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Abstract

The behaviour of waves in elastic solids with linear stress strain curves
is expressed, for plane strain, by a pair of simultaneous partial differential
equations of hyperbolic type. Detailed behaviour of the waves is examined
by solving these equations numerically.

Introduction

One of the important unsettled questions in connection with the strength
of materials is to what extent the yield stress, and hence the plastic behaviour,
of a metal depends on rate of strain. The answer to this question may be
sought by the analysis of tests at high rates of loading. These tests are most
easily carried out by ballistic means, either by detonating a slab of explosive
against the face of a plate [Pack, Evans and James (1948)] or by shooting a
projectile at a thin wire [Talylor (1940)] or by shooting through the bore of
a thin cylinder, at a plug at the far end.

Experiments of the first type have a considerable advantage, in that
they produce, effectively, a uni-axial strain, and so are easily analysed
mathematically. The problems of instrumentation are such, however, that
only a fragmentary picture of the stress strain situation in the material
can be obtained. Much fuller information can be obtained in the second and
particularly, in the third types of experiment, for strain gauges can be used
to give a time trace of surface strain at each of a number of points. Bell
(1956), (1961a), (1961b)] shoots a rod at an identical specimen on which
are ruled diffraction gratings. Davies (1948) uses an electrical capacitance
technique to carry out measurements on a rod. The data from these
types of experiment are more difficult to analyse since the problem of
waves on a rod or wire is basically a three dimensional problem. Investi-
gators have rarely attempted exact analysis, being content to use a one
dimensional model, assuming uni-axial stress. Such assumption is valid
for harmonic disturbances of long wave length but not necessarily for
the ballistic problems invisaged here and for elastic waves it has been
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shown [see e.g. Love (1931)] that the uni-axial theory of wave propagation
in a rod becomes progressively more inaccurate as the rate of stress increases.
Davies (1948) obtained agreement between experimental results and a
theoretical analysis which allowed for dispersion. Shalak (1957) has obtained
theoretical results for large time which compare well with the work of Davies.

As a first step towards a complete analysis of waves in plastic solids we
attempted to determine the behaviour of waves in elastic solids. We re-
stricted the analysis to two dimensions and to materials with linear stress
strain curves. With these assumptions, the behaviour may be determined
by a pair of simultaneous partial differential equations of hyperbolic type.
These differential equations are replaced by difference equations which
are solved numerically by a process involving stepping ahead in two direc-
tions. A rectangular mesh is chosen for simplicity and the interval size taken
sufficiently small to guard against growth of rounding errors. The error
growth has been examined by a Mesh-Fourier process, and some tests have
been carried out on the final results, indicating stability of the numerical
Pprocess.

It is believed that a two dimensional analysis should be sufficient to in-
dicate the type of behaviour occurring in rods. It shoulds be possible to ex-
tend the analysis to include non-linear stress strain curves and also to in-
clude plastic behaviour.

Derivation of the differential equations

The problem to be considered is the behaviour of an isotropic elastic
body subjected to a constant velocity shock. The body will be assumed to
be a plate bounded in a Cartesian co-ordinate system by y = +a, 2 =0,
and unbounded in z and the positive « direction. The shock is in the direc-
tion of increasing 2.

The stress strain relations are [Sokolnikoff (1946), p. 70]

E = Young’s modulus,

Ee, = (14+v)o,,—8,,0 . .
i = (14r)o,—9,0,, » = Poisson’s ratio,

where the ¢,; are the strain components and the o,, are the stress components.
The dynamical equations may be written [Sokolnikoff (1946), p. 82]

