ {x, y}| = 1. Assume i = x and j �= y; the other cases will fol-
low similarly. There exists n0 > i, j, y such that for every n ≥ n0 we have
F (x, y, n) < 2−(p+x+y+1) and so x, y are adjacent in the graphGi,j,n,p,s where
s is such that Fs(x, y, n) is stable. Since j cannot be in the same component
as x, we have Ci,j,n,p(x) = Ci,j,n,p(y).

(iii) {i, j} ∩ {x, y} = ∅. Similar to (ii). Since x, y are adjacent in the graph
Gi,j,n,p,s then we must have Ci,j,n,p(x) = Ci,j,n,p(y).

Hence we conclude that Ŵx E3 Ŵy . Now suppose that Ŵx E3 Ŵy for x < y.
Fix p > 2 and we have Ŵ [〈x,y,p〉]

x =∗ Ŵ [〈x,y,p〉]
y . So there is n0 > y such that

Cx,y,n,p(x) = Cx,y,n,p(y) for all n ≥ n0. We clearly cannot have F (x, y, n) ≥ 2−p for
any n > n0 and so lim supn F (x, y, n) ≤ 2−p. Hence we haveWx Zce0 Wy . �
Theorem 2.6. Eceset �≤c Ece3 .
Proof. Suppose there is a computable function witnessing Eceset ≤c Ece3 , and
which maps (the index for) a c.e. set X to (the index for) X̂ , so that X Eset Y iff
X̂ E3 Ŷ . Given (indices for) c.e. sets X and Y , define

Fs(X,Y ) =

{
max{z < x : Xs(z) �= Ys(z)}, if x enters X ∪ Y at stage s ,
max{z < s : Xs(z) �= Ys(z)}, otherwise.

Here we assume that at each stage s at most one new element is enumerated in
X ∪ Y at stage s (for the function F to be well-defined), and we take max ∅ = 0.
One readily verifies that Fs(X,Y ) is a total computable function in the variables
involved, with X =∗ Y iff lim infs Fs(X,Y ) <∞.
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We define the c.e. sets A,B and C0, C1, . . . by the following. Let A[0] = � and for
k > 0 let A[k] = [0, k − 1]. Let B [k] = [0, k] for every k. Finally for each i define
C [k]i to be⎧⎪⎪⎨⎪⎪⎩

[0, j], if k = 2j + 1,

�, if k = 2j and ∃∞s
(
Fs(B̂ [i], Ĉ

[i]
i ) = j

)
,[

0,max{s : Fs(B̂ [i], Ĉ [i]i ) = j}
]
, if k = 2j and ∀∞s

(
Fs(B̂ [i], Ĉ

[i]
i ) �= j

)
.

By the recursion theorem we have in advance the indices forC0, C1, . . . so the above
definition makes sense. Fix i . If lim infs Fs(B̂ [i], Ĉ

[i]
i ) =∞ then every column of Ci

is a finite initial segment of � and thus we have Ci Eset B. By assumption we must
have Ĉi E3 B̂ and thus the two sets agree (up to finite difference) on every column.
In particular lim inf s Fs(B̂ [i], Ĉ

[i]
i ) < ∞, a contradiction. Hence we must have

lim infs Fs(B̂ [i], Ĉ
[i]
i ) = j for some j. The construction of C ensures that Ci Eset A

which means that Ĉi Ece3 Â and so Ĉ
[i]
i =

∗ Â [i]. Since lim infs Fs(B̂ [i], Ĉ
[i]
i ) <∞ we

in fact have B̂ [i] =∗ Ĉ [i]i =
∗ Â [i]. Since this must be true for every i we have B̂ E3 Â

and so B Eset A, which is clearly false since B has no infinite column. �
The result of Theorem 2.6 was something of a surprise. We could see how to
give a basic module for a computable reduction from Eceset to E

ce
3 , in much the same

way that Proposition 3.9 in [5] serves as a basic module for Theorem 3.10 there. In
the situation of Theorem 2.6, we were even able to combine finitely many of these
basic modules, but not all �-many of them. The following propositions express
this and sharpen our result. One the one hand, Propositions 2.8 and the ultimate
Theorem 3.3 show that it really was necessary to build infinitely many sets to prove
Theorem 2.6. On the other hand, Theorem 2.6 shows that in this case the proposed
basic modules cannot be combined by priority arguments or any other methods.
Before proceeding further we introduce a technical convention. Details about it
appear in [18, Theorem IV.3.2].

Remark 2.7. Given a computable approximation {Xs} to a Π02 set or predicate
X , we have lim sups Xs(n) = X (n). At stage s , we say that (the Π

0
2 approximable

fact) “n ∈ X” receives a chip if Xs(n) = 1. Hence n ∈ X holds if and only if it
receives infinitely many chips. We can even fix a uniform assignment of chips in
which at most one n receives a chip at each stage.

Proposition 2.8. There exists a binary reduction from Eceset to E
ce
3 . That is, there

exist total computable functions f and g such that, for every x, y ∈ �, x Eceset y iff
f(x, y) Ece3 g(x, y).

Proof. Webegin with a uniform computable “chip” function h (see Remark 2.7),
such that, for all i and j, Wi = Wj iff ∃∞s h(s) = 〈i, j〉; that is, the predicate
“Wi =Wi” gets an h-chip at infinitely many stages s . Next we show how to define
f and g.
First, for every k ∈ �, Wf(x,y) contains all elements of every even-numbered
column �[2k]. To enumerate the elements ofWg(x,y) from this column, we use h. At

each stage s + 1 for which there is some c such that h(s) is a chip for the setsW [k]
x

and W [c]
y (i.e., the k-th and c-th columns of Wx and Wy , respectively, identified
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effectively by some c.e. indices for these sets), we take it as evidence that these

two columns may be equal, and we find the c-th smallest element ofW [2k]
g(x,y),s and

enumerate it intoWg(x,y),s+1.

The result is that, if there exists some c such that W [k]
x = W [c]

y , then W
[2k]
g(x,y) is

cofinite, since the c-th smallest element of its complement was added to it infinitely
often, each timeW [k]

x andW
[c]
y received a chip. (In the language of these construc-

tions, the c-th marker was moved infinitely many times; for instance, we refer the
reader to Soare [18, IV.3] for more details on the “movable markers” type construc-
tions). ThereforeW [2k]

g(x,y) =
∗ � =W [2k]

f(x,y) in this case. Conversely, if for all c we have

W [k]
x �=W [c]

y , thenW
[2k]
g(x,y) is coinfinite, since for each c, the c-th marker was moved

only finitely many times, and soW [2k]
g(x,y) �=∗ � =W [2k]

f(x,y). ThusW
[2k]
g(x,y) =

∗ W [2k]
f(x,y)

iff there exists c withW [k]
x =W

[c]
y .

Likewise, Wg(x,y) contains all elements of each odd-numbered column �[2k+1],

and whenever h(s) is a chip for W [k]
y and W

[c]
x , we adjoin to Wf(x,y),s+1 the c-th

smallest element of the column�[2k+1] which is not already inWf(x,y),s . This process
is exactly symmetric to that given above for the even columns, and the result is that
W [2k]
f(x,y) =

∗ W [2k]
g(x,y) iff there exists c withW

[k]
y =W

[c]
x . So we have established that

x Eceset y ⇐⇒ f(x, y) Ece3 g(x, y)

exactly as required. �
In Theorem 3.3, we will extend this idea, showing that, instead of merely having
functions f and g to address two natural numbers x and y, we could address x,
y, and z, simultaneously, or even x0, . . . , xn. That is (in the ternary case, with x, y,
and z), we can construct total computable functions f, g, and h such that, for all
x, y, z ∈ �:

x Eceset y iff f(x, y, z) E
ce
3 g(x, y, z),

y Eceset z iff g(x, y, z) E
ce
3 h(x, y, z), and

x Eceset z iff f(x, y, z) E
ce
3 h(x, y, z).

We will refer to the triple (f, g, h) as a ternary reduction fromEceset toE
ce
3 . Definition

3.1 will generalize this notion to arbitrary arity, and we will prove in Theorem 3.3
that the n-ary reducibility holds uniformly, despite its failure (cf. Theorem 2.6) to
extend to a single reduction on all x ∈ � simultaneously.

§3. Introducing finitary reducibility. Here we formally begin the study of finitary
reducibility, building on the concepts introduced in Proposition 2.8. In Theorem
3.3, we will sketch the proof that this construction can be generalized to any finite
arity n. That is, we will show thatEceset is n-arily reducible toE

ce
3 , under the following

definition.

Definition 3.1. An equivalence relation E on � is n-arily reducible to another
equivalence relation F , written E ≤nc F , if there exists a computable total func-
tion f : �n → �n (called an n-ary reduction from E to F ) such that, whenever
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f(x0, . . . , xn−1) = (y0, . . . , yn−1) and i < j < n, we have

xi E xj ⇐⇒ yi F yj.

If such functions exist uniformly for all n ∈ �, then E is finitarily reducible to F ,
written E ≤<�c F . Thus a finitary reduction is just a function from �<� to �<� ,
mapping n-tuples �x to n-tuples �y, with the above property.

