
JFP 12 (6): 601–607, November 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S0956796801004269 Printed in the United Kingdom

601

F U N C T I O N A L P E A R L

A fresh look at binary search trees

RALF HINZE

Institute of Information and Computing Sciences, Utrecht University,

P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

(e-mail: ralf@cs.uu.nl)

Alle Abstraktion ist anthropomorphes Zerdenken.

— Oswald Spengler, Urfragen

1 Introduction

Binary search trees are old hat, aren’t they? Search trees are routinely covered

in introductory computer science classes and they are widely used in functional

programming courses to illustrate the benefits of algebraic data types and pattern

matching. And indeed, the operation of insertion enjoys a succinct and elegant func-

tional formulation. Figure 1 contains the six-liner given in the language Haskell 98.

Alas, both succinctness and elegance are lost when it comes to implementing the

dual operation of deletion, also shown in figure 1. Two additional helper functions

are required causing the code size to double in comparison with insertion.

Why this discrepancy? The algorithmic explanation is that insertion always takes

place at an external node, that is, at a leaf whereas deletion always takes place at

an internal node and that manipulating internal nodes is notoriously more difficult

than manipulating external nodes.

Our own stab at explaining this phenomenon is algebraic or, if you like, linguistic.

Arguably, the data type Tree with its two constructors, Leaf and Node, does not

constitute a particularly elegant algebra. If we use binary search trees for representing

sets, then Leaf denotes the empty set ∅ and Node l a r denotes the set sl] {a}] sr

where sl and sr are the denotations of l and r , respectively. One might reasonably

advance that Node mingles two abstract operations, namely, forming a singleton set

‘{·}’ and taking the disjoint union ‘]’ of two sets, and that it is preferable to consider

these two operations separately.

Of course, there is a good reason for using a ternary constructor: the second

argument of Node, the split key, is vital for steering the binary search. Thus, as

a replacement for the tree constructors the algebra ∅, {·}, ‘]’ is inadequate; we

additionally need a substitute for the split key. Now, a search tree satisfies the

invariant that for each node the split key is greater than the elements in the left

subtree (and smaller than the ones in the right subtree). This suggests to augment

the algebra with an observer function max (or min , equivalently) that determines the

maximum (or the minimum) element of a set. We will see that all standard operations

https://doi.org/10.1017/S0956796801004269 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004269

602 R. Hinze

data Tree a = Leaf | Node (Tree a) a (Tree a)

insert :: (Ord a)⇒ a → Tree a → Tree a

insert x Leaf = Node Leaf x Leaf

insert x (Node l a r)

| x < a = Node (insert x l) a r

| x a = Node l x r

| x > a = Node l a (insert x r)

delete :: (Ord a)⇒ a → Tree a → Tree a

delete x Leaf = Leaf

delete x (Node l a r)

| x < a = Node (delete x l) a r

| x a = join l r

| x > a = Node l a (delete x r)

join :: Tree a → Tree a → Tree a

join Leaf r = r

join (Node ll la lr) r = Node l m r

where (l ,m) = split-max ll la lr

split-max :: Tree a → a → Tree a → (Tree a , a)

split-max l a Leaf = (l , a)

split-max l a (Node rl ra rr) = (Node l a r ,m)

where (r ,m) = split-max rl ra rr

member :: (Ord a)⇒ a → Tree a → Bool

member x Leaf = False

member x (Node l a r)

| x < a = member x l

| x a = True

| x > a = member x r

Fig. 1. The standard implementation of binary search trees.

on search trees can be conveniently expressed using this extended algebra. This does

not mean, however, that we abandon binary search trees altogether. Rather, we shall

use the algebra as an interface to the concrete representation of this data structure.

This is the point of the pearl: even concrete data types may benefit from data

structural abstraction.

2 An interface to binary search trees

The following signature provides the aforementioned interface to binary search trees.

In fact, it can be seen as a declaration of an abstract data type – the choice of

names and symbols reflects our intention to use trees for representing sets.

data Set a

∅ :: (Ord a)⇒ Set a

{·} :: (Ord a)⇒ a → Set a

(]) :: (Ord a)⇒ Set a → Set a → Set a

max :: (Ord a)⇒ Set a → a

https://doi.org/10.1017/S0956796801004269 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004269

Functional pearl 603

The constructor ∅ denotes the empty set, {·} forms a singleton set, and sl] sr takes

the disjoint union of sl and sr under the proviso that the elements in sl precede the

elements in sr . For each constructor there is a corresponding destructor (typeset with

a bar) that can be used in patterns: ∅̄ matches the empty set, {̄·}̄ matches singleton

sets, and sl]̄ sr matches sets with at least two elements. In the latter case, we may

assume that max sl < min sr and furthermore that both sl and sr are non-empty.

Thus, the patterns ∅̄, {̄a }̄, and sl]̄ sr are exhaustive and exclusive. The operation

max is used to determine the maximum element of a non-empty set. We guarantee

that all operations, constructors as well as destructors, have a running time that is

bounded by a constant.