Pu; 0oy, LF
=2 o

p = density,
Pon ~ ox,

%, = displacements,

and the body forces F, are zero for an initially unstressed solid. For the

plate being considered these tensor equations reduce, in Cartesian co-ordi-
nates, to:
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(1) Ee,, = o,,—v0,,—v0,,, Cop = % ;
ox
(2) Ee,, = —v0,,+0,,—v0,,, Cyy = ?2 ;
oy
Ee,, = —vo,,—vo,,+0,,, €, =0;
E 1 ou  Ov\
I__H,ezv-:azv' eu_z(@'i'%)’
E 1 v ow
-IT}-_'P €ys = Oys» €ys — 2 ('3; 5;) ’
E 1 dw  Ou
Ty e = w=t(5 +5)

where #, v, w represent the displacement in the z, y, z directions and:

*u  do, Oo, . 00,

(3) P5t7=7x_+ay+—5;
#v _ do,, 0o,  Jo,
@ P T A

For plane strain e,, = 0, ¢,, = ¢,, = 0, and so from (1), (2)

Egi; = (14+9)[(1—»)0—v0o,,],

E g = (4n)[1—2)op—r0).

Combining we obtain

E on ov
(6) a,.-_—.m [(l—v)-a—z--l-v?y],
E v ou
© o= T (0 E
and we also have
E ou ov
) % = 201 [’83 + a_z] '

Scaling the co-ordinate system by a factor E/(14#) and substituting (5),
(8), (7) in the dynamic equations (3) and (4) we have
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32u Pu %y 1—2v 2u

1—20) — = (1—p) — 4+ 4 —— 4 7 =,

®) =2 g =)o T 255t 5 o
Pv 1—2 Pu v

1—20) 22 — L S L
®) =) 2a =3 5 T T oay T 50

with the new time scale ¢, = V Efp(14) {yicinar -
These equations can be written in the form
0t [ou  ov ou ov
1—2) — | = + Z| = g—»)V2 (= 4 =
(1=2) 25 [3:1: + ay] (1=2) (ax + ay)
and another equation in du/dy— dv/dx. These are wave equations with wave
velocities ¢ = V(1—%)/(1—2») and a smaller wave velocity for the second
equation.

For a plate bounded by # = 0, y = +-a we have for boundary conditions,
for y=+a,t=0, 2 =0:

. Ou ov
(10) o, = 0, that is, P
. Ou 1—» v
(11) o,, = 0, that is, ==
and for =0, t=0
0 0
71: = U, 3_:) =0, U a constant.

The initial conditions are %, v, ou/d¢, dv/ot everywhere zero for £ = 0,
z > 0. The end conditions are such that the plate moves with constant
velocity in the z direction.

Difference equations for main points

Consider steps in time 8, t =448, § = 0,1, 2,---, and at each time
interval consider the #, y plane divided into a rectangular mesh of intervals

oz, x = k bz, k=0,1,2---,
oy, y =14y, 1=0,1,2---17.

The number of steps in y has been restricted for simplicity of programming.
The finite difference approximations used are generally available in any
text on numerical analysis [e.g. Milne (1949), p. 96, p. 191]. The approxi-
mation used for the mixed derivative is given in Buckingham (1957), p.
506, or can be easily derived. Substituting the simplest available central
difference formulae for the derivatives in (8), (9) we obtain
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1—» [68\2 ot
Uppr k1 = 20,5, [1 12 (6_:1:) —% (@)2] —Uj_1,k,1

1—y (3t\2
1—2 (—‘) (s, 1H %521,

ox
ot\2
5&) (%, 102+ %5,2,14]
1 (3
+ 8(1—2») w [y, k41, 00— Y5 k41, 1-1— Vs k1,141 05,21, 1-1]

+ O[(8¢)*{(6=)*+ (8y)*+ (¢0)%}]

and we can also obtain a second equation with % and z interchanged with
v and y respectively. These two equations enable the calculation of the #, v
displacements for the time interval j4-1 at all points of the z, y mesh if we
are given the displacements at all points of the mesh for the §,j—I time
intervals.

