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1. Introduction

Automorphic Lie algebras are a class of infinite-dimensional Lie algebras over the complex
field C that emerged in the context of mathematical physics and more precisely in the
context of integrable systems [19–21]. They originated in the study of algebraic reduction
of Lax pairs by Lombardo and Mikhailov [19, 20], related to the notion of reduction
groups, proposed by Mikhailov in [23] and [24]. The first appearance of a notion of
automorphic Lie algebras is to be found in the PhD thesis by Lombardo, and subsequently
in Lombardo and Mikhailov [21], where a systematic study of these algebras within the
theory of integrability began. It then developed independently from this approach into
the search and the description of invariant algebras, with contributions by Lombardo
and Sanders and later also Knibbeler [3, 4, 18, 22]. The subject of automorphic Lie
algebras inspired recent research into group theory, by the authors [1]. Independently,
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948 V. Knibbeler, S. Lombardo and C. Oelen

equivariant map algebras were introduced and studied by representation theorists Neher,
Savage and Senesi [6] in order to unify many Lie algebras that appear in mathematical
physics. These included automorphic Lie algebras, although they were unaware of this at
the time.
While a precise definition will be given in § 2, for now, the reader should think of

automorphic Lie algebras as Lie algebras of meromorphic maps (usually with prescribed
poles) from a compact Riemann surface X, originally the Riemann sphere, into a finite-
dimensional Lie algebra g, which are equivariant with respect to a finite group Γ acting
on X and on g, both by automorphisms. It is therefore not surprising that the study of
these objects requires notions from algebra, geometry and analysis. The group Γ plays
the role of the reduction group in the context of integrable systems. In this paper, we
refer to Γ as the symmetry group of an automorphic Lie algebra.
Considerable work on automorphic Lie algebras based on the Riemann sphere has

been carried out in the past decades. More recently, other Riemann surfaces have been
investigated in [10], where the foundations of a representation theory for automorphic Lie
algebras have been developed. Automorphic Lie algebras in the context of modular forms
have been investigated in [5]. In [10], the authors find a local description of automorphic
Lie algebras in the vicinity of a point on the compact Riemann surface. That is, the
quotient of an automorphic Lie algebra obtained by truncating a local parameter is
determined. However, it remains an open problem to have a global description of such
Lie algebras on surfaces of positive genus, as we have for the Riemann sphere. First steps
in this direction can be found in [26].
This paper develops those concepts further and presents a first classification in the

case where X is a genus 1 Riemann surface and when g = sl2(C); we will refer to g as the
base Lie algebra. We will exclusively work over the complex numbers, for which reason
we use the notation sl2 := sl2(C).
To give a flavour of automorphic Lie algebras to a newcomer, let us start with a

classic example. Consider a simple complex, finite-dimensional Lie algebra g and let σ
be an automorphism of order N of g. Consider the space of Laurent polynomial maps
f : C∗ → g which satisfy f(εz) = σf(z), where εN = 1. Endow this space with the
pointwise Lie bracket. This is an example of an automorphic Lie algebra with base Lie
algebra g, and where the Riemann surface X is the Riemann sphere C∞. The space of
meromorphic functions on C∞ which are holomorphic outside {0,∞} is given by the space
of Laurent polynomials C[z, z−1]. The group here is CN which acts on C∞ as z 7→ εz and
on g by the automorphism σ, such that the equivariance condition reads f(εz) = σf(z).
It is called a twisted loop algebra and is probably best known for the role it plays in the
construction of affine Kac–Moody algebras [15]. Automorphic Lie algebras are natural
generalisations of this type of algebra, in the sense illustrated below.
As was recognised only relatively recently [30], another important example of an auto-

morphic Lie algebra can be traced back to the chemistry Nobel Prize winner, Lars
Onsager, in his pioneering paper [27] on the exact solution of the planar Ising model.
This is not a loop algebra and is now known as the Onsager algebra. It can be defined as
the Lie algebra O with complex basis Ak and Gm where k ∈ Z and m ∈ N. The brackets
are given by

[Ak, Al] = 4Gk−l,

[Ak, Gm] = 2(Ak−m −Ak+m),

[Gm, Gn] = 0,
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with G−m = −Gm (m > 0) and G0 = 0. Onsager’s work on the 2D Ising model was
later simplified using different techniques, cf. [16], in which there was no appearance of
the Onsager algebra. This caused the Onsager algebra to be less studied until the early
1980s, when it began to appear in different contexts and in a different form. In a paper
by Grady, [9] relations (the Dolan–Grady relations) between two nonlinear operators
were found which guarantee the existence of infinitely many commuting charges. The
Dolan–Grady relations were later found by Perk in [28] to be connected to the Onsager
algebra. For a concise overview, we refer to El-Char [11].
In [5, Theorem 2.5], it is proven that the Onsager algebra O is isomorphic to the Lie

algebra A = C〈h, e, f〉 ⊗C C[x] with the Lie structure that is linear over polynomials in
the indeterminate x and

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h⊗ x(x− 1).

This is the form we will encounter when proving that certain automorphic Lie algebras
are isomorphic to the Onsager algebra.
The main result of this work is a classification of automorphic Lie algebras on complex

tori and the construction of certain normal forms. We will present our classification
theorem here and leave the construction of the normal forms, proving our classification
theorem, for the main body of the paper.
Besides the Onsager algebra described above, we find two families of Lie algebras

parametrised by the (open) modular curve. We denote these families by Cτ and Sτ and
present them in terms of the traditional elliptic invariants g2 and g3 defined as

g2(τ) = 60
∑
a,b∈Z

(a,b) 6=(0,0)

(a+ bτ)−4, g3(τ) = 140
∑
a,b∈Z

(a,b) 6=(0,0)

(a+ bτ)−6

where τ is an element of the upper half plane

H = {z ∈ C : Im(z) > 0}.

The Lie algebra Cτ is the current algebra

Cτ = sl2 ⊗C C[x, y]/(y2 − 4x3 + g2(τ)x+ g3(τ)),

where, as usual, the Lie bracket is defined by extending the bracket of sl2 linearly over
the polynomials in x and y. The second family is defined by

Sτ = C〈E,F,H〉 ⊗C C[x], (1.1)

where we identify X with X ⊗ 1 for X = E,F,H, with the Lie structure that is linear
over polynomials in x and satisfies

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H ⊗ (4x3 − g2(τ)x− g3(τ)).

The elliptic invariants g2 and g3 are usually defined for any lattice Λ in C and we could
define families of Lie algebras CΛ and SΛ accordingly, but this does not produce any new
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Lie algebras: homothetic lattices produce isomorphic Lie algebras. Indeed, using the fact
that g2(αΛ) = α−4g2(Λ) and g3(αΛ) = α−6g3(Λ) for any non-zero complex number α,
we can check that the linear extension of

A⊗ p(x, y) 7→ A⊗ p(α2x, α3y)

descends to an isomorphism from CΛ to CαΛ. Likewise, we can define an isomorphism
from SΛ to SαΛ with the assignments

E ⊗ p(x) 7→ E ⊗ α3p(α2x), F ⊗ p(x) 7→ F ⊗ α3p(α2x), H ⊗ p(x) 7→ H ⊗ p(α2x).

Hence we can assume that the lattice Λ is scaled to the canonical form Z⊕Zτ for τ ∈ H
if we are only concerned with isomorphism classes of Lie algebras.
If τ is replaced by τ ′ = aτ+b

cτ+d for a, b, c, d ∈ Z, ad − bc = 1 we arrive at isomorphic

Lie algebras again. Indeed, Z⊕ Zτ ′ = (c+ dτ)−1 (Z⊕ Zτ), and we have just shown that
homothetic lattices produce isomorphic Lie algebras. Thus, we only need to consider
equivalence classes [τ ] in the modular curve SL2(Z)\H if we are interested in Cτ and Sτ

up to isomorphism, and we will occasionally write C[τ ] and S[τ ] accordingly.
We know, in fact, that Cτ

∼= Cτ ′ if and only if [τ ] = [τ ′] due to Fialowski and
Schlichenmaier. In [12, Proposition 4.7], they show that if g is a semisimple finite-
dimensional Lie algebra, A and B two associative, commutative algebras (with units)
and if the current algebras g⊗CA and g⊗CB are isomorphic as Lie algebras, then A and
B are isomorphic as associative algebras. Write Aτ = C[x, y]/(y2−4x3+ g2(τ)x+ g3(τ)).
From algebraic geometry, cf. [14, Corollary 3.7], we learn that Aτ

∼= Aτ ′ implies [τ ] = [τ ′]
and hence Cτ

∼= Cτ ′ implies [τ ] = [τ ′]. It is not known to the authors whether S[τ ]
∼= S[τ ′]

implies [τ ] = [τ ′].
Now that we know the Lie algebras Cτ , O and Sτ we can present our classification

result.

Theorem 1. Let Γ be a finite group acting faithfully on a complex torus T with biholo-
morphic maps and also faithfully on sl2 with Lie algebra isomorphisms. Let T be the torus
minus the orbit Γ · {0}, and let T → T/Γ be the canonical projection onto the quotient
Riemann surface. The isomorphism class of the automorphic Lie algebra consisting of
Γ-equivariant holomorphic maps T → sl2, meromorphic at the punctures Γ · {0}, is deter-
mined by the number of branch points of T → T/Γ as in Table 1. No other number of
branch points occur.
The class [τ ] in this table is the element of SL2(Z)\H corresponding to the torus T/t(Γ),

where t(Γ) is the subgroup of Γ generated by the elements that have no fixed point in T.

Here we use the well-known one-to-one relation between complex tori up to isomor-
phism and elements of SL2(Z)\H.
The dimension of the abelianisation A/[A,A] can be computed directly from the def-

inition for A = Cτ , O, Sτ and is then seen to be equal to the number of branch points
of T → T/Γ. In particular, the Lie algebras Cτ ,O and Sτ̃ , where τ, τ̃ ∈ H, are pairwise
non-isomorphic, and if two automorphic Lie algebras in our classification are isomorphic,
then the number of branch points of the corresponding quotient maps are equal.
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Table 1. Lie algebra associated to the number of branch points of the quotient map T → T/Γ.

# branch points Lie algebra

0 C[τ ]

2 O

3 S[τ ]

2. Definitions, notations and first examples

In this section, we will define automorphic Lie algebras, introduce notations and present
two examples: one where the Riemann surface is the Riemann sphere and one where it
is a complex torus.
Let g be a complex finite-dimensional Lie algebra and let X be a compact Riemann

surface. Suppose Γ is a finite group acting on g by Lie algebra isomorphisms and on X
by biholomorphisms. We denote the group of Lie algebra isomorphisms by Aut(g) and
the group of biholomorphisms of X by Aut(X). The group actions can be described by
homomorphisms

σ : Γ → Aut(X), ρ : Γ → Aut(g).

Consider a finite Γ-invariant set S ⊂ X and denote by X the complement X \ S. Thus,
X is a punctured compact Riemann surface. We use the notation OX for the C-algebra of
meromorphic functions on X holomorphic on X. Denote by σ̃ the induced homomorphism
Γ → Aut(OX) defined by σ̃(γ)f = f ◦ σ(γ)−1 for γ ∈ Γ. A current algebra is formed by
taking the tensor product over C of g and OX. This has a natural structure of a Lie
algebra by declaring∑

i

Ai ⊗ fi,
∑
j

Bj ⊗ gj

 :=
∑
i,j

[Ai, Bj ]⊗ figj ,

where Ai, Bj ∈ g, fi, gj ∈ OX and the bracket on the right-hand side is the bracket in g.
We let Γ act naturally on g⊗C OX by the diagonal action

γ · (A⊗ f) = ρ(γ)A⊗ σ̃(γ)f. (2.1)

We will also write ρ ⊗ σ̃(γ) for the homomorphism corresponding to the action defined
in (2.1).
An automorphic Lie algebra is the Lie subalgebra of the current algebra g ⊗C OX of

those elements invariant under the specified action.

Definition 1. The automorphic Lie algebra A = A(g,X,Γ, ρ, σ) is defined as the
algebra of fixed points of the action of Γ on g⊗C OX. That is,

A(g,X,Γ, ρ, σ) = (g⊗C OX)
ρ⊗σ̃(Γ) = {a ∈ g⊗C OX : γ · a = a for any γ ∈ Γ}.
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From now onwards, we will use the acronym aLia for ‘automorphic Lie algebra’. We
will sometimes simply write A = (g⊗COX)

Γ, suppressing the additional data, if they are
clear from the context.
As mentioned in the Introduction, the Onsager algebra is a Lie algebra that appears

prominently in the context of aLias. Roan discovered in 1991 [30] that O is in fact an
aLia avant la lettre. We will give an example of an aLia, where X is the Riemann sphere,
which is isomorphic to the Onsager algebra.

Example 2 (The simplest concrete form of the Onsager algebra). Let
X = C∞ be the Riemann sphere and let g = sl2. Take S = {0,∞}. The punctured surface
X is given by X \ S ∼= C∗ and the associated algebra of functions is OX = C[z, z−1], the
Laurent polynomials. Let Γ be the group with two elements, generated by γ, and define
the homomorphism σ : Γ → Aut(X) by σ(γ)z = z−1. The function

J =
z + 2 + z−1

4

is invariant under this action. It is in fact a Hauptmodul, in the sense that any invariant
meromorphic function on the Riemann sphere is a rational function in J. This can be
shown using the theory of divisors. If we then restrict the poles to {0,∞} we obtain
C[z, z−1]Γ = C[J ]. We denote this space by C[z, z−1]+ as it is the +1 eigenspace of γ.
The −1 eigenspace C[z, z−1]− is given by C[J ](z − z−1). Indeed, if f ∈ C[z, z−1]− then
it necessarily vanishes at 1 and −1, hence f/(z − z−1) is an element of C[z, z−1]+.
Define the homomorphism ρ : Γ → Aut(sl2) by

ρ(γ)

(
a b

c −a

)
=

(
a −b

−c −a

)
.

Let

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
.

This action on sl2 yields the eigenspace decomposition

sl+2 = Ch, sl−2 = C〈e, f〉.

We have

A = (sl2 ⊗C OX)
ρ⊗σ̃(Γ)

= sl+2 ⊗C OX
+ ⊕ sl−2 ⊗C OX

−

= Ch⊗C C[J ]⊕ C〈e, f〉 ⊗C C[J ](z − z−1).
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Define

H = h⊗ 1, E = e⊗ (z − z−1)/4, F = f ⊗ (z − z−1)/4

so that we can write A = C〈E,F,H〉 ⊗C C[J ] with brackets

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H ⊗ J(J − 1).