The signature is asymmetrical in that we provide constant access to the maximum

element but not to the minimum element. This will be rectified in section 6. For the

moment, we simply note that min can be defined as a derived operation – albeit

with a running time proportional to the height of a tree:

min :: (Ord a)⇒ Set a → a

min {̄a }̄ = a

min (sl]̄ sr) = min sl .

In the second equation we employ the invariants that max sl <min sr and that sl is

non-empty.

At this point the reader may wonder why it is necessary to distinguish between

constructors and destructors? First, the constructors will be implemented by Haskell

functions and Haskell does not allow functions to appear in patterns. Secondly,

the expression ∅] {a} must not be equal to the pattern ∅̄]̄ {̄a }̄ since we wish to

guarantee that both arguments of the destructor ‘]̄’ are non-empty. In fact, we have

sl] sr = sl]̄ sr if and only if both sl and sr are non-empty. On the other hand,

∅ = ∅̄ and {a} = {̄a }̄ hold unconditionally.

3 Set functions

Given the above interface we can easily define the standard operations on sets.

Here is how we implement set membership:

member :: (Ord a)⇒ a → Set a → Bool

member x ∅̄ = False

member x {̄a }̄ = x a

member x (sl]̄ sr)

| x 6 max sl = member x sl

| otherwise = member x sr .

The recursive structure of the definition is archetypical and nicely illustrates a

separation of concerns. Elements of a set are accessed solely through the pattern

{̄a }̄, whereas the pattern sl]̄ sr , in conjunction with the observer function max , is

used for implementing the divide-and-conquer step. In other words, the operations

on elements always take place at the fringe of the tree.

https://doi.org/10.1017/S0956796801004269 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004269

604 R. Hinze

Insertion and deletion are now equally simple to implement:

insert :: (Ord a)⇒ a → Set a → Set a

insert x ∅̄ = {x}
insert x {̄a }̄
| x < a = {x}] {a}
| x a = {x}
| x > a = {a}] {x}

insert x (sl]̄ sr)

| x 6 max sl = insert x sl] sr

| otherwise = sl] insert x sr

delete :: (Ord a)⇒ a → Set a → Set a

delete x ∅̄ = ∅
delete x {̄a }̄
| x a = ∅
| otherwise = {a}

delete x (sl]̄ sr)

| x 6 max sl = delete x sl] sr

| otherwise = sl] delete x sr .

Note that the two functions differ in the treatment of the base cases only.

The definition of delete can be slightly simplified for the special case that we

remove the maximum element:

delete-max :: (Ord a)⇒ Set a → Set a

delete-max ∅̄ = ∅
delete-max {̄a }̄ = ∅
delete-max (sl]̄ sr) = sl] delete-max sr .

The functions max and delete-max provide priority queue functionality – except that

priority queues are usually bags rather than sets.

4 Implementing the interface

Recall from section 2 that we have to guarantee that none of the operations takes

more than a constant number of steps. Clearly, this condition rules out ‘standard’

binary search trees as the underlying data structure: determining the maximum

element in a search tree takes time proportional to the length of the right spine.

However, this observation suggests that we might meet the desired time bound if we

constrain the length of the right spine. We take the simplest approach and restrict

ourselves to search trees where the right subtree of the root is empty. The following

data declaration makes this restriction explicit:

data Set a = Leaf | Root (Set a) a | Node (Set a) a (Set a).

The term Root tl a serves as a replacement for the top-level term Node tl a Leaf .

Thus, a search tree is either empty or of the form Root tl a – we insist that Root is

used only at the top level and that Node only appears below a Root constructor.

https://doi.org/10.1017/S0956796801004269 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004269

Functional pearl 605

Given this representation it is straightforward to implement the constructors ∅,
{·}, ‘]’ and the observer function max :

∅ = Leaf

{a} = Root Leaf a

Leaf] tr = tr

tl] Leaf = tl

Root tl al] Root tr ar = Root (Node tl al tr) ar

max (Root t a) = a .

To implement the destructors ∅̄, {̄·}̄, and ‘]̄’ we make use of an extension to

Haskell 98 called views (Burton et al., 1996; Okasaki, 1998). Briefly, a view allows

any type to be viewed as a free data type. A view declaration for a type T consists

of an anonymous data type, the view type, and an anonymous function, the view

transformation, that shows how to map elements of T to the view type:

view Set a = ∅̄ | {̄a }̄ | Set a]̄ Set a where

Leaf → ∅̄
Root Leaf a → {̄a }̄
Root (Node tl al tr) ar → Root tl al]̄ Root tr ar .

The view transformation essentially undoes the work of the constructors—it is not

the inverse since, for instance, ∅] {a} matches {̄a }̄ rather than sl]̄ sr .

5 Eliminating the abstraction layer

Worried about efficiency? It is a simple exercise in program fusion to eliminate the

anonymous view type from the definitions given in section 3 – a good optimizing

compiler should be able to perform this transformation automatically. However,

since the resulting code is instructive from an algorithmic point of view, let us

briefly discuss one example.