Let us choose I = [(1—»)/(1—2»)] (6¢/8x)2+41(3¢/0y)2. We can choose
8z = dy since this should still give sufficient information. Then for » < %
we have ¢ 8t << z where ¢ is the fast wave velocity. This indicates a likely
exponential decay of rounding errors accumulated at any stage.

The final equations for displacements at the main points of the plate
become

(12) +3(

Uppr, k1 = —Wo_y 1T %yee1, 1% 01,1

1—-2v)[u Uy p 1 1—U — %y g
(13) +( )[ l,k.l+1+ 7.k, 1—1 f,k+1,1 (R l,l]

1
+ 4, er1, 11— V5041, -1 Vg, k-1, 141 Vs, k-1, 1-1)

+0(d)*

and a similar equation with %, v and %,/ interchanged.

Boundary and initial conditions

The behaviour of the waves is symmetric about the y = 0 axis and (13)

reduces to:
Usr1,k,0 = — %1 k0% ke1,0 %010
+ (1—29) (20,1, ;—%;,211,0—t%;,8-1,0]
40 041,0—V5,0-1,2] + 0 (62)4,
and also

Yyerx0 = 0.
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As a result of this symmetry the equations need only be solved for one half
of the plate.

On the boundary y = +a conditions (10), (11) hold. A variety of ways
of including these equations were considered with the combined problem of
accuracy, speed of computation and simplicity of programming. It was
finally decided to incorporate these equations in the main equations which
hold right up to the boundary. The equations (10), (11) hold only on the
boundary and hence expressions for 9%*/dy? in the main equations cannot
be substituted for by differentiating the boundary conditions with respect
to y. We can, however, transform, say, 0%/dxdy to —»/(1—»)0*u/dz? and
then substitute a central difference approximation for o/ox?. 0% oy? is
evaluated by a Taylor series expansion

1 0%y ou
(d;l,) 5!7,‘] M.“= Uik, 01— Wsx,aT0Y - @] + O(%y)

§,k,a
314:] _ 30]
3y i,k,a - ax i,k,a

and similarly for 9*v/dy®. Thus we obtain for the boundary points, again
taking 1 = [(1—+)/(1—2v)] (8¢/0z)*+3(3¢/8y)*,

v A ar\?
Ussrka = —%y ket =2 1= (6—:::) %y,k,0 T (é—a:) #4,k,a-1

1—» v AN
(14) + [1_2" - 2(1__27)(1_7)] (d_x) (#0410 %5,0-1,4)

and

at\3
+4(57) [vhren.atopas - +O@)

Viske = —Vsg ket Yk a1

ot
+ [1 — (6_3:)’] 20,8, 4+ Y5, x,0-1]

(15) e
+ (—) [—s,841,6— V5,21, 0]

1—2y \b&z

v [(O\2 0
+ 15 () [ Hsat s d 0.
The initial conditions may be described quite simply. At j = 0 the 4, v
displacements are everywhere zero and d4/dt = U, dv[ot =0 at k=0
for all j. At § = 1 the effect of the shock will not have reached the 2 = 1
interval and the above formulae will give correct results only if the
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1 =0, 1 = —1 planes are zero at the start of the program. At & = 0, for
all 7, we can evaluate the displacements as

u = Ujédt, v=0.

Program

The computations were carried out on the Ferranti Pegasus Mk. 2
digital computer installed at Leeds University. This machine has a small
high speed store and a large backing store. Program and data in the backing
store must be transferred to the high speed store before use and transfers
to and from the backing store can be carried out in blocks of eight 39 bit
words. It was decided to restrict the number of y intervals to seven so that
associated with each z interval are two blocks, one for % displacements,
one for v displacements. Due to symmetry, this gives a total of 14 intervals
across the plate.

All displacements for the last two time planes, §, 1—1, evaluated are
stored in the backing store. When the displacements for time interval -1 are
calculated they are stored in place of the j—1 time plane.