We have chosen the Hauptmodul J with values 0 and 1 at the branch points (−1 and 1),
but we could have chosen any other two (distinct) values. They appear as zeros in the
last Lie bracket.
This Lie algebra made a lot of appearances in the literature. Roan studied the Onsager

algebra and found this aLia (in another basis) as a concrete form of the Onsager algebra
which enabled him to classify its finite-dimensional irreducible representations [30]. The
work of Lombardo and Sanders [22], Knibbeler, Lombardo and Sanders [2] and Bury and
Mikhailov [7] showed that any aLia of Γ-equivariant meromorphic maps C∞ → sl2 with
precisely two Γ-orbits of ramification points in its holomorphic domain and precisely one
Γ-orbit outside its holomorphic domain, is isomorphic to A. Knibbeler, Lombardo and
Veselov realised this Lie algebra in terms of modular functions and provided an explicit
isomorphism O → A by

A0 7→ H, A1 7→ H ⊗ (2J − 1)− 2E + 2F

cf. [5, Theorem 2.5].

We will see in § 6 that the Onsager algebra can also be realised as certain aLias on a
complex torus with enough symmetry, that is, tori on which the groups C 4 and C 6 act.
As opposed to the case of the Riemann sphere, the symmetry group C 2 will not appear
in this context. Instead, the symmetry groups C3, C4, C6 and A4 are the only ones that
give rise to aLias isomorphic to the Onsager algebra.
For our first example of an aLia on a complex torus, we will use the Weierstrass ℘-

function. This function is defined as follows. Let Λ be a lattice and consider the complex
torus T = C/Λ. The function ℘Λ : T → C defined by

℘Λ(z) =
1

z2
+

∑
0 6=ω∈Λ

(
1

(z − ω)2
− 1

ω2

)
(2.2)

is called the Weierstrass ℘-function associated with the lattice Λ. It is a meromorphic
function on T with poles precisely at the lattice points ω ∈ Λ. The reference to a lattice
Λ will be suppressed when there is no confusion. It is clear that ℘(−z) = ℘(z) and
℘′(−z) = −℘′(z), where ℘′ denotes the derivative of ℘. Furthermore, ℘ satisfies the
equation (℘′)2 = 4℘3 − g2℘ − g3 where g2, g3 ∈ C are the elliptic invariants. The space
of even meromorphic functions on T which are holomorphic on T \ {0} is given by the
polynomials in ℘ with complex coefficients, C[℘], cf. [13, Proposition V.3.1]. Using this
and the relation (℘′)2 = 4℘3−g2℘−g3, it is not difficult to see that any odd meromorphic
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function on T, holomorphic on T \ {0}, is an element of C[℘]℘′. Since any function on T
is a sum of an even and odd function, we have established the following fact.

Lemma 1. The algebra of meromorphic function on complex torus T, holomorphic on
T \ {0}, is given by OT\{0} = C[℘, ℘′].

We now have all the ingredients to present our first, simple example of an aLia on a
complex torus with symmetry group C 2. We will write T for T \ Γ · {0}.

Example 3. Fix a complex torus T = C/Λ with Λ = Z⊕Zτ . Let g = sl2 and Γ = C2,
generated by γ, where σ : Γ → Aut(T ) is the homomorphism defined by σ(γ)z = −z. The
punctured torus T is given by T \{0}. Write ℘ = ℘Λ. Keeping in mind that OT = C[℘, ℘′]
and (℘′)2 = 4℘3−g2℘−g3, it is easily seen that the algebra OT is given by OT = O+

T ⊕O−
T ,

where

O+
T = C[℘], O−

T = C[℘]℘′

denote the space of even and odd functions, respectively. Define the homomorphism
ρ : Γ → Aut(sl2) by

ρ(γ)

(
a b

c −a

)
=

(
a −b

−c −a

)
.

Let

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
.

This action on sl2 decomposes as sl+2 ⊕ sl−2 , where

sl+2 = Ch, sl−2 = C〈e, f〉

are the eigenspaces with eigenvalue 1 and −1, respectively. We have

A = (sl2 ⊗C OT)
ρ⊗σ̃(C2) = sl+2 ⊗C OX

+ ⊕ sl−2 ⊗C OX
− = C〈h, e⊗ ℘′, f ⊗ ℘′〉 ⊗C C[℘].

Define

E = e⊗ ℘′, F = f ⊗ ℘′, H = h⊗ 1.

Then A = (sl2 ⊗C OX)
ρ⊗σ̃(C2) = C〈E,F,H〉 ⊗C C[℘] ∼= Sτ with brackets

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H ⊗ (4℘3 − g2(τ)℘− g3(τ)).

Observe that (sl2 ⊗C OT)
ρ⊗σ̃(C2) 6∼= sl2 ⊗C Oσ̃(C2)

T , since the right-hand side is perfect,
whereas the left-hand side is not.
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In the above example, (sl2 ⊗C OT)
ρ⊗σ̃(C2) 6∼= sl2 ⊗C Oσ̃(C2)

T . This is a consequence of
the fact that with this choice of homomorphism σ, the quotient T/σ(C2) has genus 0 or
equivalently, the canonical projection π : T → T/σ(C2) has ramification points. It is a
general fact, cf. [10], that for a punctured compact Riemann surface X and a complex-
finite dimensional Lie algebra g, we have (g ⊗C OX)

Γ 6∼= g ⊗C OΓ
X whenever X → X/Γ

contains a ramification point x 0, when Γx0
acts non-trivially on g. We will later see how

choosing a different homomorphism of C2 → Aut(T ) does yield an isomorphism.

3. A classification scheme

The aim of this section is to explain what we will precisely classify. Our objects of interest
are aLias of the form

A(sl2,T,Γ, ρ, σ) = (sl2 ⊗C OT)
ρ⊗σ̃(Γ),

where Γ is a finite group, ρ : Γ → Aut(sl2) and σ : Γ → Aut(T ) homomorphisms,
T = T \ S, where T is a complex torus and S an orbit of Γ in T. We would like to
determine the isomorphism classes of these aLias, which is the content of Theorem 1.
We may assume that S is the orbit of 0 because Aut(T ) acts transitively on T (using
Lemma 4 below), and we may assume that ρ and σ are faithful, almost without losing
generality, explained by Lemma 2 and 3. These restrictions constitute our classification
scheme.
We will first address some general aspects of invariant spaces with respect to some

group action. Let X be a compact Riemann surface, g a complex finite-dimensional Lie
algebra and let ρ : Γ → Aut(g) and σ : Γ → Aut(X) be homomorphisms. Given a finite
group Γ and a Γ-module M, a standard technique for obtaining the space of invariants
of the action of Γ on M, denoted by MΓ, is that of averaging over the group Γ. We will
explain this method. Define the averaging operator (also known as the Reynolds operator)
〈·〉Γ : M → M by

〈m〉Γ =
1

|Γ|
∑
γ∈Γ

γ ·m.

Clearly, 〈·〉Γ is linear if the action of Γ on M is linear. One sees that its image is MΓ and
〈〈m〉Γ〉Γ = 〈m〉Γ, thus 〈·〉Γ is a projection onto MΓ. Suppose K is a normal subgroup
of Γ, which we denote by K C Γ. Then there is an obvious action of the quotient group
Γ/K on MK and we can check directly that 〈〈·〉K〉Γ/K = 〈·〉Γ. In particular, an aLia
with symmetry group Γ can be computed making use of the fact that it has a normal
subgroup K. Phrased in terms of our setting:

Lemma 2. Let K C Γ. Then (g⊗C OX)
Γ = ((g⊗C OX)

K)Γ/K .

Let ρ̃ = ρ ⊗ σ̃ and K̃ = ker ρ · kerσ. First of all, observe that we may replace Γ by
Γ/ ker(ρ ⊗ σ̃), making use of the fact that ker(ρ ⊗ σ̃) is a normal subgroup of Γ and
invoking Lemma 2. Trivially, (g⊗COX)

ker(ρ⊗σ̃) = g⊗COX. We can therefore assume that
ker ρ ∩ ker σ̃ = 1 without losing generality.
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Lemma 3. (g⊗C OX)
ρ⊗σ̃(Γ) = (gρ(kerσ) ⊗C Oσ̃(ker ρ)

X )ρ̃(Γ)/ρ̃(K̃).

Proof. Clearly ρ̃(K̃) C ρ̃(Γ) since K̃ C Γ and ρ̃ is a homomorphism. Suppose A ∈ g
and f ∈ OX. Now, if ρ̃(γ1γ2) ∈ ρ̃(K̃) with γ1 ∈ ker(ρ) and γ2 ∈ ker(σ), then

ρ̃(γ1γ2)(A⊗ f) = ρ(γ1γ2)⊗ σ̃(γ1γ2)(A⊗ f) = ρ(γ2)A⊗ σ̃(γ1)f,

where the homomorphism ρ ⊗ σ̃ is defined in (2.1). Hence (g ⊗C OX)
ρ̃(K̃) = gρ(kerσ) ⊗C

Oσ̃(ker ρ)
X . By employing Lemma 2, this proves the claim. �

Assume now the case of X =T and denote again by T the punctured complex torus

T \ σ(Γ) · {0} (see § 2). We know that Oσ̃(ker ρ)
T

∼= OT/σ(ker ρ). Now, T/σ(ker ρ) is a punc-
tured compact Riemann surface of genus 0 or 1. In the former case, we refer to previous
literature [3, 4, 7, 22]. In the latter case, we may assume that σ(ker ρ) = σ̃(ker ρ) = 1.
Together with kerσ ∩ ker ρ = 1 this is equivalent to ker ρ = 1. Now consider the homo-

morphism σ. If kerσ is non-trivial, the Lie algebra sl
ρ(kerσ)
2 has dimension less than 3

and therefore is abelian, and we will rule out this class.
The following simple lemma plays an important role in our classification. It appears

in a more general setting in the context of equivariant map algebras in [6]. Recall that X
stands for the punctured compact Riemann surface X \ S.

Lemma 4. Suppose ρ : Γ → Aut(g) and σ : Γ → Aut(X) are homomorphisms and
ρ̃ = ρ⊗ σ̃ : Γ → Aut(g⊗C OX). Let A be the aLia defined by these actions:

A = {a ∈ g⊗C OX : ρ̃(γ)a = a for any γ ∈ Γ},

where a = A ⊗ f , with A ∈ g and f ∈ OX. Define a second action of Γ on g and X by
ρ′(γ) = τ1ρ(γ)τ

−1
1 and σ′(γ) = τ2σ(γ)τ

−1
2 , where τ1 ∈ Aut(g) and τ2 ∈ Aut(X) such

that τ2(S) = S. Let ρ̃′ be given by ρ̃′ = ρ′ ⊗ σ̃′ and define

A′ = {a ∈ g⊗C OX : ρ̃′(γ)a = a for any γ ∈ Γ}.

Then A ∼= A′ as Lie algebras.

Proof. Define ϕ : g⊗C OX → g⊗C OX on simple tensors by ϕ(A⊗ f) = τ1(A)⊗ τ̃2f ,
where A ∈ g, f ∈ OX and τ̃2f(z) = f(τ−1

2 z) for z ∈ X, and extend ϕ C-linearly to the
whole space. It is a straightforward verification that ϕ is Lie algebra isomorphism and
that ϕ ◦ ρ̃(γ) = ρ̃′(γ) ◦ ϕ for all γ ∈ Γ, that is, it intertwines ρ̃ and ρ̃′. This implies that
a ∈ g ⊗C OX is invariant with respect to the action defined by ρ̃ if and only if ϕ(a) is
invariant with respect to the action defined by ρ̃′. Thus ϕ restricts to an isomorphism
between A and A′. �

4. Symmetry groups with g = sl2

In this section, we will investigate which symmetry groups Γ will play a role in the
confined context of our classification scheme. This requires an understanding of the finite
subgroups of Aut(sl2) and of Aut(T ).
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Lemma 5 (Klein). Finite subgroups of Aut(sl2) are classified by the list

CN , DN , A4, S4, A5.

If two finite subgroups of Aut(sl2) are isomorphic, then they are conjugate.

Proof. The group Aut(sl2) is isomorphic to PSL2(C) by the adjoint representation.
A finite subgroup of PSL2(C) leaves a Hermitian inner product invariant and is therefore
conjugate to a subgroup of PSU2 which in turn is isomorphic to SO3. Therefore, the
statement of the lemma is equivalent to the analogue statement for the Lie group SO3

instead of Aut(sl2). Klein showed that the subgroups of SO3 are precisely the orientation
preserving isometries of R3 that fix the regular pyramids, regular polygons, regular tetra-
hedrons, regular octahedrons and regular icosahedrons, centred at the origin [17]. This
yields the groups listed in the statement, respectively. We may moreover assume that
the vertices of the polyhedra have norm 1. If we then take two polyhedra of the same
type, there is an element of SO3 that transforms one to the other. This group element
conjugates the symmetry groups of the two polyhedra and proves the last statement of
the lemma. �

Lemma 6. A finite group G embeds in Aut(sl2) and Aut(T ) if and only if G equals

(1) CN , N > 1
(2) DN , N > 2
(3) A4, (g2(τ) = 0)

Proof. By Lemma 5, we know that the finite subgroups of Aut(sl2) are given by

CN , DN , A4, S4, A5.

We will show that only the subgroups as given in the statement are simultaneously
subgroups of Aut(T ) as well.
Let T be a complex torus. It follows from [25, Proposition III.1.11] that any automor-

phism σ of T is of the form σ(z) = εz+α, where ε is a suitable root of unity (for which T
has multiplication by ε) and α ∈ T . This immediately gives a semi-direct product struc-
ture Aut(T ) = Aut0(T )n t(T ) where Aut0(T ) is the group of automorphisms fixing zero
and t(T ) is the group of translations of T. Now, take two automorphisms σ, σ′ defined
by σ(z) = εz + α and σ′(z) = ε′z + α′. Then [σ, σ′](z) = z − α′ − ε′α + εα′ + α, so that
[σ, σ′] is indeed a translation. Hence [Aut(T ),Aut(T )] ⊂ t(T ).
Now, let r ∈ t(T ) be any translation of T, say r(z) = z + α. We will show that there

are s ∈ Aut0(T ) and r′ ∈ Aut(T ) such that r = [s, r′]. Suppose s(z) = −z (any torus has
multiplication by −1) and let r′(z) = z − α

2 . Then sr′(z) = −z + α
2 . Hence [s, r′](z) =

−(−z − α
2 − α

2 ) = z + α = r(z). This proves the claim that [Aut(T ),Aut(T )] = t(T ).
For the proof that CN, DN are subgroups of Aut(T ), as well as A4 for a suitable torus

T, we refer to Lemma 7.
Let us now argue that S 4 and A5 are not subgroups of Aut(T ) for any complex torus T.