An n-ary reduction is sometimes expressed as an n-tuple of n-ary �-valued
functions, such as (f, g, h) when n = 3 (at the end of Section 2). We note that one
can consider the “non-uniform” version of finitary reducibility, where E is n-arily
reducible to F for all n, but the reductions do not necessarily exist uniformly. We
do not know if this implies that E is finitarily reducible to F . However we prefer
to focus on the uniform version because, as mentioned in the paragraph before
Remark 2.7, our main motivation for considering finitary reducibility was due to
the observation that in order to construct a computable reduction between two
relations, one can sometimes form a basic module and iterate it uniformly to obtain
a computable reduction.
The following properties are immediate.
Proposition 3.2. Whenever E ≤n+1c F , we also have E ≤nc F . Finitary reducibil-
ity implies all n-reducibilities, and computable reducibility E ≤c F implies finitary
reducibility E ≤<�c F .
Proof. If E ≤n+1c F via h, then g(�x) = (h(�x, 0))�n is an n-reduction. If E ≤c F
via f, then (x0, . . . , xn−1) �→ (f(x0), . . . , f(xn−1)) is a finitary reduction. �
Unary reducibility is completely trivial, and binary reducibility E ≤2c F is exactly
the same concept asm-reducibility on setsE ≤m F , withE and F viewed as subsets
of� via a natural pairing function. For n > 2, however, we believe n-ary reducibility
to be a new concept. To our knowledge,Eceset andE

ce
3 form the first example of a pair

of equivalence relations on � proven to be finitarily reducible but not computably
reducible. A simpler example appears below in Proposition 4.1.
Theorem 3.3. Eceset is finitarily reducible toE

ce
3 (yetE

ce
set �≤c Ece3 , by Theorem 2.6).

Proof. We begin by giving a full ternary reduction (f, g, h). The proof of the
theorem is not by induction, but we believe that this concrete case is the best way to
introduce the ideas and the (rather cumbersome) notation. Afterwards we explain
how to modify the proof, uniformly in n, to build an n-ary reduction.
To simplify matters, we lift the relation “Eset” to a partial order ≤set , defined on
subsets of � by:

A ≤set B ⇐⇒ every column of A appears as a column in B.

So AEset B just if A ≤set B and B ≤set A.
As in Proposition 2.8, we describe the construction of individual columns of the
setsWf(x,y,z),Wg(x,y,z), andWh(x,y,z), using a uniform chip function for equality on
columns. First, for each pair 〈i, j〉, we have a column designated Lxij , the column
where we consider x on the left for i and j. This means that we wish to guess, using
the chip function, whether the column W [i]

x occurs as a column in Wy , and also
whether it occurs as a column inWz . We makeWf(x,y,z) contain all of this column
right away. For every c, we move the c-th marker in the column Lxij in bothWg(x,y,z)
andWh(x,y,z) whenever either:
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• the c-th column ofWy receives a chip saying that it may equalW [i]
x ; or

• the c-th column ofWz receives a chip saying that it may equalW [j]
x .

Therefore, these columns inWg(x,y,z) andWh(x,y,z) are automatically equal, and they
are cofinite (i.e., =∗ Wf(x,y,z) on this column) iff either W

[i]
x actually does equal

some column inWy orW
[j]
x actually does equal some column inWz .

The result, on the columns Lxij for all i and j collectively, is the following.

1. Wg(x,y,z) andWh(x,y,z) are always equal to each other on these columns.
2. IfWx ≤set Wy , thenWf(x,y,z),Wg(x,y,z), andWh(x,y,z) are all cofinite on each
of these columns.

3. IfWx ≤set Wz , then againWf(x,y,z),Wg(x,y,z), andWh(x,y,z) are all cofinite on
each of these columns.

4. If there exist i and j such thatW [i]
x does not appear as a column inWy and

W [j]
x does not appear as a column inWz , then on that particular column Lxij ,
Wg(x,y,z) andWh(x,y,z) are coinfinite (and equal), hence �=∗ Wf(x,y,z) = �.

This explains the name Lx : these columns collectively ask whether either Wx ≤set
Wy orWx ≤set Wz . We have similar columns Lyij and Lzij , for all i and j, doing the
same operations with the roles of x, y, and z permuted.
We also have columns Rzij , for all i, j ∈ �, asking aboutWz on the right—that
is, asking whether either Wx ≤set Wz or Wy ≤set Wz . The procedure here, for a
fixed i and j, sets bothWf(x,y,z) andWg(x,y,z) to contain the entire column Rxij , and
enumerates elements of this column intoWh(x,y,z) using the chip function.Whenever
the column W [i]

x receives a chip indicating that it may equal W
[c]
z for some c, we

move the c-th marker in column Rxij in Wh(x,y,z). Likewise, whenever the column

W [j]
y receives a chip indicating that it may equalW

[c]
z for some c, we move the c-th

marker in Rxij inWh(x,y,z). The result of this construction is that the column R
x
ij in

Wh(x,y,z) is cofinite (hence =∗ � =Wf(x,y,z) =Wg(x,y,z) on this column) iff at least
one ofW [i]

x andW
[j]
y appears as a column inWz .

Considering the columns Rzij for all i and j together, we see that:

1. Wf(x,y,z) andWg(x,y,z) are always equal to � on these columns.
2. IfWx ≤set Wz , thenWf(x,y,z),Wg(x,y,z), andWh(x,y,z) are all cofinite on each
of these columns.

3. IfWy ≤set Wz , then againWf(x,y,z),Wg(x,y,z), andWh(x,y,z) are all cofinite on
each of these columns.

4. If there exist i and j such that neitherW [i]
x norW

[j]
y appears as a column in

Wz , then on that particular column Rzij ,Wh(x,y,z) is coinfinite, hence �=∗ � =
Wf(x,y,z) =Wg(x,y,z).

Once again, in addition to the columns Rzij , we have columns R
x
ij and R

y
ij for

all i and j, on which the same operations take place with the roles of x, y, and z
permuted.
We claim that the setsWf(x,y,z),Wg(x,y,z), andWh(x,y,z) enumerated by this con-
struction satisfy the proposition. Consider first the question of whether every
column of Wx appears as a column in Wz . This is addressed by the columns
labeled Lx and those labeled Rz (which are exactly the ones whose construction we
described in detail.). If every column of Wx does indeed appear in Wz , then the
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outcomes listed there show that all three of the setsWf(x,y,z),Wg(x,y,z), andWh(x,y,z)
are cofinite on every one of these columns.
On the other hand, suppose some column W [i]

x fails to appear in Wz . Suppose
further thatW [i]

x also fails to appear inWy . Then the column Lxii has the negative
outcome: on this column, we have

Wf(x,y,z) �=∗ � =Wg(x,y,z) =Wh(x,y,z).

This shows that 〈f(x, y, z), h(x, y, z)〉 (and also 〈f(x, y, z), g(x, y, z)〉) fail to lie in
Ece3 , which is appropriate, since 〈x, z〉 (and 〈x, y〉) were not in Eceset.
The remaining case is that some column W [i]

x fails to appear in Wz , but does
appear in Wy . In this case, some column W

[j]
y (namely, the copy of W

[i]
x ) fails to

appear inWz , and so the negative outcome on the column Rzij holds:

Wh(x,y,z) �=∗ � =Wf(x,y,z) =Wg(x,y,z).

This shows that 〈f(x, y, z), h(x, y, z)〉 (and also 〈g(x, y, z), h(x, y, z)〉) fail to lie in
Ece3 , which is appropriate once again, since 〈x, z〉 (and 〈y, z〉) were not in Eceset.
Thus, the situationWx �≤set Wz causedWf(x,y,z) andWh(x,y,z) to differ infinitely
on some column, whereas if Wx ≤set Wz , then they were the same on all of the
columns Lx and Rz . Moreover, if they were the same, thenWg(x,y,z) was also equal
to each of them on these columns. If they differed infinitely, but Wx ≤set Wy ,
thenWg(x,y,z) was equal toWf(x,y,z) on all those columns; whereas if they differed
infinitely andWy ≤set Wz , thenWg(x,y,z) was equal toWh(x,y,z) on all those columns.
The same holds for each of the other five situations: for instance, the columns
Ly and Rx collectively give the appropriate outcomes for the question of whether
Wy ≤set Wx , while not causingWh(x,y,z) to differ infinitely from eitherWf(x,y,z) or
Wg(x,y,z) on any of these columns unless (respectively)Wz �≤set Wx orWy ≤set Wz .
Therefore, the requirements are satisfied by this construction, and we have a ternary
reduction.
To address the general case of an n-ary reduction from Eceset to E

ce
3 , we broaden

these ideas. The columns Lx can be viewed as a way of asking whether X has
anything else in its equivalence class. With n = 3, a negative answer meant that
Wx �≤set Wy andWx �≤set Wz , clearly implying that neither 〈x, y〉 nor 〈x, z〉 lies in
Eceset. A positive answer, on the other hand, could fail to imply the ≤set relations,
if Wy ≤set Wx , for instance. With n = 3, such other cases were handled by Ly or
similar columns. Here we will give a full argument about the possible equivalence
classes into which Eset partitions the n given c.e. sets.
For any fixed n, consider each possible partitionP of the c.e. setsA1 , . . . , An (given
by (arbitrary) indices m0, . . . , mn−1, withAk = mk−1) into equivalence classes. If P
is consistent withEset (that is, if every Eset-class is contained in some P-class), then
for each i, j with 〈Ai ,Aj〉 /∈ P, we have two possible relations: either Ai �≤set Aj or
Aj �≤set Ai . We consider every possible conjunction of one of these possibilities for
each such pair 〈i, j〉.
We illustrate with an example: suppose n = 5 and P has classes {A1, A2},

{A3, A4}, and {A5}. One possible conjunction explaining this situation is:
A1 �≤set A3 & A1 �≤set A4 & A2 �≤set A3 & A2 �≤set A4 &
A1 �≤set A5 & A2 �≤set A5 & A3 �≤set A5 & A4 �≤set A5.
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Another possibility is:

A1 �≥set A3 & A1 �≤set A4 & A2 �≤set A3 & A2 �≥set A4 &
A1 �≥set A5 & A2 �≤set A5 & A3 �≥set A5 & A4 �≥set A5.