‘We took U = 1 and chose dx so small that for the number of time inter-
vals to be considered #,,, < 1 and hence all displacements are considera-
bly less than one and there is no danger of overflow when working with
fixed point arithmetic. éz was chosen as 0.0001 (it was thought that after
100 time intervals the wave behaviour would be settled) so that é¢ = 0.0001/
4/2. Poisson’s ratio » was chosen as 0.25.

The program is divided into three parts. The first section clears the
whole of the store, reads in the parameters », dz, number of y intervals,
and some print parameters and stores them and calculates constants requir-
ed for the difference equations. The second part deals with the evaluation
of all the difference equations and has been fitted entirely into the high speed
store. For one time interval it evaluates the u, v displacements for all the
y intervals (including boundary points) for successive z intervals until
all the displacements for an z interval are zero. The third section, the print
subroutine, is then called in to decide what information, if any, is to be
printed and to output it in a suitable format. Control is then returned to
the second section which proceeds to evaluate the displacements for the
next time interval. The time required to compute the first 100 time intervals,
for six y intervals, was approximately one hour. Of this time about 30 minu-
tes was taken up with the output of results on a slow paper tape punch.

Results

Initially displacements were printed at every third « interval along the
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Strain
254
154
5..
T T L ¥ L T v T Ll
10 30 50 70 90
Time interval
Figure 1
Strain
254
15 1
54
Ll L) L) L] T T T T
5 15 25 36
x interval
Figure 2

https://doi.org/10.1017/51446788700004006 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700004006

(93 Propagation of elastic waves 63

boundary, for every fourth interval in time. Corresponding displacements at
points in the plate were also printed. At a later stage considerably more de-
tail was printed for the boundary to allow an accurate determination of the
strain, éu/éx . In Figure 1 the strain has been plotted against increasing time
at about half a plate width from the impact face. The waves appear to settle
down satisfactorily and this alone indicates that rounding errors are not
propagated through the system. One time interval represents approximately
0.059 a/c seconds where « is the plate width in inches and ¢ is the velocity of
sound in inches/second in the material being considered. For aluminium and
a plate of width one inch this is about 0.4us and for a material such as steel,
with elastic behaviour at much higher impact velocities, this does not vary
markedly. In Figure 2 the strain has been plotted against increasing dis-
tance at 42 time intervals after impact.

The results illustrated in Figure 1 agree qualitatively with data obtain-
ed by Davies (1948) and with the theoretical results of Shalak (1957). The
results indicated in Figure 2 appear rather irregular but appear to have been
confirmed by recent additional results, obtained using a program based on
an alternative formulation of the problem. With this program it has also

TABLE OF DIFFERENCES IN %

k Displacement u First difference
0 0.00254558
1 0.00245048 0.00009510
2 0.00237159 0.00007889
3 0.00228971 0.00008188
4 0.00220408 0.00008563
5 0.00212423 0.00007985
6 0.00203605 0.00008818
7 0.00194993 0.00008612
8 0.00185066 0.00009928
9 0.00175111 0.00009954
10 0.00162800 0.00012311
11 0.00153087 0.00009743
12 0.00143256 0.00009801
13 0.00131830 0.00011426
14 0.00126772 0.00005058
15 0.00115680 0.00011092
16 0.00108153 0.00007527
17 0.00105313 0.00002840
18 0.00095706 0.00009607
18 0.00089958 0.00005748
20 0.00087146 0.00002812
21 0.00075162 0.00011984
22 0.00066745 0.00008417
23 0.00064668 0.00002077
24 0.00055546 0.00009122
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been possible to vary the ratio éxz/dy, results obtained being in excellent
agreement with those presented here. Checks have been obtained by differ-
encing the numerical data with respect to the time and # coordinates. Differ-
ences seem to be satisfactorily small. The table gives first differences with
respect to z for = 36. The differences are constant to four decimal places and
indicate that sufficient accuracy has been obtained up to one diameter from
the impact face. Further away the numerical solution has still to settle down.
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