To see that S 4 is not a subgroup of Aut(T ), note that [S4, S4] = A4, which is non-abelian,
whereas for Γ ⊂ Aut(T ), the commutator subgroup [Γ,Γ] ⊂ t(T ) is abelian.
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Finally, suppose for a contradiction that A5 ⊂ Aut(T ) for some complex torus T. Then
A5

∼= C`nH for some normal subgroup H 6=1, since Aut(T ) = Aut0(T )n t(T ). However,
A5 is simple and thus it cannot have a proper normal subgroup. This shows that the list
above is all there is in the intersection of finite subgroups of Aut(sl2) and Aut(T ), for all
complex tori T. �

Remark 1. Observe that we can write the groups from Lemma 6 in terms of semidirect
products as follows:

1n CN , C2 n CN , C3 n (C2 × C2), C` n 1,

where ` ∈ {1, 2, 3, 4, 6} and N ∈ N. When we write G nK ⊂ Aut0(T ) n t(T ), we shall
tacitly assume that G ⊂ Aut0(T ) and K ⊂ t(T ).

Lemma 7. The subgroups of Aut(T ) which are isomorphic to one of the finite groups
of Lemma 6 are classified by the following list, up to conjugation.

(1) CN = 〈r : rN = 1〉,
(a) C` ⊂ Aut0(T ), r(z) = e2πi/`z (` ∈ {2, 3, 4, 6)}).
(b) CN ⊂ t(T ), r(z) = z + α (α is a N -torsion point in T ).

(2) DN = 〈s, r : s2 = rN = 1, (sr)2 = 1〉,
(a) C2 × C2 ⊂ t(T ), s(z) = z + τ/2, r(z) = z + 1/2.
(b) C2nCN ⊂ Aut0(T )nt(T ), s(z) = −z, r(z) = z+α (α is aN -torsion point in T ).

(3) A4 = 〈s, r1, r2 : s3 = r21 = r22 = 1, sr1s
−1 = r1r2 = r2r1, sr2s

−1 = r1〉, τ = e2πi/3,
s(z) = e2πi/3z, r1(z) = z + 1/2.

Here we recall that the case 1a with ` = 3, 4 or 6 and the case 3 only occurs for special
tori, cf. [25, Proposition III.1.12], and the other cases occur in any torus.

Proof. We leave it to the reader to verify that the subgroups in the statements satisfy
the group relations and thus are indeed of the mentioned isomorphism class.
We start with the cyclic groups. If an element r of Aut(T ) fixes an element p of T,

then t(p)rt(p)−1 ∈ Aut0(T ) (where t(p)(z) = z + p) and t(p)〈r〉t(p)−1 is as described in
1a. If on the other hand r has no fixed points, then it is as described in 1b.
Now for the dihedral groups, consider first the abelian case D2 = C2 ×C2. This group

occurs precisely once in t(T ), as in 2a, since both groups have precisely three elements
of order 2.
Suppose now that D2 ⊂ Aut(T ) has an element s which is not contained in t(T ). Using

a conjugation as we did to classify the cyclic groups, we may assume that s ∈ Aut0(T ), so
that s(z) = −z. There must also be a non-trivial element of D2, say r, contained in t(T ).
Indeed, the elements of order 2 in Aut(T ) \ t(T ) are the maps z 7→ −z + b. A product of
two such maps is in t(T ). Thus the group D2 is as described in 2b with N =2.
For the remaining dihedral groups DN ⊂ Aut(T ) (N ≥ 3), we notice that [DN , DN ] =

〈r2〉 ⊂ [Aut(T ),Aut(T )] ⊂ t(T ) implies that r ∈ t(T ). At least one of the order 2 elements
DN \ 〈r〉 must be outside of t(T ) because DN is non-abelian. Taking a conjugate of the
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group, we may again assume that such an element, say s, fixes 0. Thus, we arrive at the
remaining groups described in 1b.
Finally, for the group A4, we argue as follows. The derived subgroup [A4, A4] =

〈r1, r2〉 ⊂ [Aut(T ),Aut(T )] ⊂ t(T ) is uniquely determined by the only three elements
in t(T ) of order 2. The element s must be outside of t(T ) for A4 is non-abelian. Taking
a conjugate of the group, we may assume that s fixes zero, which leaves two options:
s(z) = e2πi/3z and s(z) = e4πi/3z. Both options generate the same group, since there is
an automorphism of A4 sending s to s2. �

Remark 2. The lemma above gives a classification of subgroups Γ ⊂ Aut(T ). One may
be interested in a classification of embeddings (injective homomorphisms) Γ → Aut(T )
instead. The difference is in the consideration of Aut(Γ): two embeddings Γ → Aut(T )
have the same image if and only if one is the composition of the other with an
automorphism of Γ.

Lemma 8. Let Γ ⊂ Aut0(T )n t(T ) be a finite subgroup and T = T \Γ · {0}. Then for
the canonical projection π : T → T/Γ, we have

#(branch points of π : T → T/Γ) =


0 if Γ ⊂ t(T ),

2 if Γ = C` n 1 or Γ = C3 n (C2 × C2),

3 if Γ = C2 n CN ,

where ` ∈ {3, 4, 6}.

Proof. A point p ∈ T is a ramification point of π if the multiplicity of π at p,
denoted by multp(π), is at least 2. By [25, Theorem III.3.4], multp(π) equals |Γp|, where
Γp = {γ ∈ Γ : γ · p = p}. It is clear there are no branch points if Γ ⊂ t(T ) since a trans-
lation has no fixed points. Let now Γ = C3 ⊂ Aut0(T ) where T = C/Z ⊕ Zω6. It is
straightforward to check that |Γp| > 1 if and only if p ∈ {0, 1/2, ω6/2, (1 + ω6)/2}. The
only points that are in the same Γ-orbit, are 1/2 and ω6/2. Hence the total number
of branch points of π after deleting Γ · {0} equals 2. The other cases follow by similar
arguments. �

5. Functional aspects of aLia on complex tori

We will now discuss the functional aspects of aLias on complex tori. Since we are consid-
ering meromorphic sl2-valued maps on a complex torus, a starting point is to understand
meromorphic functions on a complex torus. There are multiple (equivalent) approaches
to this, e.g. via Jacobi theta-functions or Weierstrass functions. We shall further develop
the approach with the Weierstrass ℘-function, as we have started to do before Example 3.
Below we will formulate some elementary properties of the Weierstrass ℘-function.

Define the values of the half lattice points of a given lattice Λτ = Z⊕ Zτ , under ℘Λτ :

e1 = ℘Λτ (1/2), e2 = ℘Λτ (τ/2), e3 = ℘Λτ ((1 + τ)/2). (5.1)

Observe that ℘′
Λτ

vanishes at the half lattice points, since ℘′
Λτ

(−z) = −℘′
Λτ

(z).
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As we have remarked before Example 3, there is the relation between the square of the
derivative ℘′ and ℘ itself, where we now write ℘ without specifying the lattice:

(℘′)2 = 4℘3 − g2℘− g3. (5.2)

Because ℘′ vanishes at the half lattice points, the right-hand side of (5.2) factors as
4(℘− e1)(℘− e2)(℘− e3). From this, one gets the following relations between the ei:

e1 + e2 + e3 = 0, e1e2 + e1e3 + e2e3 = −g2/4, e1e2e3 = g3/4.

The next basic lemma records how Weierstrass ℘-functions associated to homothetic
lattices are related.

Lemma 9. For α ∈ C∗, we have ℘αΛ(z) = α−2℘Λ

(
α−1z

)
.

We write out explicitly two special cases of Lemma 9 that will play an important role
in the course of the paper. These cases correspond to the square lattice Λi = Z⊕Zi and
the hexagonal lattice Λω6

= Z⊕Zω6, which are the only lattices (up to homothety) that
satisfy the property αΛ = Λ for some α 6= ±1:

℘Λi
(i−1z) = −℘Λi

(z), ℘′
Λi
(i−1z) = −i℘′

Λi
(z), (5.3)

℘Λω6
(ω−1

6 z) = ω2
6℘Λω6

(z), ℘′
Λω6

(ω−1
6 z) = −℘′

Λω6
(z). (5.4)

The next lemma describes the isotypical components of the action C` ⊂ Aut0(T ) on
OT, where ` ∈ {2, 3, 4, 6} and T is a suitable complex torus. These decompositions will
be used in Theorem 5, where we construct a basis for aLias with symmetry group C`.
We denote by χj, j = 0, . . . , ` − 1 the characters of the group C`, which are defined as

χj(r
k) = ωjk

` , where r generates C`.

Lemma 10. Let σ` : C` → Aut0(T ) be the homomorphism σ`(r)(z) = ω`z and let
℘ := ℘Λ. Suppose that S = {0} and T = T \ S. Then for Γ = C2 we have

Oχ0
T = C[℘], Oχ1

T = C[℘]℘′.

For Γ = C3 we have

Oχ0
T = C[℘′], Oχ1

T = C[℘′]℘2, Oχ2
T = C[℘′]℘.

For Γ = C4 we have

Oχ0
T = C[℘2], Oχ1

T = C[℘2]℘℘′,

Oχ2
T = C[℘2]℘, Oχ3

T = C[℘2]℘′.

For Γ = C6 we have

Oχ0
T = C[℘3], Oχ1

T = C[℘3]℘2℘′,
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Oχ2
T = C[℘3]℘, Oχ3

T = C[℘3]℘′,

Oχ4
T = C[℘3]℘2, Oχ5

T = C[℘3]℘℘′.

Proof. We will only prove the claims for Γ = C3; the rest follows in the same way. We
know by Lemma 1 that OT = C[℘, ℘′]. Using (5.4) we see that C[℘′] ⊂ Oχ0

T , C[℘′]℘2 ⊂
Oχ1

T and C[℘′]℘ ⊂ Oχ2
T . It remains to show that C[℘, ℘′] is a subset of C[℘′]⊕C[℘′]℘2 ⊕

C[℘′]℘. If ℘a℘′b is a monomial with a ≥ 3, then we can substitute ℘3 = 1
4 (℘

′)2+
g2
4 ℘+

g3
4 ,

using (5.2), to obtain a polynomial in ℘ and ℘′ where all exponents of ℘ are less than
a. Repeating this substitution finitely many times, we see that ℘a℘′b is an element of
C[℘′]⊕C[℘′]℘2⊕C[℘′]℘. Hence C[℘, ℘′] is indeed a subset of C[℘′]⊕C[℘′]℘2⊕C[℘′]℘. �

ALias on complex tori with symmetry group Γ and base Lie algebra sl2, as in our
classification, turn out to be generated by three generators over their algebra of invariants,
as we will establish in § 6. We would therefore like to know what the algebra of invariants
OΓ

T is, to obtain explicit forms of the Lie algebras. For aLias with symmetry group
CN ⊂ t(T ), this is described in the following lemma. For α ∈ T of finite order, let
Λ(α) = Z+ Zα+ Zτ and T(α) = C/Λ(α).

Lemma 11. Let σα : CN → Aut(T ) be given by σα(r)(z) = z + α. Then

Oσ̃α(CN )

T = C[℘Λ(α)
, ℘′

Λ(α)
].

Proof. We know that Oσ̃α(CN )

T is the space of Λ(α)-periodic meromorphic functions

which are holomorphic on T \ Λ(α). With this perspective, Oσ̃α(CN )

T = OT/σα(CN ). Now

use Lemma 1 with T taken to be the complex torus T/σα(CN ). Thus Oσ̃α(CN )

T =
C[℘Λ(α)

, ℘′
Λ(α)

]. �

We will now construct meromorphic functions on complex tori that will play a fun-
damental role throughout, especially in the construction of normal forms. Given a
meromorphic function f on T, the divisor (f ) of f is defined as the following formal
Z-linear combination of points p ∈ T , (f) =

∑
p∈T ordp(f)(p), where ordp(f) is the

order of a zero or pole of f at p (if p is neither a zero nor a pole, ordp(f) = 0). Let
{χ0, . . . , χN−1} denote the set of characters of the cyclic group CN. Embed this group as
σ(CN ) ⊂ Aut(T ), where σ(r)z = z+α. Let ℘̃ = ℘−℘(α). Let πχj

denote the projection

OT → O
χj
T given by

πχj
=

1

N

∑
r∈CN

χj(r)σ̃(r).

We shall sometimes drop the notation that includes σ and only write γf for a group
action of Γ on some f ∈ OT. However, when this notation causes potential confusion, we
opt for readability and write a dot. Consider the function ℘′/℘̃. By (5.2) and the fact
that ℘′ is odd, we have (℘′) = −3(0) + (1/2) + (τ/2) + ((1 + τ)/2). If we assume N > 3,
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then α cannot be a half lattice point and thus α 6= −α. The divisor of ℘′/℘̃ is then given
by

(℘′/℘̃) = −(0)− (α)− (−α) + (1/2) + (τ/2) + ((1 + τ)/2), (5.5)

and thus we see that ℘′/℘̃ ∈ OT. If N =2, then one can verify that ℘′/℘̃ has poles in
{0, α} and thus again ℘′/℘̃ ∈ OT.
We define Pj : T → C to be the projection of ℘′/℘̃ under πχj

, multiplied by N :

Pj = Nπχj

(
℘′

℘̃

)
=

N−1∑
k=0

rk℘′

ωkj
N rk℘̃

. (5.6)

Notice that indeed r · Pj = χj(r)Pj . We would like to stress that Pj depends both on
a choice of a homomorphism σ : CN → Aut(T ) and the character χj of CN, while the
notation only shows j dependence. To avoid any confusion, we could write Pσ,χj

instead

– now risking an overload of notation however.
The next lemma states how Pj transforms under the action of s : z 7→ −z. It is a simple

consequence of the fact that ℘′/℘̃ is odd and that if r is a translation of the torus, then
srk = r−ks.

Lemma 12. Consider the action on T given by s : z 7→ −z. Then s acts on Pj as
sPj = −P−j .

We will now list some basic properties of the functions Pj. Recall that if a function f
has a Laurent expansion f(z) =

∑
n∈Z cn(z− z0)

n about z = z0, then the residue of f at
z = z0 is given by the coefficient c−1. Notation: Resz=z0

(f) = c−1.

Proposition 1. Let α be an N-torsion point with N > 2, and let S =
{0, α, 2α, . . . , (N − 1)α}. Then

(1) Pj is a meromorphic function on T for all j, with at most order 1 poles in S.
(2) If Pj has a pole, then it has poles everywhere in S.
(3) The residue of Pj about z=0 is given by

Resz=0(Pj) = −2 + ω−j
N + ωj

N .