For this n and P there are 28 such possibilities in all, since there are 8 pairs i < j
with 〈Ai ,Aj〉 /∈ P. If this P is consistent with Eset , then at least one of these 28
possibilities must hold.
Now, for every partition P of {A1, . . . , An} and for every such possible conjunc-
tion (with k conjuncts, say), we have an infinite set of columns used in building
the sets Â1, . . . , Ân. These columns correspond to elements of �k . In the second
possible conjunction in the example above, the column for 〈i1, . . . , ik〉 corresponds
to the question of whether the following holds.

(∃c A[c]1 = A[i1]3 ) or (∃c A[i2]1 = A[c]4 ) or (∃c A[i3]2 = A[c]3 ) or (∃c A[c]2 = A[i4]4 ) or
(∃c A[c]1 = A[i5]5 ) or (∃c A[i6]2 = A[c]5 ) or (∃c A[c]3 = A[i7]5 ) or (∃c A[c]4 = A[i8]5 ).

As before, a negative answer implies that P is consistent with Eset on these sets.
Conversely, if P is consistent with Eset , then at least one of these 28 disjunctions
(in this example) must fail to hold.
With this framework, the actual construction proceeds exactly as in the case
n = 3. A uniform chip function guesses whether any of these eight existential
(really Σ03) statements holds. If any one does hold, then all sets Âi are cofinite in the
column for this P and this conjunction and for 〈i1, . . . , ik〉. If the entire disjunction
(as stated here) is false, then Âi =∗ Âj on this column iff 〈Ai ,Aj〉 ∈ P. So, if P is
consistent withEset , then we have not caused Âi E3 Âj to fail for any 〈i, j〉 for which
Ai Eset Aj , but we have caused Âi E3 Âj to fail whenever 〈Ai ,Aj〉 /∈ P. (Also, if P
is inconsistent with Eset , then every disjunction has a positive answer, so every Âi is
cofinite on each of the relevant columns, and thus they are all =∗ there.)
Of course, one of the finitely many possible equivalence relations P on

{A1, . . . , An} is actually equal toEset there. This P shows that, whenever 〈Ai ,Aj〉 /∈
Eset , we have 〈Âi , Âj〉 /∈ E3; while the argument above shows that whenever
Ai Eset Aj , neither this P nor any other causes any infinite difference between
any of the columns of Âi and Âj , leaving Âi E3 Âj . So we have satisfied the require-
ments of finitary reducibility, in a manner entirely independent of n and of the
choice of sets A1, . . . , An . �
A full understanding of this proof reveals that it was essential for each disjunction
to consider every one of the sets A1, . . . , An . If the disjunction caused Â1 �=∗ Â2 on
a particular column, for example, by making Â2 coinfinite on that column, then the
value of Âp (for p > 2) on that column will be either �=∗ Â1 or �=∗ Â2, and this
decision cannot be made at random. In fact, one cannot even just guess from Ap
whether or not the relevant columnA[i]1 which fails to appear inA2 appears inAp; in
the event that it does not appear, Âp may need to be not just coinfinite but actually
=∗ Â2 on that column. Since Ap is included in the disjunction (and in the partition
P which generated it), we have instructions for defining Âp: either we choose at the
beginning to make it = Â1(= �) on this column, or we choose at the beginning to
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keep it = Â2 there. The partition P is thus essential as a guide. For a finite number
n of sets, there are only finitely many P to be considered, but on countably many
sets A1, A2, . . . (such as the collection W0,W1, . . . of all c.e. sets), there would be
2�-many possible equivalence relations. Even if we restricted to the Π04 partitions P
(which are the only ones that could equal Eceset), we would not know, for a given P,
whether Âp should be kept equal to Â1 or to Â2, since a Π04 relation is too complex
to allow effective guessing about whether it contains 〈1, p〉 or 〈2, p〉.
The concept of n-ary reducibility could prove to be a useful measure of how close
two equivalence relationsE and F come to being computably reducible. The higher
the n for which n-ary reducibility holds, the closer they are, with finitary reducibility
being the very last step before actual computable reducibility E ≤c F . The example
of Eceset and E

ce
3 is surely quite natural, and shows that finitary reducibility need

not imply computable reducibility. At the lower levels, we will see in Theorem 4.2
that there can also be specific natural differences between n-ary and (n + 1)-ary
reducibility, at least in the case n = 3. Another example at the Π02 level will be given
in Proposition 4.1. Right now, though, our first application is to completeness under
these reducibilities.
Working with Ianovski and Nies, we showed in [13, Theorem 3.7 and Corollary
3.8] that noΠ0n+2 equivalence relation can be complete amongst allΠ

0
n+2 equivalence

relations under computable reducibility. However, we now show that, under finitary
reducibility, there is a completeΠ0n+2 equivalence relation, for every n.Moreover, the
example we give is very naturally defined. We consider, for each n, the equivalence
relation En= = {(i, j) | W ∅(n)

i = W ∅(n)
j }. Clearly En= is a Π0n+2 equivalence relation.

We single out this relation En= because equality amongst c.e. sets (and in general,
equality amongst Σ0n+1 sets) is indisputably a standard equivalence relation and, as
n varies, permits coding of arbitrary arithmetical information at the Σ0n+1 level.
We begin with the case n = 0.

Theorem 3.4. The equivalence relation E0= (also known as =
ce) is complete

amongst theΠ02 equivalence relations with respect to the finitary reducibility.

Proof. Fix aΠ02 equivalence relationR. Wemust produce a computable function
f(k, �x) such that f(k, ·) : �k → �k gives the k-ary reduction from R to E0=. We
will definef(k, ·) = (fk,0, . . . , fk,k−1) as a k-tuple of functions from�k to�. Note
that the case k = 2 follows trivially from the fact that E0= is Π

0
2-complete as a set.

However the completeness of E0= under ≤kc for k > 2 does not follow trivially from
this. Nevertheless we will mention the strategy for k = 2 since it will serve as the
basic module.
k = 2: The strategy for k = 2 is simple. We monitor the stages at which the pair
(m0, m1) gets a new chip in R. Each time we get a new chip we makeWf2,0(m0,m1) =
[0, s] and Wf2,1(m0,m1) = [0, s + 1] where s is a fresh number. Clearly m0 R m1 iff
Wf2,0(m0,m1) = Wf2,1(m0,m1) = �. This will serve as the basic module for the pair
(m0, m1).
k = 3: We fix the triple m0, m1, m2. For ease of notation we rename these as
0, 1, 2 instead. We must build, for i < 3, the c.e. set Ai = Wf3,i (0,1,2). Each Ai
will have

(3
2

)
= 3 columns, which we denote as Aa,bi for 0 ≤ a < b < 3. That is,

A[0]i = A
0,1
i , A

[1]
i = A

1,2
i , A

[2]
i = A

0,3
i and A

[j]
i = ∅ for j > 2. We assume that at each

stage, at most one pair (i, i ′) gets a new chip.
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Each timewe get a (0, 1)-chipwemust play the (0, 1)-game, i.e., we setA0,10 = [0, s]
and A0,11 = [0, s + 1] for a new large number s . Of course A

0,1
2 must decide what

to do on this column; for instance if there are infinitely many (0, 2)-chips then we
must make A0,12 = A

0,1
0 and if there are infinitely many (1, 2)-chips then we must

makeA0,12 = A
0,1
1 . At the next stage where we get an (i, 2)-chip wemakeA

0,1
2 = A

0,1
i .

This can be done by padding the shorter column with numbers to match the longer
column, and if A0,10 is made longer then we need to also make A

0,1
1 longer to keep

A0,10 �= A0,11 at every finite stage.
If there are only finitely many (0, 2)-chips and finitely many (1, 2)-chips then

¬0 R 2 and ¬1 R 2 and we do not care if A0,12 = A0,10 or A0,12 = A0,11 . Of course
A2 has to be different from both A0 and A1 but this will be true at the appropriate
columns: the strategy will ensure that A0,22 �= A0,20 and A1,22 �= A1,21 . At some point
when the (i, 2)-chips run out we will stop changing the columnsA0,10 andA

0,1
1 due to

having to ensure the correctness of A2. Hence the outcome of the (0, 1)-game will
be correctly reflected in the columns A0,10 and A

0,1
1 .