In general, each of the set functions can be written as a composition of the

view transformation and the ‘original’ function that works on the view type. Since

the view type is non-recursive, we can easily fuse the view transformation and the

original function. In the case of set membership, we obtain the following definition:

member x Leaf = False

member x (Root Leaf a) = x a

member x (Root (Node tl al tr) ar)

| x 6 al = member x (Root tl al)

| otherwise = member x (Root tr ar).

Note that in both recursive calls member is passed a Root node that is constructed

on the fly. As a simple optimization we avoid building this intermediate term by

https://doi.org/10.1017/S0956796801004269 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004269

606 R. Hinze

specializing member x (Root t a) to member ′ x t a .

member x Leaf = False

member x (Root t a) = member ′ x t a

member ′ x Leaf a = x a

member ′ x (Node tl al tr) ar

| x 6 al = member ′ x tl al

| otherwise = member ′ x tr ar .

Interestingly, this implementation of member closely resembles an algorithm pro-

posed by Andersson (1991). Recall that the standard implementation of set mem-

bership shown in figure 1 uses one three-way comparison per visited node. The

variant of Andersson manages with one two-way comparison by keeping track of

a candidate element that might be equal to the query element. The third argument

of member ′ exactly corresponds to this candidate element, which is only checked for

equality when a leaf is hit.

6 A more symmetric design

The implementation in section 4 supports a constant time max operation but not

a constant time min operation. In this section we show how to symmetrize the

implementation so that both operations can be supported in constant time. This

time we deviate slightly from binary search trees.

Currently, the Root constructor only contains the maximum element of the

represented set. An obvious idea is to add a third field to the constructor which

contains the minimum. This, however, implies that we can no longer represent

singleton sets – unless we are willing to allow both fields to contain the same

element. Instead, we introduce a new unary constructor that forms a singleton.

Of course, we have to make sure that we can still take the disjoint union of two

sets in constant time. This is easily done if one of the sets is empty or both are

singletons. In the latter case, we construct a new Root node with an empty subtree.

Now, assume that both arguments are of the form Root al t ar . In this case, we have

to form an internal tree using two subtrees and two split keys. Similarly, if one of

the arguments is a singleton and the other one has Root as the topmost constructor,

then we have to build a tree using one subtree and one split key. For each of the

three cases, we invent a tailor-made constructor:

data Set a = Leaf

| Single a

| Root a (Set a) a

| Cons a (Set a)

| Snoc (Set a) a

| Node (Set a) a a (Set a).

We insist that Single and Root are only used at the top level and that Cons , Snoc, and

Node only appear below a Root node. Given this data structure the implementation

of the interface is straightforward (figure 2 lists the code).

https://doi.org/10.1017/S0956796801004269 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004269

Functional pearl 607

data Set a = Leaf

| Single a

| Root a (Set a) a

| Cons a (Set a)

| Snoc (Set a) a

| Node (Set a) a a (Set a)

∅ = Leaf

{a} = Single a

Leaf] t ′ = t ′
t] Leaf = t

Single a] Single a ′ = Root a Leaf a ′
Single a] Root a′l t ′ a′r = Root a (Cons a′l t ′) a′r
Root al t ar] Single a ′ = Root al (Snoc t ar) a ′
Root al t ar] Root a′l t ′ a′r = Root al (Node t ar a

′
l t ′) a′r

max (Single a) = a

max (Root al t ar) = ar

min (Single a) = a

min (Root al t ar) = al

view Set a = ∅̄ | {̄a }̄ | Set a]̄ Set a where

Leaf → ∅̄
Single a → {̄a }̄
Root a Leaf a ′ → Single a]̄ Single a ′
Root a (Cons a′l t ′) a′r → Single a]̄ Root a′l t ′ a′r
Root al (Snoc t ar) a ′ → Root al t ar]̄ Single a ′
Root al (Node t ar a

′
l t ′) a′r → Root al t ar]̄ Root a′l t ′ a′r

Fig. 2. An implementation supporting constant time min- and max -operations.

This variation nicely illustrates the merits of abstraction. Since the set functions

of section 3 only rely on the abstract interface, they happily work with the new

implementation. Another interesting variation is to augment the implementation of

section 4 by a balancing scheme. An extension along this line is described in Hinze

(2001), albeit for the more elaborate data structure of priority search queues. All in

all, a refreshing view on an old data structure.

References

Andersson, A. (1991) A note on searching in a binary search tree. Software — Practice and

Experience, 21(10), 1125–1128.

Burton, W., Meijer, E., Sansom, P., Thompson, S. and Wadler, P. (1996) Views:

An Extension to Haskell Pattern Matching. Available from http://www.haskell.org/

development/views.html.

Hinze, R. (2001) A simple implementation technique for priority search queues. In: Leroy, X.

(editor), Proceedings 2001 International Conference on Functional Programming, pp. 110–121.

Florence, Italy.

Okasaki, C. (1998) Views for Standard ML. The 1998 ACM SIGPLAN Workshop on ML, pp.

14–23. Baltimore, MD.

https://doi.org/10.1017/S0956796801004269 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004269