In particular Pj is constant if and only if j ≡ 0 mod N . In fact, P0 = 0.

Proof. Let v = ℘′
℘̃ and first take N > 3. Assume r is given by r : z 7→ z+α. To prove

the first item, note that (rk℘̃) = −2(kα) + ((k + 1)α) + ((k − 1)α) and hence

(1/rk℘̃) = −((k − 1)α)− ((k + 1)α) + 2(kα).

Using the divisor in (5.5), we see that rkv = rk
(

℘′
℘̃

)
has order 1 poles at (k − 1)α, kα

and (k+1)α, which are distinct when N > 3. Therefore, Pj =
∑N−1

k=0
rk℘′

ω
kj
N

rk℘̃
has at most

order 1 poles in S = {0, α, 2α, . . . , (N − 1)α}.
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To prove the second statement, we observe that the divisor (Pj) is invariant under r,
since r acts by a non-zero scalar on Pj. Hence if Pj has a pole, then it has poles of order
1 everywhere in S.
For the third item, we consider a number of expansions about z =0. The summands

of Pj that are responsible for the potential occurrence of pole at z =0 are r−1v, v and rv.
It follows from the definition of ℘ in (2.2) that about z =0, we have

1

℘(z)− ℘(α)
= z2 +O(z4), ℘′(z) = − 2

z3
+O(z).

Thus,

v(z) =
℘′

℘̃
(z) = −2

z
+O(z). (5.7)

For N > 3, we have r℘̃(z) = −℘′(α)z + O(z2). Observe that ℘′(α) 6= 0 as soon as
N > 3, because zeros of ℘′ appear at half lattice points (i.e. 2-torsion points). We see
1
r℘̃ (z) = − 1

℘′(α)
1
z +O(1) and r℘̃′(z) = −℘′(α) +O(z) from which we infer

rv(z) =
1

z
+O(1).

Similarly, one argues that r−1v(z) = 1
z +O(1). Thus indeed

Resz=0(Pj) = Resz=0

(
N−1∑
k=0

ω−kj
N rkv

)
= −2 + ω−j

N + ωj
N .

If N =2, then P1 = ℘′
℘̃ − r℘′

℘̃ and it is easy to see that it has order 1 poles in {0, α}.

The expansion in (5.7) still holds, thus ℘′
℘̃ (z) = − 2

z + O(z) and one can show that

r℘′
℘̃ (z) = 2

z +O(1) about z =0.
Now consider Pj for j ≡ 0 mod N . Observe that it is invariant under r. Thus P0

descends to a function P̃0 on the torus T̃ = T/〈r〉. If P0 has poles, they are of order 1
and if this is the case, then P̃0 would have a simple pole on T̃ . This is not possible due to
the well-known fact that if a compact Riemann surface has a meromorphic function with
a single simple pole, it must be isomorphic to the Riemann sphere, cf. [25, Proposition
II.4.11]. Hence P0 is constant.
Finally, sP0 = −P0 from which it follows that P0 = 0. This concludes the proof. �

In § 6, we will introduce intertwining maps which will be used in the construction of
bases of aLias. These maps are constructed via the Pj’s. As a consequence, the bases will
be formulated in terms of the functions Pj. These functions are also important in another
way: they generate the ring OT over the complex numbers, as we will prove now.
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Proposition 2. Let r ∈ Aut(T ) be defined by r(z) = z+α with α an N-torsion point,
where N > 3. Define Pj with respect to this r. Then

OT = C[P1, P2, . . . , PN−1],

where T = T \ 〈r〉 · {0}. Furthermore, for any integer j 6≡ 0 mod N , we have

C[℘Λ(α)
] = C[P−jPj ].

Formulated differently, P−jPj is a generator for the algebra of even meromorphic
functions on the torus T ′ = C/Λ(α), holomorphic on T ′ \ {0}.

Proof. The space of meromorphic functions on a complex torus T is denoted by
M(T ). Let D be a divisor on T. The degree deg(D) of D =

∑
p∈T np(p) is defined

as deg(D) =
∑

p∈T np. Introduce the space of meromorphic functions on T with poles
bounded by D, denoted by L(D):

L(D) = {f ∈ M(T ) : div(f) > −D}.

Note that L(D) is a complex vector space. The Riemann–Roch theorem, specialised
to genus 1 Riemann surfaces [25, Proposition V.3.14], says that if D is a divisor on a

complex torus T and deg(D) > 0, then dimC L(D) = deg(D). Let D =
∑N−1

j=0 (jα).

We see that dimC L(D) = deg(D) = N . By construction, we have Pj ∈ L(D)χj , and
hence dimC L(D)χj = 1 if j 6≡ 0 mod N . Therefore, L(D) = C〈1, P1, . . . , PN−1〉. We
proceed inductively. For each k ∈ {1, . . . , N−1}, going from L((m−1)D)χk to L(mD)χk ,
we add the one-dimensional subspace generated by a product of Pj’s such that 0 6=∏

j∈{j1,...,jm} Pj ∈ L(mD)χk to L((m − 1)D)χk . In particular, for k 6≡ 0 mod N/2 and

letting Q = (P−jPj)
bm−1

2 c (where bxc denotes the integer part of x ), we claim that

L(mD)χk/L((m− 1)D)χk =

CPkQ+ L((m− 1)D)χk , if m odd

CP−kP2kQ+ L((m− 1)D)χk , if m even.

Here we used that N > 3, so that there are enough integers k such that P2k 6= 0. For
k ≡ 0 mod N/2 and m even, we need to change P−kP2k to P−k−nP2k+n ∈ Oχk

T for
some suitable n ∈ Z. This shows that OT =

⋃
j∈N L(jD) is generated as a C-algebra by

P1, . . . , PN−1 whenever N > 3.
To prove the second claim, notice that rP−jPj = P−jPj and that it has poles of

order 2 in Λ(α) if and only if j 6≡ 0 mod N . If z 0 is a zero of P−j , then −z0 is a
zero of Pj since P−j(z0) = −Pj(−z0) by Lemma 12. Hence the divisor of P−jPj equals
(P−jPj) = −2(0) + (z0) + (−z0). Now recall that ℘Λ(α)

has an order 2 pole at z =0 and

is even, hence (℘Λ(α)
) = −2(0) + (w0) + (−w0) for some w0 ∈ T ′. We see that indeed

P−jPj = c1℘Λ(α)
+ c2 for some c1, c2 ∈ C and c1 6= 0 if and only if j 6≡ 0 mod N .

Therefore, C[℘Λ(α)
] = C[P−jPj ] if and only if j 6≡ 0 mod N . �
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The following identities related to the Pj’s are recorded in the next lemma. These will
play an important role in the construction of intertwiners in § 6.

Lemma 13. Let N ∈ N. For every j ∈ Z and k 6≡ 0 mod N , there are λ, µ ∈ C such
that

P2jP
2
−j − P−2jP

2
j = λP−kPk + µ.

If in addition N > 3, k = ±j and j 6≡ 0 mod N/2, then µ is non-zero.

Proof. Let j ∈ Z and write f = P2jP
2
−j − P−2jP

2
j . Clearly γf = f for all γ ∈

〈s, r〉 ∼= DN for any N ∈ N. In particular, f is even and hence has at most order 2 poles,
for any choice of j. By Proposition 2, we see that for all k 6≡ 0 mod N we have that
f = λP−kPk + µ for some λ, µ ∈ C.
Assume now that N > 3, k = ±j and j 6≡ 0 mod N/2. If µ would be zero and z0 ∈ T

is a zero of Pj, then f(z0) = P2j(z0)P
2
−j(z0) = 0. Thus, z 0 would also be a zero of P−j or

P2j . However, since the set of zeros of Pk is invariant under r, the set of zeros of Pj must
then coincide with the zero set of P−j or P2j . Since the order and location of the poles
of Pj, P−j and P2j already coincide, this means that (Pj) = (P−j) or (Pj) = (P2j), that
is, Pj is either a constant multiple of P−j or P2j . This is absurd, which therefore means
that µ cannot be zero. �

Remark 3. One could find explicit formulas for λ and µ using Proposition 1 and
more detailed expansions. However, the obtained formulas are unlikely to benefit the
transparency of the normal form we will later obtain. Related constructions will be carried
out for Γ = C2 × C2 in § 6.2, and here it does seem appropriate to keep track of the
constants, mainly because there is simply one group instead of a collection of groups,
and the constants have transparent formulas in terms of well-known functions.

6. Construction of normal forms

In § 2, we have seen a basic example of an aLia on a complex torus with symmetry group
C 2, embedded inside Aut(T ) as z 7→ −z, and developed a number of functional aspects of
the theory. We have observed that this C 2-aLia has a particularly transparent structure –
it is generated over its algebra of invariants and its Cartan subalgebra has eigenvalues in
C (in fact, in this case it is a constant matrix). We will see that this is a general feature
of aLias on complex tori with base Lie algebra sl2.
In this section, we shall give explicit realisations of aLias and determine their isomor-

phism type. It turns out that if the symmetry group acts on a complex torus without
fixed points, then we obtain aLias that are isomorphic to a current algebra. Formulated
differently, they are untwisted. If on the other end the group acts with fixed points, the
corresponding aLias are twisted. The twisted aLias turn out to be isomorphic to either
the Onsager algebra O or Sτ .
We will bring the aLias into a normal form, which will allow us to decide the isomor-

phism type of the aLias in question. The normal form will be defined in Definition 3. As
a consequence, we settle the question whether the aLias are hereditary [4], as defined in
Definition 2.
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Our main tools in constructing bases for aLias are certain SL2(C)-valued maps on a
complex torus T = T \ Γ · {0} whose composition with Ad : SL2(C) → Aut(sl2) will
intertwine the actions of Γ on T and sl2.

Definition 2 (Hereditary aLias [4]). An aLia is said to be hereditary if it contains
a constant spectrum Cartan subalgebra (CSA). This is a Cartan subalgebra which is
generated by an element H with constant ad(H)-eigenvalues.

Definition 3 (Normal form of aLias). We say that an aLia A = (sl2 ⊗C OT)
Γ is

in normal form if

A = C〈E,F,H〉 ⊗C OΓ
T

such that

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H ⊗ p,

where p ∈ OΓ
T .

We remark that for the normal form as in Definition 3, we automatically have that H
has eigenvalues in C. The CSA h = CH ⊗OΓ

T is a constant spectrum CSA.
In the upcoming sections, we will construct normal forms for all aLias on complex

tori with base Lie algebra sl2, in our classification. This will, therefore, also establish the
property of being hereditary of this class of aLias.
Let the symmetry group be given by Γ = G n K ⊂ Aut0(T ) n t(T ), where we recall

the notation t(T ) for the normal subgroup of translations of the torus T. We start with
a lemma that says that, under certain circumstances, a normal form for the aLia with
symmetry group K automatically determines a normal form for Γ as well.

Lemma 14. Let Γ = G n K ⊂ Aut0(T ) n t(T ). If A = (sl2 ⊗C OT)
K has a normal

form, and H ∈ A is G-invariant, such that it generates a CSA of A, then (sl2 ⊗C OT)
Γ

has a normal form as well.

Proof. First recall that G = C` ⊂ Aut0(T ) and that K consists of translations of
T. By Lemma 11, we, therefore, have OK

T = C[℘, ℘′] for some ℘ associated to a suitable
lattice. Observe that the statement is trivially true for ` = 1, hence we take ` ∈ {2, 3, 4, 6}.
Assume the normal form of (sl2 ⊗C OT)

K to be

(sl2 ⊗C OT)
K = C〈E,F,H〉 ⊗C OK

T = C〈E,F,H〉 ⊗C C[℘, ℘′] ∼= sl2 ⊗C OT/K ,

with OK
T -linear brackets [H,E] = 2E, [H,F ] = −2F and [E,F ] = H. Now, since K

is normal in Γ, g ∈ G acts on C〈E,F,H〉 ⊗C OK
T and {g · E, g · F, g · H} forms again

a standard sl2-triple, where the action is defined in (2.1). By assumption, g · H = H.
Furthermore, [H, g ·E] = 2g ·E, so g ·E = E ⊗ k1 for some function k1 ∈ OK

T . Similarly,
g ·F = F⊗k2 for some k2 ∈ OK

T . We have [g ·E, g ·F ] = H and this implies that k2 = k−1
1 .

The only units in OK
T = C[℘, ℘′] are the non-zero constants. Therefore, g ·E = ωj

`E and

g · F = ω−j
` F , for some j ∈ {1, . . . , `− 1} such that gcd(j, `) = 1. Notice that this forces

j ∈ {1, `− 1}, due to the limited amount of choices for `.
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We now decompose C〈E,F,H〉 ⊗C C[℘, ℘′] into its C` isotypical components:

(C〈E,F,H〉 ⊗C C[℘, ℘′])G = C〈E ⊗ p1, F ⊗ p2,H〉 ⊗C C[J ],

where p1 ∈ C[℘, ℘′]χ`−j , p2 ∈ C[℘, ℘′]χj and J generates OΓ
T , which follows from

Lemma 10.
Its Lie structure is given by

[H,E ⊗ p1] = 2E ⊗ p1, [H,F ⊗ p2] = −2F ⊗ p2, [E ⊗ p1, F ⊗ p2] = H ⊗ p1p2,

where p1p2 ∈ C[J ]. We may assume that g · E = ω`E and g · F = ω−1
` F after apply-

ing an automorphism that interchanges the isotypical components if necessary (e.g.

Ad

(
0 1

−1 0

)
) and assume therefore that p1 ∈ C[℘, ℘′]χ`−1 , p2 ∈ C[℘, ℘′]χ1 . �

Observe that Lemma 14 implies that in order to understand aLias with non-abelian
symmetry groups Γ = GnK, it is sufficient to understand the aLias with abelian sym-
metry groups G and K separately, granted that we have found a K -invariant element H
in a CSA, which is simultaneously G-invariant.
The proof of Lemma 14 gives us a construction to obtain the normal for the aLia with

symmetry group Γ as well, if the condition on a generator of the CSA is being satisfied.
The next proposition gives a criterion for the existence of normal forms of aLias and

extends Lemma 14 by providing a normal form of the full group Γ = GnK.