If on the other hand there are infinitely many (0, 2)-chips and only finitely many
(1, 2)-chips then we have 0R 2 and ¬1R 2. We would have ensured thatA0,12 = A0,10
(which is important as we must make A2 = A0). Again we do not care if A0,12
equals A0,11 .
Lastly if there are infinitely many (i, 2)-chips for each i < 2 then the interference
ofA2 will force both columns A

0,1
0 andA

0,1
1 to be�. This is acceptable, because 0R1

must hold (unless R is not an equivalence relation) and so the (0, 1)-game would be
played at infinitely many stages anyway.
k = 4: Again we fix the elements 0, 1, 2, 3 and build Aa,bi for i < 4 and 0 ≤ a <
b < 4. There are now

(4
2

)
= 6 columns in eachAi . The strategywe used abovewould

seem to suggest in this case that every time we get a (i, j)-chip we play the (i, j)-
game and match columns Aa,bi and A

a,b
j whenever {a, b} ∩ {i, j} = 1. At n = 4,

however, it is clear that this will not be enough. For instance we could have the
equivalence classes {0}, {1}, {2, 3}. It could well be that the final (0, 2)-chip came
after the final (1, 2)-chip, while the final (1, 3)-chip came after the final (0, 3)-chip.
Then A0,12 would end up equal to A

0,1
0 while A

0,1
3 would end up equal to A

0,1
1 . Since

A0,10 �= A0,11 this makes A2 �= A3, which is not good.
Thus every time (i, j) gets a chip we have tomatch columnsAa,bi andA

a,b
j for every

pair a, b except the pair (i, j). In the above scenario this new rule would force A0,10
and A0,11 to increase when a (2, 3)-chip is obtained. The only way this can happen
infinitely often is when 2R 3, and either (0R 2 and 1R 3) or (1R 2 and 0R 3). This
cycle means that 0 R 1 must also be true, and so the (0, 1)-game would be played
infinitely often anyway.
Arbitraryk ≥ 2:We nowfix k ≥ 2, and fix c.e. setsA0, . . . , Ak−1.We describe how
to build Aa,bi for i < k and 0 ≤ a < b < k. At every stage every column Aa,bi is just
a finite initial segment of �. We assume at each stage, at most one chip is obtained.
At the beginning enumerate 0 into Aa,bb for every a < b. At a particular stage in
the construction, if no chip is obtained, do nothing. Otherwise suppose we have an
(i, j)-chip. We play the (i, j)-game, i.e., set Ai,ji = [0, s] and A

i,j
j = [0, s + 1] for a

fresh number s . For each pair a, b such that (a, b) �= (i, j) we match the columns
Aa,bi and A

a,b
j . What this means is to do nothing if they are currently equal, and if
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they are unequal, say |Aa,bi | < |Aa,bj |, we fill up Aa,bi with enough numbers to make
it equal Aa,bj . Furthermore if a = i then A

a,b
b should also be topped up to have one

more element than Aa,bi . This ends the construction of the columns A
a,b
i and of the

sets Ai .
We now verify that the construction works. It is easy to check that at every stage
of the construction, and for every a < b and i , we have |Aa,ba | + 1 = |Aa,bb | and
|Aa,bi | ≤ |Aa,bb |. Now suppose that i R j. Then there are infinitely many (i, j)-chips
obtained during the construction and each time we play the (i, j)-game and match
every other column of Ai and Aj . Hence Ai = Aj . Now suppose that ¬i R j.
We verify that Ai,ji �= Ai,jj . Suppose they are equal, so that they both have to be �.
Let t0 be the stage where the last (i, j)-chip is issued. Hence A

i,j
i = [0, s] and

Ai,jj = [0, s + 1] for some fresh number s , and so we have |Ai,jl | ≤ |Ai,ji | for every
l �= j. Let t1 > t0 be the least stage such that either Ai,ji or Ai,jj is increased.
Claim 3.5. If Ai,jl is increased to equal A

i,j
j for some l �= j at some stage t > t0,

then at t some (l, c)-chip or (c, l)-chip is obtained with Ai,jc = A
i,j
j .

Proof. At t suppose a (i0, j0)-chip was issued. At t we have three different kind
of actions:

(i) The (i0, j0)-game is played, affecting columns A
i0,j0
i0
and Ai0 ,j0j0

.

(ii) For each (a, b) �= (i0, j0), the smaller of the two columns Aa,bi0 or Aa,bj0 is
increased to match the other.

(iii) Ai0,bb is increased in the case a = i0 and A
i0,b
i0
is smaller than Ai0,bj0 , or A

j0,b
b is

increased in the case a = j0 and A
j0,b
j0
is smaller than Aj0,bi0 .

At t the column Ai,jl is increased due to an action of type (i), (ii) or (iii). (i) cannot
be because otherwise we have i0 = i and j0 = j, but we have assumed that no more
(i, j)-chips were obtained. It is not possible for (iii) because otherwise l = j. Hence
we must have (ii) which holds for some a = i, b = j. Furthermore l ∈ {i0, j0}, and
letting c be the other element of the set {i0, j0}we have the statement of the claim. �
At t1 we cannot have an increase inA

i,j
j without an increase inA

i,j
i , due to the fact

that the two always differ by exactly one element. Hence at t1 we know that A
i,j
i is

increased. It cannot be increased by more than one element because the (i, j)-game
can no longer be played and we have already seen that |Ai,jl | ≤ |Ai,jj | for every l .
Hence at t1, A

i,j
i (and also A

i,j
j ) is increased by exactly one element. Now apply the

claim successively to get a sequence of distinct indices c0 = i, c1, c1, c2, . . . , cN = j
such for every x, at least one (cx, cx+1)- or (cx+1, cx)-chip is obtained in the interval
between t0 and t1. Hence we have a new cycle of chips beginning with i and ending
with j.
Note that at t1,A

i,j
i was increased tomatchA

i,j
c . Thus the construction at t1 could

not have increased the column Ai,jl for any l �∈ {i, j}. Hence after the action at t1
we again have the similar situation at t0, that is, we again have |Ai,jl | ≤ |Ai,ji | for
every l �= j. If t1 < t2 < t3 < · · · are exactly the stages where Ai,ji or Ai,jj is again
increased, we can repeat the claim and the argument above to show that between
two such stages we have a new cycle of chips starting with i and ending with j. Since
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there are only finitely many possible cycles, there is a cycle which appears infinitely
often, contradicting the transitivity of R.
The construction produces computable functions fk,i(�x) giving the k-ary reduc-
tion from the Π02 relation R to E

0
=. Since the construction is uniform in k, finitary

reducibility follows. �
Next we relativize this proof to an oracle. This will giveΠ0n+2 equivalence relations
which are complete at that level under finitary reducibility, and will also yield the
striking Corollary 3.9 below, which shows that finitary reductions can exist even
when full reductions of arbitrary complexity fail to exist.

Corollary 3.6. For each X ⊆ �, the equivalence relation EX= defined by
i EX= j ⇐⇒ WX

i =W
X
j

is complete amongst all ΠX2 equivalence relations with respect to the finitary
reducibility.

Proof. Essentially, one simply relativizes the entire proof of Theorem 3.4 to the
oracle X . The important point to be made is that the reduction f thus built is not
just X -computable, but actually computable. Since every setWX

e in question is now
X -c.e., the program e = f(i, k, �x) is allowed to give instructions saying “look up
this information in the oracle,” and thus to use an X -computable chip function for
an arbitrary ΠX2 relation R, without actually needing to use X to determine the
program code e. �
By setting X = ∅(n), we get Π0n-complete equivalence relations (under finitary
reducibility) right up through the arithmetical hierarchy.

Corollary 3.7. Each equivalence relation En= is complete amongst the Π
0
n+2

equivalence relations with respect to the finitary reducibility.

This highlights the central role En= plays amongst the Π
0
n+2 equivalence relations;

it is complete with respect to the finitary reducibility. A wide variety of Π0n+2 equiva-
lence relations arise naturally in mathematics (for instance, isomorphism problems
for many common classes of computable structures), and all of these are finitarily
reducible to En=. In particular, every Π

0
4 equivalence relation considered in this sec-

tion is finitarily reducible to E2=. Indeed, E
ce
3 is complete amongst Π

0
4 equivalence

relations with respect to the finitary reducibility, even though E2= �≤c Ece3 .
Corollary 3.8. Ece3 is complete amongst theΠ

0
4 equivalence relations with respect

to the finitary reducibility.

Proof. By Theorem 2.4, E2= ≤c Eceset, and by Theorem 3.3, Eceset ≤<�c Ece3 . The
corollary then follows from Corollary 3.7 and Proposition 3.2. �
Allowing arbitrary oracles in Corollary 3.6 gives a separate result. Recall from
Definition 1.1 the notion of d -computable reducibility.

Corollary 3.9. For every Turing degree d , there exist equivalence relationsE and
F on � such that E is finitarily reducible to F (via a computable function, of course),
but there is no d -computable reduction from E to F .

Proof. Weagain recall from [13] that there is noΠ02-complete equivalence relation
under≤c . The proof there relativizes to any degree d and any setD ∈ d , to show that
no ΠD2 equivalence relation on � can be complete among Π

D
2 equivalence relations
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even under d -computable reducibility. (The authors of [13] use this relativization
to show that there is no Π03-complete equivalence relation, for example, by taking
D = ∅′, but their proof really shows that for every Π03 equivalence relation, there is
another one which is not even 0′-computably reducible to the first one.)
Therefore, there exists some ΠD2 equivalence relation E such that E �≤d ED= .
However, Corollary 3.6 shows that E does have a finitary reduction f to ED= (with
f specifically shown to be computable, not just d -computable). �

§4. Further results on finitary reducibility.
4.1. Π02 equivalence relations. Recall the Π

0
2 equivalence relations E

ce
min andE

ce
max,

which were defined by

i Ecemin j ⇐⇒ min(Wi) = min(Wj) i Ecemax j ⇐⇒ max(Wi ) = max(Wj).

(Here the empty set has minimum +∞ and maximum −∞, by definition, while all
infinite sets have the samemaximum+∞.) It was shown in [5] thatEcemax andEcemin are
both computably reducible to Ece= = E

0
=, and that E

ce
max and E

ce
min are incomparable

under≤c . The proof given there thatEcemax �≤c Ecemin seemed significantly simpler than
theproof thatEcemin �≤c Ecemax, but noquantitative distinction could be expressed at the
time to make this intuition concrete. Now, however, we can use finitary reducibility
to distinguish the two results rigorously.