Proposition 3. Let Γ = G n K ⊂ Aut0(T ) n t(T ) and let ρ : Γ → Aut(sl2) be a
monomorphism and ρ̃ : Γ → Aut(sl2) a homomorphism whose kernel equals K. If there
exists an inner automorphism Ψ ∈ AutOT(sl2 ⊗C OT) such that for all z ∈ T and γ ∈ Γ,
we have

Ψ(γ · z) = ρ(γ)Ψ(z)ρ̃(γ)−1, (6.1)

then

(1) K := (sl2 ⊗C OT)
K ∼= sl2 ⊗C OK

T ,
(2) There exists a normal form for A = (sl2 ⊗C OT)

Γ and if the normal form of K
is given by C〈E,F,H〉 ⊗C OK

T , with its Lie structure inherited from sl2, then the
normal form for A given by

(sl2 ⊗C OT)
Γ = C〈E ⊗ p1, F ⊗ p2,H〉 ⊗C OΓ

T ,

with Lie structure

[H,E ⊗ p1] = 2E ⊗ p1, [H,F ⊗ p2] = −2F ⊗ p2, [E ⊗ p1, F ⊗ p2] = H ⊗ p1p2,

where p1 generates Oχ`−1
T , where |G| = `, p2 generates Oχ1

T and p1p2 ∈ OΓ
T .

https://doi.org/10.1017/S0013091524000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000324


968 V. Knibbeler, S. Lombardo and C. Oelen

Proof. First of all, we would like to stress that we can view Ψ ∈ AutOT(sl2 ⊗C OT)
as a holomorphic Aut(sl2)-valued function on T, in which case we use the notation Ψ(z).
We shall use both interpretations interchangeably and let the argument of Ψ be either
an element of T or an element of sl2 ⊗C OT.
The first part claims that for k ∈ K, if we have Ψ(k · z) = ρ(k)Ψ(z), then there is a

normal form for K. Let {x1, x2, x3} be a basis for sl2. Then for j = 1, 2, 3, we have that
Xj(z) := Ψ(z)xj is K -invariant:

k ·Xj(z) = k ·Ψ(z)xj = ρ(k)Ψ(k−1 · z)xj = Xj(z).

Since Ψ ∈ AutOT(sl2 ⊗C OT) is an inner automorphism, we have

C〈x1, x2, x3〉 ⊗C OT = Ψ(C〈x1, x2, x3〉 ⊗C OT) = C〈X1, X2, X3〉 ⊗C OT.

Taking the invariants, we obtain a normal form

K = C〈X1, X2, X3〉 ⊗C OK
T

∼= sl2 ⊗C C[℘, ℘′],

with the brackets inherited from sl2 and where ℘, ℘′ generate OK
T .

To prove the second item, we will argue as follows. Let γ = gk ∈ Γ = G n K and
x ∈ sl2. By (6.1),

γ ·Ψ(z)x = Ψ(z)ρ̃(γ)x.

Since G is cyclic, it leaves a CSA of sl2 invariant. Hence there is a basis {X1, X2, X3} ⊂
sl2, with X 1 a generator in the CSA, such that with respect to this basis, ρ̃(γ) = ρ̃(gk) =
diag(1, χ1(g), χ`−1(g)), where χj are the characters of G, g generates G and k ∈ K. Now,
Ψ(X1⊗1) generates a CSA of K and g ·Ψ(X1⊗1) = Ψ(X1⊗1) for all g ∈ G by (6.1). We
can, therefore, apply Lemma 14 to arrive at the conclusion of the existence of a normal
form for A and the stated form of it. �

Recall that the groups Γ = G nK ⊂ Aut0(T ) n t(T ) considered in our classification
are isomorphic to one of the following groups:

1n CN , C2 n CN , C3 n (C2 × C2), C` n 1,

where ` ∈ {1, 2, 3, 4, 6} and N ∈ N. The main object of our considerations for the rest
of the paper is finding a suitable Ψ ∈ AutOT(sl2 ⊗C OT) such that (6.1) holds. § 6.1 is
devoted to the cases Γ = CN and Γ = DN

∼= C2 n CN while § 6.2 concerns Γ = C2 × C2

and Γ = A4
∼= C3 n (C2 × C2).

6.1. The cases Γ = CN and Γ = DN

We will start with the case Γ = CN where CN is embedded into Aut(T ) as transla-
tions by the homomorphism σα : CN → Aut(T ), defined by σα(r)z = z + α for some
N -torsion point α ∈ T . The main tool we use in the construction of aLias with symmetry
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group CN is the construction of map Φj : T → SL2(C) (j 6≡ 0 mod N/2) for which
the OT-linear automorphism Ad(Φj) will map a basis of sl2 to a subalgebra of the cur-
rent algebra sl2 ⊗C OT. The automorphism Ad(Φj) is designed such that it satisfies the
equivariance condition (6.3) for a given homomorphism ρ : CN → Aut(sl2), which will
imply that we obtain a basis of invariant matrices (with respect to the action induced by
the homomorphism ρ⊗ σ̃). From here, one quickly obtains normal forms for aLias with
symmetry group CN. Having established the relevant results, one easily obtains aLias
with symmetry group DN, since DN

∼= C2 nCN . Due to Lemma 5 and 4, we can choose
any faithful action of CN on sl2 without loss of generality.
A crucial step in our construction of normal forms relies on the existence of intertwining

operators between the actions of a symmetry group Γ on sl2 and T. Let us briefly mention
some general facts about these intertwiners to provide some motivation on the choice of
these maps. Consider monomorphisms (that is, faithful homomorphisms) σ : Γ → Aut(T )
and δ : Γ → SL2(C). We would like to construct a matrix-valued map Φ : T → SL2(C),

Φ(z) =

(
p1(z) q1(z)

p2(z) q2(z)

)
, (6.2)

where pj , qj ∈ OT, such that Φ(σ(γ)z) = δ(γ)Φ(z) for all γ ∈ Γ and z ∈ T. Taking the
adjoint Ad of both sides, gives us the equivariance property with respect to the actions
induced by σ : Γ → Aut(T ) and ρ : Γ → Aut(sl2), with ρ = Ad ◦ δ:

Ad(Φ(σ(γ)z)) = ρ(γ)Ad(Φ(z)). (6.3)

Notice that Ad(Φ) is an element of AutOT(sl2 ⊗C OT) – the group of OT-linear auto-
morphisms of sl2 ⊗C OT. The difficult part in constructing such an equivariant map is
designing it in such a way that it is invertible over C. We will present a procedure for
the group CN below. The case of C2 ×C2 will be dealt with in § 6.2. As we will see later,
it will be enough to consider these two cases in the construction of normal forms.
Take an element γ ∈ Γ of order N and let δ : Γ → SL2(C) and σ : Γ → Aut(T )

be monomorphisms. We call a vector v = (v1, v2)
T consisting of functions vj ∈ OT an

equivariant vector with respect to the actions defined by δ and σ, if

v(σ(γ)z) = δ(γ)v(z), for all γ ∈ Γ, z ∈ T.

The columns of Φ consist of equivariant vectors p := (p1, p2)
T and q := (q1, q2)

T as
in (6.2). We will now fix a choice of δ, without loss of generality as we will see later. Let
δ = δj : Γ → SL2(C) be the monomorphism defined by δj(γ) = diag(ωj

N , ω−j
N ) for some

j coprime to N. The condition Φ(σ(γ)z) = δj(γ)Φ(z) implies that p1, q1 ∈ O
χN−j
T and

p2, q2 ∈ O
χj
T .

We will now present a construction for the matrix Φ as defined in (6.2), which will be
used in the construction of normal forms of both CN and DN.
Let N > 3 and fix some integer j 6≡ 0 mod N/2. Take λ, µ ∈ C such that P2jP

2
−j −

P−2jP
2
j = λP−jPj + µ. Lemma 13 guarantees that µ is non-zero. Let the columns of Φ

be given by p and q. In a sense, the simplest CN-equivariant vector we can choose for p
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is (P−j , Pj)
T . Given this choice for p, for q we need to find q1 ∈ O

χN−j
T and q2 ∈ O

χj
T

such that det(Φ) = P−jq2 − Pjq1 = 1. Let s be given by s(z) = −z and recall that
s · Pj = −P−j (cf. Lemma 12). One finds

p(s · z) = −

(
0 1

1 0

)
p(z).

Let S =

(
0 1

1 0

)
. In light of the equivariance condition (6.1), we will impose the condition

q(s · z) = Sq(z), from which we get

Φ(s · z) = SΦ(z)

(
−1 0

0 1

)
. (6.4)

Adding this condition to the equation P−jq2 − Pjq1 = 1 yields a unique solution in

the space L(2D) ⊂ OT, where D is the divisor D = Γ · (0) =
∑N−1

j=0 (jα). The solution
to this equation in L(2D) is provided by Lemma 13. By the proof of Proposition 2, we
deduce that for each integer j 6≡ 0 mod N/2, we have the vector space decomposition
L(2D)χj = CPj ⊕ CP−jP2j . Then, if we choose

q1 =
1

µ
PjP−2j +

λ

2µ
P−j ∈ O

χN−j
T , q2 =

1

µ
P−jP2j −

λ

2µ
Pj ∈ O

χj
T ,

we satisfy the requirement by Lemma 13, and this solution is unique by considering
the vector space decompositions of L(2D)χj and L(2D)χN−j . Thus, the matrix Φ with
the pj and qj defined above is the unique matrix with lowest order poles satisfying the
intertwining condition.
We can summarise this as follows: given a complex torus T, define a faithful homomor-

phism σ : CN → t(T ). Set T = T \ CN · {0} and consider the functions Pj defined with
respect to the choice of σ. For every integer j 6≡ 0 mod N/2, we associate with δj and σ
a meromorphic, CN-equivariant map Φj : T → SL2(C), holomorphic on T, given by

Φj(z) =

(
P−j(z)

1
µPj(z)P−2j(z) +

λ
2µP−j(z)

Pj(z)
1
µP−j(z)P2j(z)− λ

2µPj(z)

)
, (6.5)

where λ and µ are constants defined in Lemma 13. We will record our discussion below
in two lemmata.

Lemma 15. For any integer j 6≡ 0 mod N/2 it holds that det(Φj) = 1.

Lemma 16. Let σ : CN → Aut(T ) be a monomorphism and δj,N : CN → SL2(C) be

defined by δj,N (r) = diag(ωj
N , ω−j

N ). For all integers j 6≡ 0 mod N/2, z ∈ T and r ∈ CN ,
we have

Φj(σ(r)z) = δj,N (r)Φj(z). (6.6)
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Define ρj,N = Ad ◦ δj,N . Taking the adjoint of both sides of Φj(σ(r)z) = δj,N (r)Φj(z),
we obtain Ad(Φj(σ(r)z)) = ρj,N (r)Ad(Φj(z)). Notice that ker ρj,N ∼= C2 if N is even
and gcd(j,N) = 1.
We have that for any integer j 6≡ 0 mod N/2, Ad(Φj) ∈ AutOT(sl2 ⊗C OT) by

Lemma 15. We can also consider Ad(Φj) to be a meromorphic map from T to Aut(sl2),
z 7→ Ad(Φj(z)) holomorphic on T. The map Ad(Φj) intertwines the actions defined by
σ and ρ, or stated differently, it is equivariant with respect the action of CN.

Remark 4. The matrix Φ(z) := Φj(z) is constructed via a particular choice of ρ.
If ρ′ is an equivalent representation of CN, ρ

′(r) = Bρ(r)B−1 for all r ∈ CN for some
B ∈ Aut(sl2), and we define Φ′ = BΦB−1, then one can verify that ρ′(r)Ad(Φ′(z)) =
Ad(Φ′(σ(r)z)).

The next two theorems describe the aLias with a cyclic symmetry group. We split the
results according to the genus g of T/σ(CN ). First, we consider g(T/σ(CN )) = 1.

Theorem 4 (Genus 1 case). Let ρ : CN → Aut(sl2) and σ : CN → t(T ) be
monomorphisms. Then

(sl2 ⊗C OT)
ρ⊗σ̃(CN ) ∼= sl2 ⊗C Oσ̃(CN )

T .

A normal form is given by

(sl2 ⊗C OT)
ρ⊗σ̃(CN ) = C〈E,F,H〉 ⊗C C[℘Λ, ℘

′
Λ],

where Λ is a suitable lattice, and with brackets

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H,

where E,F and H are the images under Ad(Φj), for some integer j 6≡ 0 mod N/2, of
e⊗ 1, f ⊗ 1 and h⊗ 1, respectively.

Proof. The main ingredients are Proposition 3 and Lemma 16. Fix a lattice Λ = Z⊕Zτ
and let T = C/Λ. Let α′ ∈ C be such that the projection of α′ under πΛ : C → C/Λ,
α := π(α′) is an N -torsion point of T. Thus α satisfies Nα = 0 mod Λ. We may assume
that σ is given by σα(r)z = z + α.
First, let N be odd. We may also assume that δ(r) = δj,N (r) := diag(ωj

N , ω−j
N ) for

some j with gcd(j,N) 6= 1 and that ρ is given by Ad ◦ δ. The explanation is that if δ′ is
another monomorphism, and ρ′ = Ad ◦ δ′, then we know by Lemma 5 that ρ(CN ) and
ρ′(CN ) are conjugated subgroups. Lemma 4 then tells us that the aLias defined by ρ and
ρ′ are isomorphic.

The algebra of invariants Oσ̃α(CN )

T is given by C[℘Λ(α)
, ℘′

Λ(α)
] by Lemma 11. Now,

Ad(Φj) satisfies (6.1) because of Lemma 15 and Lemma 16, for which reason we can
apply Proposition 3. We, therefore, have, as in the proof of Proposition 3, that the
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following elements form a basis of A = (sl2 ⊗C OT)
CN over C[℘Λ(α)

, ℘′
Λ(α)

]:

Ej = Ad(Φj)e⊗ 1, Fj = Ad(Φj)f ⊗ 1, Hj = Ad(Φj)h⊗ 1,

where Φj is given in (6.5). Remark 4 can be used to find a normal form if instead of δ,
we had chosen δ′ as defined in the beginning of the proof.
Assume now N is even. We may assume that ρ is given by

ρ(r)

(
a b

c −a

)
=

(
a ωNb

ω−1
N c −a

)
.

Observe that the image of ρ and ρ̂ = Ad ◦ δj,2N coincide. Notice that ker ρ̂ = 〈rN 〉 ∼= C2,
where r ∈ C2N . Define

Λ̂ =

Z2⊕ Zτ if Nα/2 ∈ {1/2 mod Λ, (1 + τ)/2 mod Λ},
Z⊕ Z2τ if Nα/2 = τ/2 mod Λ.

Let T̂ = C/Λ̂ and define T̂ accordingly. Define σ1 : C2N → Aut(T̂ ) by σ1(r)z = z+πΛ̂(α
′)

and notice that πΛ̂(Nα′) = Nα is a half lattice point of Λ̂.

Recall that in the proof of Lemma 11 we used that for any α ∈ T , Oσ̃α(CN )

T is the
space of Λ(α)-periodic meromorphic functions which are holomorphic on T \ Λ(α). This

allowed us to say that OΓ
T = OT/Γ. We adopt this perspective again. Suppose Nα/2 = 1/2

mod Λ. Then T̂ /σ1(C2N ) = C/(Z2 + Zτ + Zα′). Notice that Nα′ = 1 + 2n1 + 2n2τ for
some n1, n2 ∈ Z. We see that 1 ∈ Z2 + Zτ + Zα′ and hence

T̂ /σ1(C2N ) = C/(Z2 + Zτ + Zα′) = C/(Z+ Zτ + Zα′).

Also observe that T/σ(CN ) = C/(Z + Zτ + Zα′). Therefore T̂ /σ1(C2N ) = T/σ(CN ).

Similarly, we have T̂/〈rN 〉 = T. The same claim holds in the cases where Nα/2 ∈
{τ/2, (1 + τ)/2}.
Define Φ := Φj associated to δj,2N and σ1, for some integer j 6≡ N/2. It is clear that

Ad(Φ) ∈ AutOT̂
(sl2⊗COT̂). By similar reasoning as in Proposition 3, we have that Ad(Φ)

establishes an isomorphism

B := (sl2 ⊗C OT̂)
ρ̂⊗σ̃1(C2N ) ∼= sl2 ⊗C Oσ̃1(C2N )

T̂
.

We know T̂ /σ1(C2N ) = T/σ(CN ) and therefore Oσ̃1(C2N )

T̂
= Oσ̃(CN )

T . Hence B ∼= sl2 ⊗C

Oσ̃(CN )

T . We claim that B is precisely (sl2 ⊗C OT)
ρ⊗σ̃(CN ). By Lemma 3, we have that

B = (sl2⊗COT̂/〈rN 〉)
Γ̂, where Γ̂ = 〈r〉/〈rN 〉 ∼= CN . Now, since T̂/〈rN 〉 = T and the action

of Γ̂ is the same as the one induced from σ, we conclude that B = (sl2 ⊗C OT)
ρ⊗σ̃(CN ).

We know Ad(Φ(rN · z)) = Ad(Φ(z)), since rN ∈ ker(ρ̂). Therefore, any invariant
element X := Ad(Φ)x, with x ∈ sl2, consists of entries which are invariant under 〈rN 〉 ∼=
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C2. The remainder of the proof for N is even, follows as it did for N odd. A normal form
is given by

E = Ad(Φ)e⊗ 1, F = Ad(Φ)f ⊗ 1, H = Ad(Φ)h⊗ 1.

This proves the claim. �

Explicitly, the generatorsHj := Ad(Φj)h⊗1, Ej := Ad(Φj)e⊗1 and Fj := Ad(Φj)f⊗1
(j 6≡ 0 mod N/2) are given by

Hj =
1

µ

(
P 2
−jP2j + P−2jP

2
j −2P−jPjP−2j − λP 2

−j

2P−jPjP2j − λP 2
j −P 2

−jP2j − P−2jP
2
j

)
, Ej =

(
−P−jPj P 2

−j

−P 2
j P−jPj

)
,

(6.7)

and

Fj =
1

4µ2

(
4P−jPjP−2jP2j + λ2P−jPj + 2λµ −4P 2

j P
2
−2j − 4λP−jPjP−2j − λ2P 2

−j

4P 2
−jP

2
2j − 4λP−jPjP2j + λ2P 2

j −4PjP−jP2jP−2j − λ2P−jPj − 2λµ

)
.

(6.8)

In the next corollary, we shall omit the j -dependence of E,F,H and assume this implicitly.

Corollary 1. Let ρ : DN → Aut(sl2) and σ : DN → Aut(T ) be monomorphisms.
Then

(sl2 ⊗C OT)
ρ⊗σ̃(DN ) ∼= Sτ ,

for some τ ∈ H. A normal form is given by

(sl2 ⊗C OT)
ρ⊗σ̃(DN ) = C〈Ẽ, F̃ , H̃〉 ⊗C C[℘Λ],

where Λ is a suitable lattice and Ẽ = E ⊗ ℘′
Λ, F̃ = F ⊗ ℘′

Λ and H̃ = H, where E,F,H
are defined in the proof of Theorem 4. The Lie structure is given by

[H̃, Ẽ] = 2Ẽ, [H̃, F̃ ] = −2F̃ , [Ẽ, F̃ ] = H̃ ⊗ (4℘3
Λ − g2℘Λ − g3). (6.9)

Proof. We may assume that σ is given by σ(s)z = −z and σ(r)z = z + α for some

N -torsion point α ∈ T . Let S =

(
0 1

1 0

)
. We will use Proposition 3. Recall H = Ad(Φ)h,

where Φ = Φj for some j 6≡ 0 mod N/2. To satisfy condition (6.1), we only need to verify
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condition (6.4):

Φ(s · z) = SΦ(z)

(
−1 0

0 1

)
,

where s generates C2 ⊂ Aut0(T ). This holds as a result of the construction of Φ in
the beginning of this section. Thus, H is a DN-invariant as well. Hence we can apply
Lemma 14 and use Example 3 to obtain the stated normal form. �

Notice that above corollary also covers the aLia (sl2 ⊗C OT)
C2 , where g(T/C2) = 0,

since D1 = C2 n 1 ∼= C2.
So far, we have considered the groups CN andDN

∼= C2nCN for which CN is embedded
as translations in Aut(T ). There are a number of cyclic groups of small order which also
allow an embedding as a rotation in Aut(T ) for a torus T with more symmetry than the
generic case, cf. Proposition 7. The groups C` for ` ∈ {3, 4, 6} can be embedded inside
Aut(T ) as rotations, for tori either isomorphic to Ti or Tω6

. The following theorem
describes the aLias with these symmetry groups.

Theorem 5 (Genus 0 case). Let ρ : C` → Aut(sl2) and σ : C` → Aut(T ) be
monomorphisms and assume that g(T/σ(C`)) = 0. Then

(sl2 ⊗C OT)
ρ⊗σ̃(C`) ∼= O,

if and only if ` ∈ {3, 4, 6}.

Proof. By Lemma 4, we only have to prove the statement for a particular choice of
monomorphisms. Let ` = 3 and define the homomorphism ρ : C3 → Aut(sl2) by

ρ(s)

(
a b

c −a

)
=

(
a ω3b

ω−1
3 c −a

)
.

Let s ∈ C3 act on T ∼= Tω6
as s · z = ω3z. Recall that s · ℘(z) = ℘(ω−1

3 z) = ω2
3℘(z) and

s · ℘′ = ℘′ by Equations (5.3) and (5.4). By Proposition 10, we have

Oσ̃(C3)
T = Oχ0

T = C[℘′], Oχ1
T = C[℘′]℘2, Oχ2

T = C[℘′]℘.

Define the matrices

H =

(
1 0

0 −1

)
, E =

(
0 1

0 0

)
⊗ ℘, F =

(
0 0

1 0

)
⊗ ℘2,

which are easily seen to be invariant. By decomposing the action of C 3 on both factors of

the tensor product, we get (sl2⊗COT)
ρ⊗σ̃(C3) =

⊕2
j=0 sl

χj
2 ⊗CO

χj
T , where χj(g) = χj(g),
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and we obtain

A := (sl2 ⊗C OT)
ρ⊗σ̃(C3) = C〈E,F,H〉 ⊗C Oσ̃(C3)

T = C〈E,F,H〉 ⊗C C[℘′]

with brackets

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H ⊗ ℘3.

We will show that after performing a sequence of scalings and translations, [E,F ] can be
written as [E,F ] = H ⊗ ℘′(℘′ − 1), after which we will recognise Onsager’s algebra O in
it.
By Lemma 10, a generator J of Oσ̃(C3)

T can be chosen to be ℘′. The last bracket can
be rewritten as

[E,F ] = H ⊗ 1

4
((℘′)2 + g3) = H ⊗ 1

4
(J2 + g3).

Notice that g3 6= 0 since g2 = 0 and they cannot be both zero. Let E′ = − 4
g3
E. Then

[E′, F ] = H ⊗ (− 1
g3
J2 − 1). Replace − 1

g3
J2 by J 2 to obtain [E′, F ] = H ⊗ (J2 − 1).

Replace J − 1 by J to get [E′, F ] = H ⊗ J(J + 2) and transform further to obtain
[E′, F ] = H ⊗ J(J − 1) to see that A is isomorphic to the Onsager algebra, cf. [5,
Theorem 2.5].
Another possibility for embedding C 3 is given by σ′(r)(z) = ω−1

3 z. The χ1 and χ2

isotypical components interchange when we consider this action. Define the elements

H̃ = −

(
1 0

0 −1

)
, Ẽ = −

(
0 1

0 0

)
⊗ ℘2, F̃ = −

(
0 0

1 0

)
⊗ ℘.

Observe how Ad

(
0 1

−1 0

)
maps H,E, F to H̃, F̃ , Ẽ, respectively. By Lemma 4, we see

that

(sl2 ⊗C OT)
ρ⊗σ̃′(C3) ∼= (sl2 ⊗C OT)

ρ⊗σ̃(C3).

The cases of ` = 4 and ` = 6 follow in an analogous manner. By Example 2, (sl2 ⊗C
OT)

C2 6∼= O. This proves the claim. �

The proof of Theorem 5 shows that a normal form of (sl2 ⊗C OT)
ρ⊗σ̃(C3) is given by

C〈E3, F3,H〉⊗CC[℘′], where H = h, E3 = e⊗℘, F3 = f ⊗℘2 and ℘ = ℘Λω6
. In a similar

fashion, one can obtain normal forms for remaining aLias with Γ = C4 and Γ = C6 using
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Proposition 10. For ` ∈ {4, 6}, choose the homomorphism ρ` : C` → Aut(Tω`
) defined by

ρ`(s)

(
a b

c −a

)
=

(
a ω`b

ω−1
` c −a

)

and σ` : C` → Aut(Tω`
) defined by σ(s)z = ω`z. Then

(sl2 ⊗C OT)
ρ4⊗σ̃4(C4) = C〈E4, F4,H〉 ⊗C C[℘2] ∼= O, (6.10)

where E4 = e⊗ ℘℘′, F4 = f ⊗ ℘′ and ℘ = ℘Λi
.

Finally, for C 6, we have the following normal form:

(sl2 ⊗C OT)
ρ6⊗σ̃6(C6) = C〈E6, F6,H〉 ⊗C C[℘3] ∼= O, (6.11)

where E6 = e⊗ ℘℘′, F6 = f ⊗ ℘2℘′ and ℘ = ℘Λω6
.

6.2. The cases Γ = C2 × C2 and Γ = A4

We will now consider the final two aLias in our classification, namely those with
symmetry group C2 × C2 and a homomorphism σ : C2 × C2 → Aut(T ), such that
g(T/σ(C2 × C2)) = 1, where T = C/Z ⊕ Zτ , and those with symmetry group A4. We
may assume that the homomorphism σ is given by σ(r1)z = z + 1

2 and σ(r2)z = z + τ
2 ,

where r1, r2 generate C2 × C2, cf. Lemma 7.
Let {α00, α01, α10, α11} denote the set of characters of C2×C2, defined by αij(r1, r2) =

χi(r1)χj(r2), where χ0, χ1 are the characters of C 2. Let T = T \ S, with S = σ(C2 ×
C2) · {0} = {0, 1/2, τ/2, (1 + τ)/2} and write ℘ = ℘Λ. The divisor of 1/℘′ is given by

(1/℘′) = −(1/2)− (τ/2)− ((1 + τ)/2)) + 3(0), (6.12)

and therefore 1/℘′ ∈ OT. Let παij
= 1

4

∑
r∈C2×C2

αij(r)r be the projection of OT onto

the isotypical component O
αij
T . Define pij := 4παij

(1/℘′). Concretely, we have

p2 := p01 =
1

℘′ + r1
1

℘′ − r2
1

℘′ − r1r2
1

℘′ , (6.13)

p1 := p10 =
1

℘′ − r1
1

℘′ + r2
1

℘′ − r1r2
1

℘′ , (6.14)

p0 := p11 =
1

℘′ − r1
1

℘′ − r2
1

℘′ + r1r2
1

℘′ . (6.15)

By construction, the functions pij are elements of O
αij
T . Observe that they have at most

order 1 poles in the set S. Furthermore, they are odd functions since ℘′ is odd and s
(with s(z) = −z) and r1, r2 commute. The definition of the pi is motivated in Lemma 19.
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Remark 5. The pj can also be defined in terms of theta functions, as is done in [8].
They define

λ1(z) =
ϑ00(2z|τ)

ϑ00(0|τ)ϑ11(2z|τ)
, λ2(z) =

ϑ10(2z|τ)
ϑ10(0|τ)ϑ11(2z|τ)

, λ3(z) =
ϑ01(2z|τ)

ϑ01(0|τ)ϑ11(2z|τ)
,

where ϑab(z|τ) =
∑

n∈Z exp(2πi[τ(n+ a/2)2/2+ (n+ a/2)(z+ b/2)]), and where (a, b) =
(0, 0), (1, 0), (0, 1), (1, 1). The relations between our projected 1/℘′ are, up to a scaling,
as follows:

p0 ↔ λ1, p1 ↔ λ3, p2 ↔ λ2.