Proposition 4.1. Ecemax is not binarily reducible to E
ce
min. However E

ce
min is finitarily

reducible to Ecemax.
Proof. To show Ecemax is not binarily reducible to E

ce
min, let f be any computable

total function. We build the c.e. setsWi,Wj and assume by the recursion theorem
that the indices i, j are given in advance. At each stage,Wi,s andWj,s will both be
initial segments of �, with Wi,0 = Wj,0 = ∅. Whenever max(Wi,s ) = max(Wj,s)
and min(Wf(0,i,j),s) = min(Wf(1,i,j),s ), we add the least available element toWi,s+1,
making the maxima distinct at stage s + 1. Whenever max(Wi,s ) �= max(Wj,s) and
min(Wf(0,i,j),s) �= min(Wf(1,i,j),s ), we add the least available element to Wj,s+1,
making the maxima the same again. Since the values of min(Wf(0,i,j),s) and
min(Wf(1,i,j),s) can only change finitely often, there is some s with Wi = Wi,s
and Wj = Wj,s , and our construction shows that these are both finite initial seg-
ments of�, equal to each other iff min(W(f(0,i,j)) �= min(Wf(1,i,j)). Thusf was not
a binary reduction.
To show that Ecemin is finitarily reducible to E

ce
max, we must produce a computable

functionf(k, i, �x) such thatf(k,−,−) gives the k-ary reduction fromEcemin toEcemax.
Fixing k ≥ 2 and indices m0, . . . , mk we describe how to build Wf(k,i, �m) for each
i < k.We denoteAi =Wf(k,i, �m).We begin withAi = ∅ for all i . Each time at a stage
s we find a new element enumerated into someWmi [s] below its current minimum
we set Aj = [0, t +minWmj [s]] for every j < k, where t is a fresh number.
There are only finitely many mi , so Aj is modified only finitely often. So there
exists t such that for every j < k,Aj = [0, t+minWmj ]. HenceminWmi = minWmj
iff maxAi = maxAj . �
This tells us thatEcemin ≤c Ecemax is a lot closer to being true thanEcemax ≤c Ecemin. Sur-
prisingly, we found that the Π02 relation E

ce
max is complete for the ternary reducibility

but not for 4-ary reducibility.
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Theorem 4.2. Ecemax is complete for ternary reducibility ≤3c amongΠ02 equivalence
relations, but not so for 4-ary reducibility ≤4c .
Proof. By Theorem 3.4, we may use the relation E0= of equality of c.e. sets (also
known as =ce), needing only to show that E0= ≤3c Ecemax and that E0= �≤4c Ecemax.
First we address the former claim, building a computable 3-reduction f(n, i, j, k)
as follows.
For any i, j, k ∈ � and any stage s , let

mij,s =
{

s, ifWi,s =Wj,s ;
min(Wi,s Wj,s), else.

ThusWi �=Wj iff lims mij,s <∞. We definemik,s andmjk,s similarly for those pairs
of sets, and setf(0, i, j, k),f(1, i, j, k) andf(2, i, j, k) to be c.e. indices of the three
corresponding sets Ŵi , Ŵj , and Ŵk built by the following construction.
At each stage s , Ŵi,s , Ŵj,s , and Ŵk,s will each be a distinct finite initial segment
of�. Each time the setsWi andWj get a chip (i.e., appear to be equal), we lengthen
each of these initial segments to be longer than Ŵk (but still distinct from each
other), so that Ŵi = Ŵj = � iff Wi = Wj , and otherwise they have distinct
maxima. Similar arguments apply for i and k, and also for j and k.
Let Ŵi,0 = {0, 1}, Ŵj,0 = {0}, and Ŵk,0 = ∅. At each stage s + 1, set m̂s =
max(Ŵi,s , Ŵj,s , Ŵk,s ). We first act on behalf of i and j, checking whethermij,s+1 �=
mij,s . If so, then we make Ŵi = [0, m̂s + 3] and Ŵj = [0, m̂s + 2], so that both are
longer than they were before, and if also either mik,s+1 �= mik,s or mjk,s+1 �= mjk,s ,
then we set Ŵk,s+1 = [0, m̂s + 1]. (Otherwise Ŵk stays unchanged at this stage.)
If mij,s+1 = mij,s , then we check whether mik,s+1 �= mik,s . If so, then we make
Ŵi = [0, m̂s + 3] and Ŵk = [0, m̂s + 2], and if also mjk,s+1 �= mjk,s , then we set
Ŵj,s+1 = [0, m̂s + 1]. (Otherwise Ŵj stays unchanged at this stage.)
Lastly, if mij,s+1 = mij,s and mik,s+1 = mik,s , then we check whether mjk,s+1 �=
mjk,s . If so, then we make Ŵj = [0, m̂s + 3] and Ŵk = [0, m̂s + 2], with Ŵi staying
unchanged. This completes the construction.
Notice first that ifWi =Wj , then Ŵi and Ŵj were both lengthened at infinitely
many stages, so that max(Ŵi) = max(Ŵj) = +∞. The same holds for Wi and
Wk , and also forWj andWk , (even though in those cases some of the lengthening
may have come at stages at which we acted on behalf ofWi andWj). On the other
hand, if Wi �= Wj , then at least one of these must be distinct from Wk as well. If
Wi �= Wk , then Ŵi was lengthened at only finitely many stages; likewise for Ŵj if
Wj �= Wk . So, if two of these sets were equal but the third was distinct, then the
two equal ones gave rise to sets with maximum+∞ and the third corresponded to a
finite set. And if all three sets were distinct, then after some stage s0 none of Ŵi , Ŵj ,
and Ŵk was ever lengthened again, in which case they are the three distinct initial
segments built at stage s0, with three distinct (finite) maxima. So we have defined a
ternary reduction from E0= to E

ce
max.

However, no 4-ary relation exists. We prove this by a construction using the
Recursion Theorem, supposing that f were a 4-ary reduction and using indices i ,
j, k, and l which “know their own values.” We write Ŵi for Wf(0,i,j,k,l), Ŵj for
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Wf(1,i,j,k,l), and so on as usual, having first waited for f to converge on these four
inputs. If it converges on them all at stage s , we setWi,s+1 = {0},Wj,s+1 = {0, 2},
Wk,s+1 = {1}, andWl,s+1 = {1, 3}.
Thereafter, at any stage s+1 for whichWi,s �=Wj,s andmax(Ŵi,s ) �= max(Ŵj,s ),
we add the next available even number toWi,s+1, leavingWi,s+1 = Wj,s+1 = Wj,s .
At any stage s + 1 for whichWi,s =Wj,s and max(Ŵi,s ) = max(Ŵj,s ), we add the
next available even number toWj,s+1, leavingWi,s+1 =Wi,s �Wj,s+1. Similarly, at
any stage s+1 for whichWk,s �=Wl,s andmax(Ŵk,s ) �= max(Ŵl,s), we add the next
available odd number toWk,s+1, leavingWk,s+1 =Wl,s+1 =Wl,s . At any stage s+1
for whichWk,s =Wl,s and max(Ŵk,s ) = max(Ŵl,s), we add the next available odd
number toWl,s+1, leavingWk,s+1 =Wl,s �Wl,s+1. This is the entire construction.
Now iff is indeed a 4-ary reduction, then itmust keep adding elements to both Ŵi
and Ŵj , since if either of these sets turns out to be finite, then the constructionwould
have builtWi andWj to contradict f. So in particular,Wi = Wj = {0, 2, 4, . . .},
and max(Ŵi) = max(Ŵj) = +∞. Similarly, it must keep adding elements to both
Ŵk and Ŵl , and so Wk = Wl = {1, 3, 5, . . .}, and max(Ŵk) = max(Ŵl ) = +∞.
But thenWi �=Wk , yet max(Ŵi) = max(Ŵk) = +∞. So in fact f was not a 4-ary
reduction. �
The preceding proof of the lack of any 4-ary reduction can be viewed as the simple
argument that, since Ecemax has exactly one Π

0
2-complete equivalence class (and all

its other classes are Δ02) whileE
0
= has infiinitely manyΠ

0
2-complete classes, the latter

cannot reduce to the former. It requires four distinct elements of the equivalence
relation to show this, as evidenced by the first half of the proof. One naturally
conjectures that a Π02 equivalence relation with exactly two Π

0
2-complete classes

might be complete under ≤4c , but not under ≤5c . In Section 4.3 we will see that this
intuition was not correct.

Corollary 4.3. Theorem 4.2 relativizes. That is, for every set D, the equivalence
relation EDmax defined by

i EDmax j ⇐⇒ max(WD
i ) = max(W

D
j )

is complete for ternary computable reducibility ≤3c among ΠD2 equivalence relations,
but not so for 4-ary computable reducibility ≤4c .
Proof. Notice that relativizing the proof of Theorem 4.2 entirely would give this
same result forD-computable ternary and 4-ary reducibility. That would be correct,
and it follows that EDmax is not Π

D
2 -complete for 4-ary computable reducibility ≤4c

either, since certain ΠD2 relations are not even D-computable 4-arily reducible to it.
However, the ternary completeness required is also under computable reducibility.
Proving it requires the use of the same trick as inCorollary 3.6.Our ternary reduction
accepts an input 〈i, j, k〉 and outputs indices î , ĵ, and k̂ of oracle Turing programs
which enumerateWD

i ,W
D
j , and W

D
j using their own oracles (since those oracles

all happen to be D as well), and then execute the same strategy as in Theorem 4.2
for those three sets. �
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The relations Ecemax and E
D
max are quickly seen to be computably bireducible with

the equivalence relations Ececard and E
D
card (respectively) defined by:

i Ececard j ⇐⇒ |Wi | = |Wj | i EDcard j ⇐⇒ |WD
i | = |WD

j |.
So Ececard is are also Π

0
2-complete under ternary reducibility but not under 4-ary

reducibility (by Proposition 3.2), and similarly with EDcard for Π
D
2 -completeness

under these reducibilities. The reason for introducing such a similar relation is that
a specific relativized version of it, E∅′

card, appears very useful in computable model
theory. The discussion above, along with Corollary 4.3, shows that E∅′

card is Π
0
3-

complete under ternary 0′-computable reducibility but not under 4-ary computable
reducibility. We will use this fact in Section 4.2.