Written out explicitly, the group C2 × C2 acts on the pi as

r1 · p0 = −p0, r2 · p0= −p0, (6.16)

r1 · p1 = −p1, r2 · p1 = p1, (6.17)

r1 · p2 = p2, r2 · p2 = −p2. (6.18)

Let us obtain the series expansion of 1
r℘′ about z =0, for r ∈ 〈r1, r2〉\1, which we will use

to derive the expansions of the p2i about z =0 in Lemma 18. First of all, for r ∈ 〈r1, r2〉\1,
we find for 1

r℘′ the following expansion about z =0:

1

r℘′(z)
=

1

6℘(r · 0)2 − 1
2g2

1

z
− 2℘(r · 0)

6℘(r · 0)2 − 1
2g2

z +O(z2). (6.19)

For example, for r = r1, we can simplify this to

1

r1℘′(z)
=

1

2(e1 − e3)(e1 − e2)

1

z
− e1

(e1 − e3)(e1 − e2)
z +O(z2),

using that 6℘(1/2)2 − g2/2 = 2(e1 − e3)(e1 − e2). Notice that the denominators of the
coefficients are indeed non-zero, since for lattices Λ, the discriminant ∆(Λ) := g32 − 27g23
is non-zero and can be shown to be equal to 16(e1 − e2)

2(e1 − e3)
2(e2 − e3)

2.
Let us argue that the pj are not identically zero. To this end, consider p00 =

4πα00
(1/℘′) = 1

℘′ + r1
1
℘′ + r2

1
℘′ + r1r2

1
℘′ . This function is invariant under C2 × C2

and hence descends to a function on T̃ := T/σ(C2 × C2). Now, p00 has at most order
1 poles and on T̃ , there is, therefore, at most a single pole. Thus p00 must be constant.
In fact, since ℘′ is odd, p00 is odd as well. Hence p00 = 0. Knowing that p00 is constant
allows us to draw conclusions about the pi. By considering the divisor of 1

℘′ in (6.12),

we see that the sets of poles of r1
1
℘′ , r2

1
℘′ and r1r2

1
℘′ have pairwise precisely two poles

in common. We, therefore, see that the three functions

k1 := r2
1

℘′ + r1r2
1

℘′ , k2 := r1
1

℘′ + r1r2
1

℘′ , k3 := r1
1

℘′ + r2
1

℘′
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are all non-constant. As a consequence we get that p0 = p00 − 2k3 = −2k3, p1 = p00 −
2k2 = −2k2 and p2 = p00 − 2k1 = −2k1 are all non-zero.
The next lemma describes the algebra of C2 × C2-invariant subspace of OT.

Lemma 17. We have Oσ̃(C2×C2)
T = C[℘1

2Λ
, ℘′

1
2Λ

].

Proof. By definition, Oσ̃(C2×C2)
T is the algebra of all 1

2Λ-periodic meromorphic func-
tions on T that are holomorphic on T \ 1

2Λ, which corresponds to C[℘1
2Λ

, ℘′
1
2Λ

] by

Lemma 1. �

We now record the relations between the p2i and ℘1
2Λ

in a lemma for later purposes.

Lemma 18. We have

p20 =
1

(e1 − e3)2(e2 − e3)2
(℘ 1

2Λ
− 4e3) =

16(e2 − e3)
2

∆(Λ)
(℘ 1

2Λ
− 4e3).

Similarly, the relations of p2j and ℘1
2Λ

for j = 1, 2 are obtained from p20 by cyclic per-

mutations of the ei. Consequently, there are the following relations: p21 = α1p
2
2 + α2,

p20 = β1p
2
2 + β2, where

α1 =

(
e1 − e3
e2 − e3

)2

, α2 =
4

(e1 − e2)(e2 − e3)2
,

and

β1 =

(
e1 − e2
e2 − e3

)2

, β2 =
4

(e1 − e3)(e2 − e3)2
.

Thus α1, α2, β1, β2 ∈ C∗.

Proof. Using the expansion in (6.19), we obtain for r, r̃ ∈ 〈r1, r2〉 \ 1:(
1

r℘′(z)

)(
1

r̃℘′(z)

)
=

1

(6℘(r · 0)2 − 1
2g2)(6℘(r̃ · 0)2 −

1
2g2)

1

z2
−

2℘(r · 0) + 2℘(r̃ · 0)
(6℘(r · 0)2 − 1

2g2)(6℘(r̃ · 0)2 −
1
2g2)

+O(z2),

where we use that ℘′ is odd, and hence the above product is even. Hence, for r = r1 and
r̃ = r2, we get

p0(z)
2 = 4k3(z)

2 = 4

(
1

r1℘′(z)

)2

+ 4

(
1

r2℘′(z)

)2

+ 8

(
1

r1℘′(z)

)(
1

r2℘′(z)

)
=

1

(e1 − e3)2(e2 − e3)2
1

z2
− 4e3

(e1 − e3)2(e2 − e3)2
+O(z2).
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Similarly, one can show that p2j (j = 1, 2) is obtained from p20 by changing ei to ei−j in
the expansions for i = 1, 2, 3.
It is clear from the definition of ℘ as given in (2.2), that about z =0, ℘ has the expansion

℘(z) = 1
z2

+O(z2). Since p2j has order 2 poles and is invariant under C2 × C2, we know

that p2j = c1℘1
2Λ

+ c2 for some c1, c2 ∈ C. The last statement follows now directly. This

completes the proof. �

The symmetry groups for sl2-based aLias having C2×C2 as a subgroup of translations
are limited to A4

∼= C3 n (C2 × C2) (for hexagonal lattices) and C2 × C2 itself. We are,

therefore, interested in how C 3 acts on functions in OC2×C2
T . This is the content of the

following lemma.

Lemma 19. Suppose Λ is homothetic to Λω6
and s acts on C/Λ as s · z = ω3z. Then

s · pj = pj+1,

where the subscripts are taken modulo 3. Furthermore, α1 = ω3, β1 = ω2
3 if and only if Λ

is homothetic to Λω6
.

Proof. Assume that Λ is homothetic to Λω6
. Recall 〈s〉n〈r1, r2〉 ∼= C3n(C2×C2) ∼= A4,

where s(z) = ω3z and r1(z) = z+1/2 and r2(z) = z+ω3/2, cf. Lemma 7. The following
relations hold: sr1 = r1r2s and sr2 = r1s. Using that s · ℘′ = ℘′, we compute

s · p2 = s
1

℘′ + sr1
1

℘′ − sr2
1

℘′ − sr1r2
1

℘′ =
1

℘′ + r1r2
1

℘′ − r1
1

℘′ − r2
1

℘′ = p0.

The other identities follow in the same way.
We now prove the second claim. We have

p22 = s · p21 = α1s · p22 + α2 = α1p
2
0 + α2 = α1β1p

2
2 + α1β2 + α2

and we thus see that α1β1 = 1 and α1β2 = −α2. By Lemma 18, we see p20 + p21 + p22 =
(1 + α1 + β1)p

2
2 + α2 + β2. Therefore, the function p20 + p21 + p22 is constant if and only

if g2 = 0. Indeed, a computation shows that 1 + α1 + β1 =
g2

2(e2−e3)
2 . We conclude that

α1 and β1 are distinct third roots of unity if and only if Λ is homothetic to a hexagonal
lattice. Using that e21 + e1e2 + e22 = 0 if and only if Λ is homothetic to Λω6

, one can
show that α1 = (2e1 + e2)

2/(2e2 + e1)
2 = e22/e

2
1. Now, e1 = ω3e2 by (5.4). Thus, we get

α1 = ω3 and β1 = ω2
3 . �

Define

A1 =

(
e1 − e3
e2 − e3

)3
2

, B1 =

(
e1 − e2
e2 − e3

) 3
2

. (6.20)
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We note that

e1 − e2
e2 − e3

=
ϑ4
01(0|τ)

ϑ4
00(0|τ)

= 1− λ(τ),

where ϑ00, ϑ01 are the Jacobi theta functions defined in Remark 5 and λ is the modular
lambda function, see for example [29, § 7.2].
Also,

e1−e3
e2−e3

= 1 +
e1−e2
e2−e3

, and hence
e1−e3
e2−e3

= 2 − λ(τ). In particular, we can express

α1, β1, A1 and B1 in terms of λ as follows: α1 = (2−λ)2, β1 = (1−λ)2, A1 = (2−λ)3/2

and B1 = (1− λ)3/2.
For later reference, we will record the following identities.

Lemma 20. The following identities hold:(
A1

α1
p1 +

B1

β1
p0

)(
A1

α1
p1 −

B1

β1
p0

)
= p22,(

A1

α1
p1 ∓

B1

β1
p0

)
(A1p0 ±B1p1) = p0p1 ±

√
α2β2.

Furthermore, if Λ is homothetic to Λω6
, then A2

1 = −1 and B2
1 = 1.

Proof. Using Lemma 19, we compute(
A1

α1
p1 +

B1

β1
p0

)(
A1

α1
p1 −

B1

β1
p0

)
=

(
A2

1

α1
− B2

1

β1

)
p22 +

(
A2

1α2

α2
1

− B2
1β2

β2
1

)
.

Another computation shows that

A2
1α2

α2
1

=
4

(e1 − e3)(e2 − e3)(e1 − e2)
=

B2
1β2

β2
1

and

A2
1

α1
− B2

1

β1
=

e1 − e3
e2 − e3

− e1 − e2
e2 − e3

= 1.

This proves the first claim. The other identities follow by similar calculations, whereby
we note that the sign of

√
α2β2 comes from the choice of the square roots in the definition

of A1 and B1. Notice that
√
α2β2 6= 0 since ∆(Λ) = 16(e1 − e3)

2(e2 − e3)
2(e1 − e2)

2 6= 0
for any lattice Λ. The final claim follows from the definition of A1 and B1, cf. (6.20), and
using that in this case, e1 = ω3e2. �

We will now define two functions which arise in the construction of an intertwiner Ψ.
The intertwiner will be used to construct a basis for the C2×C2-aLia with g(T/C2×C2) =
1. Define

ξ± :=

√
A1

α1
p1 ±

B1

β1
p0 =

√√
e2 − e3
e1 − e3

p1 ±
√

e2 − e3
e1 − e2

p0, (6.21)

https://doi.org/10.1017/S0013091524000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000324


A classification of automorphic Lie algebras on complex tori 981

where we choose the branches in such way that ξ−ξ+ = p2 (having Lemma 20 in mind).
Notice that ξ± are not functions on any complex torus.
We will now turn our attention to finding an intertwiner Ad(Φ) as we have done for

Γ = CN , cf. § 6.1. Recall that we constructed an SL2(C)-valued map Φ such that Φ(r·z) =
δ(r)Φ(z), where r ∈ CN and δ is a monomorphism CN → SL2(C). Composing Φ with Ad
yields a map equivariant with respect to the action of CN on a torus T and sl2. Let us
now argue that a similar construction, that is, obtaining an intertwiner via conjugation
of some CN-equivariant SL2(C)-valued map, cannot be carried out for Γ = C2 × C2. A
necessary condition for carrying out this construction is that δ : Γ → SL2(C) should be
a monomorphism. However, by considering the character table of C2×C2, one concludes
that there does not exist a faithful representation C2×C2 → SL2(C), and hence there is
no monomorphism δ such that the above condition holds for non-zero Λ. However, there
does exist a faithful representation C2 × C2 → Aut(sl2), which is the context in which
we will look for an intertwiner below.
Define ρ : C2 × C2 → Aut(sl2) by

ρ(r1)

(
a b

c −a

)
=

(
a −b

−c −a

)
, ρ(r2)

(
a b

c −a

)
=

(
−a −c

−b a

)
. (6.22)

Remark 6. We have used the quaternions Q8 as a double cover of C2 ×C2 in (6.22).

The matrices R1 =

(
i 0

0 −i

)
and R2 =

(
0 1

−1 0

)
generate Q8 inside SL2(C), which

define a homomorphism ζ : Q8 → SL2(C). Then Ad(ζ(Q8)) ∼= C2 × C2 inside Aut(sl2).

Introduce the following matrix, which will play an important role in the construction
of the intertwiner:

Ω =

√A1
α1

p1 − B1
β1

p0
1

2
√

α2β2
(A1p0 −B1p1)

√
A1
α1

p1 +
B1
β1

p0√
A1
α1

p1 +
B1
β1

p0
1

2
√

α2β2
(A1p0 +B1p1)

√
A1
α1

p1 − B1
β1

p0

 , (6.23)

where we recall that αj , βj are defined in Lemma 19 and A1, B1 in (6.20).
The following two simple lemmata establish that Ad(Ω) is a C2 × C2-equivariant

automorphism of sl2 ⊗C OT. First of all, conjugation with Ω is an automorphism of
sl2 ⊗C OT:

Lemma 21. We have Ψ := Ad(Ω) ∈ AutOT(sl2 ⊗C OT). Explicitly, the matrix of Ψ
with respect to the basis B = {h, e, f} is given by

[Ψ]B =


1√
α2β2

p0p1 −p2
1

4α2β2
(A2

1p
2
0 −B2

1p
2
1)p2

1√
α2β2

(B1p1 −A1p0)p2
A1
α1

p1 − B1
β1

p0
1

4α2β2
(B1p1 −A1p0)p̃−

1√
α2β2

(A1p0 +B1p1)p2 −A1
α1

p1 − B1
β1

p0
1

4α2β2
(A1p0 +B1p1)p̃+

 ,

where p̃± := p0p1 ±
√
α2β2.
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Proof. We will first argue that det(Ω) = 1. Recall ξ± =
√

A1
α1

p1 ± B1
β1

p0. Using

Lemma 20, we compute

det(Ω) =
1

2
√
α2β2

(ξ2−(A1p0 +B1p1)− ξ2+(A1p0 −B1p1))

=
1

2
√
α2β2

((p0p1 +
√
α2β2)− (p0p1 −

√
α2β2))

= 1.

Let m =

(
a b

c d

)
∈ SL2(R), where R is some unital ring. The matrix of Ad(m) with

respect to B is given by

[Ad(m)]B =

bc+ ad −ac bd

−2ab a2 −b2

2cd −c2 d2

 ∈ SL3(R).

Take m = Ω and after some work, using Lemma 20, one arrives at the matrix in the
claim. Since det(Ω) = 1, the same holds for Ψ and we see that all the entries are in OT.
This shows that Ψ ∈ AutOT(sl2 ⊗C OT). �

Lemma 22. The map Ψ intertwines the actions of C2 × C2 on T and sl2: Ψ(r · z) =
ρ(r)Ψ(z) for all r ∈ C2 × C2 and z ∈ T.

Proof. Using that

[
Ad

(
i 0

0 −i

)]
B

=

1 0 0

0 −1 0

0 0 −1

 ,

[
Ad

(
0 1

−1 0

)]
B

=

−1 0 0

0 0 −1

0 −1 0

 ,

it is straightforward to verify the claim for r1 and r2, and hence for all r ∈ C2 × C2. �

Remark 7. Notice that in the definition of Ω in (6.23), the choice of signs of the
constants A1 and B1 does not matter. Indeed, one could verify that changing the signs
corresponds to compose Ψ = Ad(Ω) with commuting (order 2) elements of Aut(sl2),
which in turn also commute with ρ(r), for any r ∈ C2 × C2.