Proposition 4.4. The equivalence relation E∅′
card is Π

0
3-complete under ternary

computable reducibility, but not under 4-ary computable reducibility.

4.2. Equivalence relations from algebra. Having so far considered only equiva-
lence relations from pure computability theory, we now turn briefly to computable
model theory, which one naturally expects to be a fertile source of equivalence rela-
tions. For background and details relevant to this section, we refer the reader to
[14–16].

Definition 4.5. Fix a computable presentation K of the algebraic closure Q of
the rational numbers. For each e, define the field Ke to be the subfield of K which
one gets by closing the c.e. subsetWe of the domain ofK under the field operations.
The equivalence relation F alg∼= is now defined to represent the isomorphism relation
among these fields:

i F alg∼= j ⇐⇒ Ki ∼= Kj.
Since every computable algebraic field has a computable embedding intoK , with
c.e. image, we know that the sequence 〈Ke〉e∈� includes representatives of every
computable algebraic field, up to computable isomorphism. Notice also that each
Ke may be considered, up to computable isomorphism, as a computable field itself,
since the domain of Ke (which is c.e., uniformly in e, and infinite) can be pulled
back to �, uniformly in e. In fact, given an e such that ϕe computes the atomic
diagram of a computable algebraic field of characteristic 0, one can uniformly find
an i and a j such that ϕi is a computable isomorphism from Kj onto that field.
Algebraically closed fields are usually seen as a simpler class of structures than
algebraic fields, even when the former are allowed to contain transcendental ele-
ments. In fact, though, the isomorphism problem for computable algebraically
closed fields of characteristic 0 is Π03-complete, and thus quantifiably more difficult
than that for computable algebraic fields. Theorem 4.6 below shows that the gap is
not as large as suggested by the raw complexity levels: while F alg∼= for algebraic fields
is Π02-complete for finitary reducibility, F

AC∼= for computable algebraically closed
fields is not Π03-complete in this way. Rather, it exhibits the same properties as the
relation E∅′

card from Section 4.1: it is Π
0
3-complete under ternary reducibility, but not

under 4-ary reducibility.
To make isomorphism on computable algebraically closed fields into an equiva-
lence relation on � in a natural way, we define the field Le to have transcendence
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degree de = |We |. Notice that one can construct a computable copy of this field Le
uniformly effectively in e: for each n, we have a field element xn which appears to
be transcendental over the preceding elements x0, . . . , xn−1, but becomes algebraic
over Q if ever n entersWe . Conversely, given any computable algebraically closed
field F of characteristic 0, we can find an i with F ∼= Li , effectively in an index
e such that ϕe decides the atomic diagram of F . This is straightforward, since the
property of being algebraically independent over all previous elements of the field
is Π01. Thus, Li ∼= Lj iff Wi and Wj have the same size (possibly infinite). This
should immediately remind the reader of E∅′

card, and indeed, the real content of the
following theorem is that the equivalence relation F AC∼= defined by

i F AC∼= j ⇐⇒ Li ∼= Lj
is computably bireducible with E∅′

card, while F
alg∼= is bireducible with E

0
=.

Theorem 4.6. The equivalence relation F alg∼= on �, which is Π
0
2-complete as a set

(under 1-reducibility), is complete under finitary reducibility≤<�c among allΠ02 equiv-
alence relations. However, the equivalence relation F AC∼= on �, which is Π03-complete
as a set, is only complete under ternary reducibility ≤3c among all Π03 equivalence
relations; it is incomplete under 4-ary reducibility ≤4c there.
Proof. The ≤<�c -completeness result for F alg∼= follows (using Proposition 3.2 and
Theorem 3.4) from the computable reduction f from E0= to ≤<�c which we now
describe. In Q, we can effectively find pn-th roots of 2, where pn is the n-th prime
number in the subring Z. Let qn be the first element in the domain � of this
presentation of Q satisfying (qn)pn = 2. Of course, for each n, qn does not lie in the
subfield generated by the set {qm : m �= n}, since this subfield contains no extension
of Q of prime degree pn. Thus, adjoining any collection W of these qm’s to Q to
form a field will not cause any pn-th root of 2 with qn /∈ W to appear in that field.
Therefore, our computable reduction f simply maps each e to an index f(e) of the
c.e. set {qn ∈ Q : n ∈We}.
On the other hand, we will show that F AC∼= and E∅′

card are computably bireducible.
(Recall thatE∅′

card is the relationwhich holds of indices of Σ
0
2 sets which have the same

cardinality.) Propositions 4.4 and 3.2 then complete our argument. The computable
reduction h from F AC∼= to E∅′

card is easy: just letW
∅′
h(e) enumerate the elements ofWe .

For the computable reduction g from E∅′
card to F

AC∼= , we define g(e) using a fixed
total computable chip function c(e, n, s) with n ∈W ∅′

e iff only finitely many s have
c(e, n, s) = 1. Build a computable field extension F of Q, starting with elements
xn,0 (for every n) which do not yet satisfy any algebraic relation overQ. Go through
all pairs 〈n, s〉 in turn, and whenever we find that c(e, n, s) = 1, we make the
current xn,k algebraic over Q (in some way consistent with the finite portion of
the atomic diagram of F enumerated thus far), and create a new element xn,k+1 of
F which does not yet satisfy any algebraic relation over the existing elements. As
we continue, we fill in all the atomic facts needed to make F into a computable
algebraically closed field; details may be found in [17]. Thus, if n ∈ W ∅′

e , then
xn,kn will stay transcendental forever over the preceding elements (where kn is the
greatest k for which xn,k ever appears in F ); while otherwise all xn,k (for every k)
will eventually be made algebraic. Thus {xn,kn : n ∈ W ∅′

e } is a transcendence basis
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for F , and so the transcendence degree of F is the cardinality ofW ∅′
e . We set g(e) to

be an index such thatLg(e) is isomorphic to F ; this index can be found effectively, as
remarked above, and clearly then g is a computable reduction from E∅′

card to F
AC∼= . �

On the other hand, there do exist natural Π03 isomorphism problems which are
complete under ≤<�c at that level. The example we give here is quick, albeit slightly
unnatural, in that the field of the equivalence relation E0∼= is a proper subset of
�. (An equivalence structure is just an equivalence relation on the domain �.) For
details, we refer the reader to [12,14].

Theorem 4.7. The isomorphism problem E0∼= for the class E0 of computable equiv-
alence structures with no infinite classes is Π03-complete under ≤<�c ; indeed, E1= is
computably reducible to E0∼= .

Proof. For the computable reduction, given an index i of a setW ∅′
i , we build a

computable equivalence structure S with domain �. S begins with infinitely many
classes of each odd size. Whenever we see an initial segment � ⊆ ∅′s of the stage-s
approximation to ∅′, and an n ∈ � for which Φ�e,s(e) ↓, we add a new equivalence
class to S, containing 2n + 2 elements. As long as this convergence persists at
subsequent stages t > s , we keep this class this way. However, if we ever reach a
stage t > s with ∅′t� |�| �= ∅′s� |�|, then we add one more element to this class, giving
it an odd number of elements. In this case, we start searching again for a new � for
which convergence occurs. This is the entire construction.
It follows that S has a class of size 2n + 2 iff n ∈ W ∅′

i , and that S has infinitely
many classes of each odd size. HenceE1= ≤c E0∼= as required. (Similar constructions
show that E1= ≤c Eα∼= for every α ≤ �, where this is the isomorphism problem
for the class Eα of computable equivalence structures with exactly α-many infinite
classes.) �
We remark that the completeness results about F AC∼= can readily be seen also to
hold of computable rational vector spaces, which form an extremely similar class
of structures, and could be conjectured to hold for the class of all computable
models of any other strongly minimal theory for which the independence relation
is Π01 and the spectrum of computable models of that theory contains all countable
models of the theory. (In all such classes, the isomorphism relation is determined
by the dimension, which is the size of a particular subset of the structure, usually
a maximal independent set.) On the other hand, it would be natural to investigate
other classes for which the isomorphism problem is Π02, and to determine whether
their isomorphism problems are also Π02-complete under finitary reducibility, as in
Theorem 4.6.

4.3. Distinguishing finitary reducibilities. Theorem 4.2 implies that 3-ary and 4-
ary reducibility are distinct notions, and it is natural to attempt to extend this result
to other finitary reducibilities. Above we suggested that one way to do so might be
to create Π02 equivalence relations in which only finitely many of the equivalence
classes are themselves Π02-complete as sets. (We use the class of Π

0
2-equivalence

relations simply because it is the one we found useful in Section 4.2. The same
principle could be applied at the Π0p or other levels, for any p.) Theorem 4.12 below
will prove this attempt to be in vain, but the suspicion that n-ary reducibilities are
distinct for distinct n turns out to be well-founded, as we will see in Theorem 4.9.
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It is not difficult to create a Π02 equivalence relation E on � having exactly c
distinct Π02-complete equivalence classes. Define mE n iff:

(∃i < m)[m ≡ n ≡ i (mod c) & max(Wm−i
c
) = max(Wn−i

c
)].

This essentially just partitions� into c distinct classesmodulo c, and then partitions
each of those classes further using the relation Ecemax. As with E

ce
max, we intend here

that max(W ) = max(V ) iffW and V are both infinite or both empty or else have
the same (finite) maximum. For each i < c, the class of those m ≡ i(mod c) with
m−i
c ∈ Inf is Π02-complete, while every other class is defined by such an i along with
a condition of having either a specific finite maximum (which is a Δ01 condition) or
being empty (which is Π01).
However, this E is not complete among Π02 equivalence relations under 4-ary
reducibility. To build an F with F �≤4c E, one uses infinitely many nonconflicting
basic modules, one for each e, showing that no ϕe is a 4-ary reduction from F to E.
To do this, assign four specific numbersw = 4e,x = 4e+1,y = 4e+2andx = 4e+
3 to thismodule.Wait until all four of these computations converge:ϕe(1, w, x, y, z),
ϕe(2, w, x, y, z), ϕe(3, w, x, y, z), and ϕe(4, w, x, y, z). (If any diverges, then ϕe is
not total, and we define each of the four inputs to be an F -class unto itself.) If
the four outputs are all congruent modulo c, then we use the same process which
showed that Ecemax is not 4-arily complete for Π

0
2 equivalence relations, since now

there is only one Π02 complete class to which ϕe(w) and the rest could belong. On
the other hand, if, say, ϕe(1, w, x, y, z) �≡ ϕe(2, w, x, y, z) (mod c), then these two
values lie in distinct E-classes, so we just make w F x; similarly for the other five
possibilities.
Nevertheless, there is a straightforward procedure for building an equivalence
relation which is 4-complete but not 5-complete among Π02 equivalence relations,
and it generalizes easily to larger finitary reducibilities as well, showing them all to
be distinct. This will be discussed in Theorem 4.9.
Recall first the following fact.

Proposition 4.8. For every p ≥ 0, there exists a Σ0p equivalence relation which is
complete under finitary reducibility ≤<�c among Σ0p equivalence relations, and a Π

0
p

equivalence relation which is complete under ≤<�c amongΠ0p equivalence relations.
Proof. For p = 0, equality on� is Σ00-complete (equivalently, Π

0
0-complete). For

p > 0, it is well known that there is an equivalence relation which is Σ0p-complete
under full computable reducibility: let {Ve : e ∈ �} be a uniform list of the Σ0p sets,
and take the closure of {(〈e, i〉, 〈e, j〉) : 〈i, j〉 ∈ Ve} under reflexivity, symmetry,
and transitivity. A Π01-complete equivalence relation under computable reducibility

was constructed in [13], and the equivalence relation {(i, j) :W ∅(p−2)
i =W ∅(p−2)

j } is
Π0p-complete under ≤<�c for each p > 1. �
Theorem 4.9. For every p ≥ 0 and every n ≥ 2, there exists a Σ0p equivalence rela-
tion which is complete under n-ary reducibility≤nc amongΣ0p equivalence relations, but
fails to be complete among them under ≤n+1c . Likewise, there exists a Π0p equivalence
relation which is complete under ≤nc among Π0p equivalence relations, but not under
≤n+1c .
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Proof. The p = 0 case is trivial: every computable equivalence relation with
exactly n equivalence classes clearly satisfies the theorem. Now we consider p > 0.
We first illustrate the special case of Π02 equivalence relations:
We first prove that for every n > 1, there exists a Π02 equivalence relationE which
is Π02-complete under ≤nc , but not under ≤n+1c . Start with a computable listing
{(am,0, . . . , am,n−1)}m∈� of all n-tuples in �n, without repetitions. The idea is that
E should use the natural numbers nm, nm+1, . . . , nm+ n− 1 to copy =ce from the
m-th tuple. For i, j ∈ �, we define i E j if and only if

∃m[nm ≤ i < (n + 1)m & nm ≤ j < (n + 1)m & am,i−mn =ce am,j−mn].
The last condition just says that Wam,i−mn = Wam,j−mn , which is Π

0
2. Of course, for

each i , only m = � in � can possibly satisfy the existential quantifier, so this E
really is a Π02 equivalence relation. Moreover, it is immediate that =

ce has an n-
reduction f to E: for each n-tuple (x0, . . . , xn−1) ∈ �n, just find the uniquem with
(am,0, . . . , am,n−1) = (x0, . . . , xn−1), and set f(i, x0, . . . , xn−1) = mn + i . That f
is an n-reduction follows directly from the design of E. But every Π02 equivalence
relationF has an n-reduction to=ce, since=ce is complete under finitary reducibility,
and so our E is complete under ≤nc among Π02 equivalence relations.
To show that E is not complete under ≤n+1c , we show that =ce �≤n+1c E. This
is surprisingly easy. Fix any e ∈ �, and define x0, . . . , xn to be the indices of
the following programs, using the Recursion Theorem. The programs wait until
ϕe(i, x0, . . . , xn) has converged for every i ≤ n, say with x̂i = ϕe(i, x0, . . . , xn). If all
of x̂0, . . . , x̂n lie in a single interval [nm, (n+1)m) for somem, then each program xi
simply enumerates i into its set. Thus we have xi �=ce xj for i < j ≤ n, but some two
of x̂0, . . . , x̂n must be equal, by the Pigeonhole Principle, and hence ϕe was not an
(n + 1)-reduction. On the other hand, if there exist j < k ≤ n for which x̂j and x̂k
do not lie in the same interval [nm, (n + 1)m), then no program xi ever enumerates
anything. In this case we have xj =ce xk , since both are indices of the empty set, yet
〈x̂j , x̂k〉 /∈ E by the definition of E. Therefore, no ϕe can be an (n + 1)-reduction,
and so =ce �≤n+1c E.
Now fix an arbitrary p > 0 and consider Σ0p equivalence relations. The technique
is almost the same as above. Fix the Σ0p equivalence relation F which is complete
among Σ0p equivalence relations under ≤<�c , as given in Proposition 4.8. Define
i E j if and only if

∃m[nm ≤ i < (n + 1)m & nm ≤ j < (n + 1)m & am,i−nm F am,j−mn],
again using an effective enumeration {(am,0, . . . , am,n−1) : m ∈ �} of �n. Once
again we have an n-reduction from F to E: set f(i, x0, . . . , xn−1) = nm + i , where
(am,0, . . . , am,n−1) = (x0, . . . , xn−1).
The same strategy as for Π02 succeeds in showing that no ϕe can be an (n + 1)-
reduction from F to E, although this must be checked for the different cases.
When p > 0, for each fixed ϕe , there is a computable reduction to the Σ0p-complete
equivalence relation F from the Σ0p equivalence relation which makes 0, . . . , n all
equivalent if all ϕe(xi) converge to values in the same interval [nm, n(m + 1)), and
leaves them pairwise inequivalent otherwise.
Now consider Π0p for arbitrary p > 0. The same argument also works with Π

0
p in

place of Σ0p. Our F , defined exactly the same way, is now a Π
0
p equivalence relation,
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and the n-ary reduction from E is also the same. We claim that again E �≤n+1c F .
For p > 1, our F is equality of the setsW ∅(n)

i andW ∅(n)
j , and so the proof using the

Recursion Theorem still works, each c.e. set being also c.e. in ∅(n). For p = 1, let all
the numbers≤ n be equivalent unless, on all of those (n+1) numbers, ϕe converges
to values in the same interval [nm, n(m + 1)), in which case they become pairwise
inequivalent. This Π01 equivalence relation must have a computable reduction to the
Π01-complete equivalence relation F , which therefore cannot have any (n + 1)-ary
reduction to E. �
Corollary 4.10. For every n �= n′ in �, n-ary reducibility and n′-ary reducibility
do not coincide.

Finally, we adapt Theorem 4.9 to compare finitary reducibility with full com-
putable reducibility. Of course, it is already known that equality of ∅(n)-c.e. sets is
Π0n+2-complete under the former, but not under the latter.

Theorem 4.11. For each p > 0, there exists a Σ0p equivalence relation E which
is complete under finitary reducibility among Σ0p equivalence relations, but not under
computable reducibility.

Proof. Again, let F be Σ0p-complete under computable reducibility. This time
we use an effective enumeration {(am,0, . . . , am,nm )}m∈� of �<� , and define the
computable function g by g(0) = 〈0, 0〉, and

g(x + 1) =
{〈m, i + 1〉, if g(x) = 〈m, i〉 with i < nm;
〈m + 1, 0〉, if g(x) = 〈m, nm〉.