Define the following elements of sl2 ⊗C OT:

h′ = Ψh, e′ = Ψe, f ′ = Ψf. (6.24)

By the equivariance property of Ψ, cf. Lemma 22, the elements h′, e′ and f ′ are invariant
with respect to the action of C2 ×C2. In fact, they will form a basis of the C2 ×C2-aLia
as we will see in the following theorem.
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Theorem 6. Let ρ : C2×C2 → Aut(sl2) and σ : C2×C2 → Aut(T ) be monomorphisms
and assume that g(T/σ(C2 × C2)) = 1. Then

(sl2 ⊗C OT)
ρ⊗σ̃(C2×C2) ∼= sl2 ⊗C Oσ̃(C2×C2)

T .

A normal form is given by

(sl2 ⊗C OT)
ρ⊗σ̃(C2×C2) = C〈h′, e′, f ′〉 ⊗C C[℘1

2Λ
, ℘′

1
2Λ

]

with

[h′, e′] = 2e′, [h′, f ′] = −2f ′, [e′, f ′] = h′,

where h′, e′, f ′ are defined in (6.24).

Proof. By Lemma 17 , we know that Oσ̃(C2×C2)
T = C[℘1

2Λ
, ℘′

1
2Λ

]. Now, by Lemma 22,

we are in a position to apply Proposition 3 to Ψ = Ad(Ω) with K = C2 × C2. Hence

(sl2 ⊗C OT)
ρ⊗σ̃(C2×C2) = C〈h′, e′, f ′〉 ⊗C C[℘1

2Λ
, ℘′

1
2Λ

].

The Lie structure is the same as the Lie structure of C〈e, f, h〉 and is, therefore, given by

[h′, e′] = 2e′, [h′, f ′] = −2f ′, [e′, f ′] = h′.

In particular, we see that (sl2 ⊗C OT)
ρ⊗σ̃(C2×C2) ∼= sl2 ⊗C C[℘1

2Λ
, ℘′

1
2Λ

] = C 1
2Λ

. �

Explicitly, the generators of the C2 × C2-aLia in normal form are given by

h′ =
1√
α2β2

 p0p1 −
(

e1−e3
e2−e3

) 3
2
p0p2 +

(
e1−e2
e2−e3

)3
2
p1p2(

e1−e3
e2−e3

) 3
2
p0p2 +

(
e1−e2
e2−e3

) 3
2
p1p2 −p0p1

 ,

e′ =

 −p2

√
e2−e3
e1−e3

p1 −
√

e2−e3
e1−e2

p0

−
√

e2−e3
e1−e3

p1 −
√

e2−e3
e1−e2

p0 p2

 ,

f ′ =
1

4α2β2


(

∆(Λ)

16(e2−e3)
4 p

2
2 +

12e1
(e2−e3)

4

)
p2

((
e1−e2
e2−e3

) 3
2
p1 −

(
e1−e3
e2−e3

) 3
2
p0

)
p̃−((

e1−e3
e2−e3

)3
2
p0 +

(
e1−e2
e2−e3

) 3
2
p1

)
p̃+ −

(
∆(Λ)

16(e2−e3)
4 p

2
2 +

12e1
(e2−e3)

4

)
p2

 ,

where we recall that p̃± = p0p1±
√
α2β2. We could rewrite/simplify the term ∆(Λ)

16(e2−e3)
4 p

2
2

to ℘1
2Λ

− 4e1 due to Corollary 18.
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Remark 8. The aLia A = (sl2 ⊗C OT)
ρ⊗σ̃(C2×C2) is the Lie algebra of holomorphic

K = C2 × C2-equivariant maps from a punctured torus to sl2. In [8], the authors study
holomorphic K -equivariant maps from some K -invariant subset of a complex torus C/Z⊕
Zτ to SL2(C). They give expansions of the functions that appear in these matrices
in terms of λ1, λ2 and λ3, which are related to our functions p0, p1 and p2 defined in
(6.13)–(6.15). With these functions, they construct K -equivariant maps with values in
sl2 which they use in the context of integrable systems, in particular in an algebraic
description of the Landau-Lifshitz hierarchy. For example, a Lax pair, which is the Lax
pair found in [31], is constructed for the Landau–Lifshitz equation, using elements of A.
Furthermore, they present a result about a factorisation of smoothK -equivariant loops γ :
C → SL2(C), where C is a union of disjoint circles around the points 0, 1/2, τ/2, (1+τ)/2,
analogues to Birkhoff factorisation.

The last symmetry group in our classification is Γ = A4, which we will discuss now.

Theorem 7. Let T ∼= Tω6
and ρ : A4 → Aut(sl2) and σ : A4 → Aut(T ) be

monomorphisms. Let T = T \A4 ·{0}. There is the following isomorphism of Lie algebras:

(sl2 ⊗C OT)
ρ⊗σ̃(A4) ∼= O,

where O is the Onsager algebra. A normal form is given by

(sl2 ⊗C OT)
ρ⊗σ̃(A4) = C〈e′ ⊗ ℘1

2Λω6
, f ′ ⊗ ℘2

1
2Λω6

, h′〉 ⊗C C[℘′
1
2Λω6

],

where e′, f ′, h′ are the generators of the C2 × C2-aLia, cf. Theorem 6.

Proof. Assume A4 is generated by r1, r2 and s as in Lemma 7 and notice that A4
∼=

C3 n (C2 × C2). Define ρ : A4 → Aut(sl2) by

ρ(s) = Ad

(
1

2

(
1 + i −1 + i

1 + i 1− i

))
,

and ρ(r1), ρ(r2) as we have done for C2 × C2, see (6.22). Define σ : A4 → Aut(sl2) by
σ(s)z = ω3z, σ(r1)z = z+1/2 and σ(r2)z = z+ω3/2. Theorem 6 gives us the normal form
C〈h′, e′, f ′〉 ⊗C C[℘1

2Λ
, ℘′

1
2Λ

] for the C2 ×C2-aLia. We will verify that h ′ is C 3-invariant,

where C3 ⊂ Aut(sl2) is generated by ρ(s), after which we can invoke Lemma 14 and
Proposition 3. By Lemma 10, we know that C[℘1

2Λω6
, ℘′

1
2Λω6

]〈s〉 ∼= C[℘′
1
2Λω6

]. Again,

there is no loss of generality by our choice of ρ and σ by Lemma 5 combined with
Lemma 4.
Recall that by Lemma 20 A2

1 = −1 and B2
1 = 1 in case of a hexagonal lattice. We choose

A1 = −i and B1 = 1. The intertwiner Ψ with respect to the basis {h, e, f} becomes
1√
α2β2

p0p1 −p2 − 1
4α2β2

(p20 + p21)p2
1√
α2β2

(ip0 + p1)p2 −iω2
3p1 − ω3p0

1
4α2β2

(ip0 + p1)(p0p1 −
√
α2β2)

1√
α2β2

(−ip0 + p1)p2 iω2
3p1 − ω3p0

1
4α2β2

(−ip0 + p1)(p0p1 +
√
α2β2)

 .
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We will show, given our choice of A1 and B1, that ρ(s)Ψ(z)h = Ψ(s · z)h, which will
imply that Ψh is C 3-invariant. Write [·] for a vector or matrix with respect to the basis
B = {h, e, f} and let

U := [ρ(s)] =
1

2

0 −i i

2 i i

2 −i −i

 .

We compute

U [Ψ(z)h] =
1

2
√
α2β2

0 −i i

2 i i

2 −i −i


 p0(z)p1(z)

ip0(z)p2(z) + p1(z)p2(z)

−ip0(z)p2(z) + p1(z)p2(z)


=

1√
α2β2

 p0(z)p2(z)

p0(z)p1(z) + ip1(z)p2(z)

p0(z)p1(z)− ip1(z)p2(z)

 ,

and, using pj(s · z) = pj−1(z),

[Ψ(s · z)h] = 1√
α2β2

 p0(s · z)p1(s · z)
ip0(s · z)p2(s · z) + p1(s · z)p2(s · z)
−ip0(s · z)p2(s · z) + p1(s · z)p2(s · z)


=

1√
α2β2

 p0(z)p2(z)

p0(z)p1(z) + ip1(z)p2(z)

p0(z)p1(z)− ip1(z)p2(z)

 .

This means that h′ := Ψh is indeed invariant under the action of C 3. By Lemma 14 and
Proposition 3, we see that

(sl2 ⊗C OT)
A4 = C〈E,F,H〉 ⊗C C[℘′

1
2Λω6

],

with generators

E = e′ ⊗ ℘1
2Λω6

, F = f ′ ⊗ ℘2
1
2Λω6

, H = h′.

By Theorem 5, this aLia is isomorphic to O. �

6.3. Summary

In this section, we will summarise our results. The main results are firstly a classification
of aLias on complex tori with base Lie algebra sl2 and secondly, the normal forms (as
defined in Definition 3) corresponding to each of the groups in Lemma 6. In Table 1 in
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the Introduction, we have given a classification in terms of the number of branch points
of the canonical projection T → T/Γ, where T is a punctured complex torus. It is a
remarkable fact that the Onsager algebra appears only in the case where the complex
torus has additional symmetry. We learn from Table 1 that if Γ ⊂ Aut(T ) is such that
T → T/Γ has two branch points, then (sl2 ⊗C OT)

Γ is isomorphic to O. Below we will
give a more elaborate classification based on the possible symmetry groups, as we have
found in § 6.
ALias with Γ = C` ⊂ Aut0(T ), ` = 2, 3, 4, 6
The classification of aLias with C` (` = 3, 4, 6) such that C` ⊂ Aut0(T ), where T is

a suitable torus, has been done in Theorem 5. The normal forms are given in the proof
of Theorem 5 and (6.10), (6.11). In particular, for any faithful ρ : C` → Aut(sl2) and
σ : C` → Aut(T ), the aLia (sl2 ⊗C OT)

ρ⊗σ̃(C`) is isomorphic to the Onsager algebra.
The case of ` = 2 has been done in Example 3 and is isomorphic to Sτ for some τ ∈ H.
ALias with Γ = CN ⊂ t(T ), N ∈ Z>1

Fix a complex torus T = C/Z⊕ Zτ and let σα : CN → Aut(T ) be given by σα(r)z =
z+α, where α is a N -torsion point of T. In Theorem 4, we proved that for any T it holds

that (sl2⊗COT)
ρ⊗σ̃α(CN ) ∼= sl2⊗CO

σ̃α(CN )

T , regardless of the choice of ρ : CN → Aut(sl2).
Notice that (sl2 ⊗C OT)

ρ⊗σ̃α(CN ) ∼= Cτ ′ for some τ ′ such that T(α)
∼= Tτ ′ , where we recall

that T(α) = C/(Z+ Zα+ Zτ).
ALias with Γ = C2 × C2 ⊂ t(T )
Theorem 6 says that for any faithful ρ : C2×C2 → Aut(sl2) and σ : C2×C2 → Aut(T ),

where T = C/Λ, (sl2⊗COT)
σ̃(C2×C2) ∼= sl2⊗CC[℘1

2Λ
, ℘′

1
2Λ

] ∼= C 1
2Λ

. Since the embedding

of C2 × C2 inside Aut(T ) is unique, we have that for each Λ, there is precisely one aLia
with base Lie algebra sl2 and symmetry group C2 × C2 embedded as translations.
ALias with Γ = A4

By Theorem 7, (sl2 ⊗C OT)
ρ⊗σ̃(A4) ∼= O. In particular, this is independent of (faithful)

σ and ρ.
ALias with Γ = DN , N ∈ Z>2

In Corollary 1, we obtained (sl2⊗COT)
ρ⊗σ̃α(DN ) ∼= Sτ for some τ such that T(α)

∼= Tτ .
For N =2, we choose the first factor of C2nC2 to be a subgroup of Aut0(T ), as opposed
to the third item in the above list (C2×C2 ⊂ t(T )). In this case (sl2⊗COT)

ρ⊗σ̃α(D2) ∼= Sτ

for some τ .

7. Discussion

Our classification has been formulated in Theorem 1. This section provides a summary in
terms of two tables, leading to Table 1, as given in the Introduction. It will also highlight
some directions for further research.
To explain how one arrives at Table 1, we will recall a basic fact. We have shown in

Lemma 8 that the number of branch points of T → T/Γ equals 0 if Γ ⊂ t(T ). Furthermore,
this number equals 2 if Γ ∈ {C3, C4, C6, A4}, where the cyclic groups are subgroups of
Aut0(T ) for a suitable T. For Γ = DN

∼= C2 nCN such that C2 ⊂ Aut0(T ), it holds that
the number of branch points equals 3. We summarise our main result in Table 2.
The columns of Table 2 are constant, so that we can summarise it further into

Table 3.
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Table 2. Isomorphism classes of aLias for each symmetry group Γ and each number of branch
points of the quotient map T → T/Γ.

0 2 3

C 2 Cτ Sτ

CN , N = 3, 4, 6 Cτ O

CN , N 6= 2, 3, 4, 6 Cτ

C2 × C2 Cτ Sτ

DN , N ≥ 3 Sτ

A4 O

Table 3. Lie algebra associated to the number of branch points of the quotient map T → T/Γ.

# branch points Lie algebra

0 Cτ

2 O

3 Sτ

We will present some possible directions for completing and extending the results in
this paper. We know that Cτ

∼= Cτ ′ if and only if [τ ] = [τ ′]. Settling how Sτ breaks down
into C-isomorphism classes would result in a more complete classification of our result.
Notice that we can interpret this question also as to what extent the algebra determines
the geometry in our problem.
An obvious extension would be to replace the base Lie algebra sl2 by g, where g is a

complex semisimple Lie algebra or even reductive g. The challenge here is to construct
intertwining maps; preliminary work shows that this is possible for some classes of higher
dimensional base Lie algebras but rather involved for others.
This brings us to another question. The construction of intertwiners in § 6 may appear

to the reader to be somewhat ad hoc. Can the main classification theorem, Theorem 1,
be also proved without constructing bases, but only using the geometry of the problem,
as suggested by Table 3?
As we have pointed out in the Introduction, aLias arose in the context of integrable

systems. A recent paper by Mikhailov and Bury [7] sparks renewed interest in the con-
struction of Lax pairs using bases of aLias of the Riemann sphere. An interesting question
is to consider what kind of integrable equations can be obtained using aLias on complex
tori. In our Remark 8, we have highlighted a development arising in a different context
leading to the Landau–Lifshitz hierarchy [8]. We hope that our classification allows for
a systematic study of possible integrable systems associated with aLias on complex tori.
This question is beyond the scope of this paper and it is research in progress.
Finally, we will make some remarks concerning the Onsager algebra. In this paper, we

have realised the Onsager algebra as an aLia in flat geometry. Previously, this algebra
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was realised in the spherical case [30] and more recently also in hyperbolic geometry, cf.
[5]. It would be interesting to see how the Onsager algebra can be applied in a wider
variety of geometries and what role the symmetry group plays in this context.
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