We let x E y iff there is an m with g(x) = 〈m, j〉 and g(y) = 〈m,k〉 and am,j F
am,k . Since F is Σ0p, so is E, and the finitary reduction from F to E is given by
h(i, x0, . . . , xn) = g−1(〈m, i〉), where (x0, . . . , xn) = (am,0, . . . , am,nm ). With F Σ0p-
complete under≤c, this makesE Σ0p-complete under≤<�c . But for each computable
total function f (which you think might be a full computable reduction from
F to E), there would be a computable reduction to E from a particular slice of
F (say the c-th slice) on which we wait until f(〈c, 0〉) converges to some number
〈m,k〉, then wait untilf has converged on each of 〈c, 1〉, . . . , 〈c, 1+nm〉 as well, and
define these (2 + nm) elements to be in distinct F -classes if f maps each of them to
a pair of the form 〈m, j〉 for the samem, or else all to be in the same F -class if not.
As usual, this shows that f cannot have been a computable reduction. �
So we have answered the basic question. However, the proof did not involve any
equivalence relation with only finitely many Π02-complete equivalence classes, as we
had originally guessed it would. Indeed, 4-completeness forΠ02 equivalence relations
turns out to require a gooddealmore than just twoΠ02-complete equivalence classes,
as we now explain.
Say that a total computable function h is a Π02-approximating function for an
equivalence relation E if

(∀x∀y)[x E y ⇐⇒ ∃∞s h(x, y, s) = 1].
(We may assume that h has range ⊆ {0, 1}. Every Π02 equivalence relation has such
a function h.) We say that, under this h, a particular E-class [z]E is Δ02 if, for all
x, y ∈ [z]E , we have lims h(x, y, s) = 1. Of course, if x ∈ [z]E and y /∈ [z]E , then
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lims h(x, y, s) = 0, so in this case the class [z]E really is Δ02, uniformly in any single
element x in the class. On the other hand, even if [z]E is not Δ02 under this h, it could
still be a Δ02 set, under some other computable approximation. For this reason, our
next theorem does not preclude the possibility that cofinitely many E-equivalence
classes might be Δ02, but it does say that cofinitely many classes cannot be uniformly
limit-computable.
For an example of these notions, let E be the relation Ecemax, saying of i and j that
Wi andWj have the same maximum. More formally, i Ecemax j iff

(∀x∀s∃t∃y, z ≥ x)[(x ∈Wi,s =⇒ y ∈Wj,t) & (x ∈Wj,s =⇒ z ∈Wi,t)].
We can define h here by letting h(i, j, s) = 1 when either max(Wi,s ) = max(Wj,s )
or else max(Wi,s ) > max(Wi,t) and max(Wj,s ) > max(Wj,t) (where t is the greatest
number < s with h(i, j, t) = 1), and taking h(i, j, s) = 0 otherwise. Then the Ecemax-
class Inf of those i withWi infinite is the only class which fails to be Δ02 under this
h, and since the set Inf is in fact Π02-complete, it cannot be Δ

0
2 under any other h

either. Recall that Ecemax is complete among Π
0
2 equivalence relations under ≤3c , but

not under ≤4c . The following theorem generalizes this result.
Theorem 4.12. Suppose that E is complete under ≤4c amongΠ02 equivalence rela-
tions. Let h be any computableΠ02-approximating function forE. ThenE must contain
infinitely many equivalence classes which are not Δ02 under this h.

Proof. Suppose that z0, . . . , zn were numbers such that 〈zi , zj〉 /∈ E for each
i < j, and such that every E-class except these (n + 1) classes [zi ]E is Δ02 under h.
For each e, we will build four c.e. sets which show that ϕe is not a 4-reduction from
the relation =ce toE. (Recall that i =ce j iffWi =Wj , and that this Π02-equivalence
relation is complete under finitary reducibility, making it a natural choice to show
4-incompleteness of E.)
Fix any e, and choose four fresh indices a, b, c and d of c.e. sets A = Wa ,
B = Wb , C = Wc , and D = Wd , which we enumerate according to the following
instructions. First, wewait untilϕe(i, a, b, c, d ) has converged for each i < 4. (By the
Recursion Theorem, these indices may be assumed to know their own values.) Set
â = ϕe(0, a, b, c, d ), b̂ = ϕe(1, a, b, c, d ), etc. If ϕe is a 4-reduction, then A = B iff
â E b̂, and A = C iff â E ĉ, and so on.
At an odd stage 2s + 1, we first compare â and b̂, using the computable Π02-
approximating function h for E. If h(â, b̂, s) = 1 and A2s = B2s , then we add
to A2s+1 some even number not in B2s , so A2s+1 �= B2s+1. On the other hand, if
h(â, b̂, s) = 0 and A2s �= B2s , then we make A2s+1 = B2s+1 = A2s ∪ B2s . (The
purpose of these maneuvers is to ensure that lims h(â, b̂, s) diverges, so that â and
b̂ lie in one of the properly Π02 E-classes.)
Next we do exactly the same procedure with ĉ and d̂ in place of â and b̂, and
using a new odd number if needed, instead of a new even number. This completes
stage 2s + 1, ensuring that lims h(ĉ, d̂ , s) also diverges.
At stage 2s + 2, fix the i ≤ n such that h(â, zi , s ′) = 1 for the greatest possible
s ′ ≤ s , and similarly the j ≤ n such that h(ĉ, zj , s ′′) = 1 for the greatest possible
s ′′ ≤ s . (If there are several such i , choose the least; likewise for j. If there is no
such i or no such j, then we do nothing at this stage.) If i = j, then add a new
even number to both A2s+2 and B2s+2, thus ensuring that they are both distinct
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from C2s+2 and D2s+2 (and keeping A2s+2 = B2s+2 iff A2s+1 = B2s+1). If i �= j,
then we add all the even numbers in A2s+1 to both C2s+2 andD2s+2, and add all the
odd numbers in C2s+1 to both A2s+2 and B2s+2. (This is the only step in which even
numbers are enumerated intoC orD, or odd numbers intoA orB.) This completes
stage 2s + 2, and the construction.
We claim first that the odd stages succeeded in their purpose ofmaking â, b̂, ĉ, and
d̂ all belong to properly Π02 E-classes. At each stage 2s +1 such that h(â, b̂, s) = 1,
we made A2s+1 contain a new even number, which only subsequently entered B if
A2s′ = B2s′ at some stage s ′ > s . Therefore, if lims h(â, b̂, s) = 1, this even number
would show A �= B, yet â E b̂, so that ϕe would not be a 4-reduction. So there
are infinitely many s with h(â, b̂, s) = 0, and at all corresponding stages 2s + 1 we
made A2s+1 = B2s+1, which implies A = B. If ϕe is a 4-reduction, then we must
have â E b̂, so there were infinitely (but also coinfinitely) many s with h(â, b̂, s) = 1.
Therefore lims h(â, b̂, s) diverged, and so the E-class of â must be one of the [zi ]E
with i ≤ n, with b̂ lying in the same class. We now fix this i . A similar analysis on ĉ
and d̂ shows that they both lie in one particular E-class [zj ]E with j ≤ n, and that
C = D.
Recall that z0, . . . , zn were chosen as representatives of distinct E-classes. There-
fore, there must exist some stage s0 such that, at all stages s > s0, we had
h(â, zk, s) = 0 = h(b̂, zk , s) for every k �= i , and also h(ĉ, zk, s) = 0 = h(d̂ , zk, s)
for every k �= j. Moreover, we know that i = j iff zi E zj . If indeed i = j, then
at every even stage > 2s0 we were in the i = j situation, and we added a new even
number to A and B at each such stage, while no even numbers were added to either
C orD at any stage> 2s0. Therefore, if i = j, we would haveA �= C , yet â E zi E ĉ,
which would show that ϕe is not a 4-reduction. On the other hand, if i �= j, then
at every even stage > 2s0 we were in the i �= j situation, and so all even numbers
ever added to A were subsequently added to both C and D, and all odd numbers
in C were subsequently added to both A and B. However, no odd numbers were
ever added to A or B except numbers already in C , and no even numbers were ever
added to C or D except numbers already in A. So we must have A = B = C = D,
yet â E zi and ĉ E zj , which lie in distinct E-classes. So once again ϕe cannot have
been a 4-reduction from =ce to E. This same argument works for every e (by a
separate argument for each; there is no need to combine them), and so =ce �≤4c E. �
It remains openwhether an equivalence relationE which isΠ02-complete under≤4c
might have cofinitely many (or possibly all) of its classes be Δ02 in some nonuniform
way.

§5. Questions. Computable reducibility has been independently invented several
times, butmany of its inventionswere inspired by the analogy toBorel reducibility on
2� . Therefore, when a new notion appears in computable reducibility, it is natural to
ask whether one can repay some of this debt by introducing the analogous notion in
theBorel context.Wehavenot attempted to do sohere, butwe encourage researchers
in Borel reducibility to consider this idea. First, do the obvious analogues of n-ary
and finitary reducibility bring anything new to the study of Borel reductions? And
second, in the context of 2�, could one not also ask about�-reducibility? ABorel�-
reduction from E to F would take an arbitrary countable subset {x0, x1, . . .} of 2�,
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indexed by naturals, and would produce corresponding reals y0, y1, . . . with xi E xj
iff yi F yj . Obviously, a Borel reduction from E to F immediately gives a Borel �-
reduction, andwhen the study of Borel reducibility is restricted to Borel relations on
2� , such �-reductions always exist. The interesting situation would involve E and
F which are not Borel and for which E �≤B F : could Borel�-reductions (or finitary
reductions) be of use in such situations? And finally, if the Continuum Hypothesis
fails, could the same hold true of κ reductions, or< κ-reductions, for other κ < 2�?
There are plenty of specific questions to be asked about computable finitary
reducibility. Computable reductions have become a basic tool in computable model
theory, being used to compare classes of computable structures under the notion
of Turing-computable embeddings (as in [3, 4], for example). In situations where
no computable reduction exists, finitary reducibility could aid in investigating the
reasons why: is there not even any binary reduction? Or is there a computable
finitary reduction, but no computable reduction overall? Or possibly the truth lies
somewhere in between? Finitary reducibility has served to answer such questions in
several contexts already, as seen in Section 4.2, and one hopes for it to be used to
sharpen other results as well.
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