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Abstract

For the completely stiff real homogeneous system

ex = A(t, e)x,
where e is a small positive parameter, a method is given for the construction of a basis
for the solution space.

If A has n linearly independent eigenvector functions, then there exists a choice of
these, {s,}, with corresponding eigenvalue functions {\}, such that there is a local basis
for solution, that takes the form

v,.]exp[£-'/\]},

where v, is a vector that tends to zero with e. In general, a basis of this form exists only
on an interval in which the distinct eigenvalues have their real parts ordered. A
construction is provided for continuing any solution across the boundaries of any such
interval. These results are proved for a finite or infinite interval for which there are only
a finite number of points at which the ordering of the real parts of eigenvalues changes.

1. Introduction

Stiff is an adjective, frequently used by people interested in numerical solution
procedures, to describe a class of differential equations of the form

z = h(/, z). (1.1)

Here, z and h are real /i-vector valued functions, and the dot denotes differentia-
tion with respect to the real variable /. Standard numerical integration tech-
niques, based on a step size h, may be applied to such a system, but are suspect
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18 J. J. Mahony and J. J. Shepherd [2 ]

whenever the quantity \Xh\ is not small. In the above, X is the eigenvalue of
maximum modulus of the Jacobian derivative of h evaluated at any point (/, z)
relevant to the solution. In these circumstances, the term stiff is used when
practical considerations place a lower bound on h such that \\h\ fails to be small
over a range of f-values too large to be covered by the use of local analytic
approximations.

For systems satisfying this criterion, useful algorithms for the location of the
solutions of the relevant boundary value problems are not readily available. This
is due, in part, to a lack of knowledge of the mathematical properties of these
exact solutions. The standard system that has been studied to provide such
knowledge is

ex = f(t, x, y, e),

g('» x, y, e), '

where e is a small positive parameter. Although this assumed known division
into stiff component x and nonstiff component y is not always available for the
more general system (1.1), the form (1.2) is convenient for generating a system
having Jacobian derivative for which some of the eigenvalues are large. There is
an extensive literature for such a system (see, for instance, Vasil'eva [9]), but it
does not deal with many of the cases which cause difficulties in numerical
procedures as the real parts of large eigenvalues are required to be one-signed
over the interval.

A heuristic argument frequently used in connection with such systems is based
on the idea, or hope, that ex will be small almost everywhere, so that the system
may be approximated by the system

0 = f(/, XQ, y,,, e),

y0 = g(< x y e ) '

termed the reduced system. This assumption reduces the order of the system to
be studied and hence, in general, the number of boundary conditions which may
be satisfied. The ability to meet the original boundary conditions is regained by
the appending of suitable localized corrections to the solution of (1.3). The
literature reviewed in [9] provides a set of sufficient conditions under which this
method may be used.

For natural initial value problems, where all large eigenvalues have negative
real parts, there are well proven numerical procedures for the integration of stiff
systems: see, for example, the review article by Shampine and Gear [6]. The
criticisms one hears of these methods appear to arise from attempts to apply
them to boundary value problems.

The heuristic basis of most approximation arguments for dealing with stiff
systems is the idea that, if a differential equation is satisfied with a small error,
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[3] Stiff systems of equations. Part 1 19

the trial solution proposed will be close to an exact solution. That this is an
overly optimistic view can be shown by considering the simple example

ex = -t
2(x2 - t2), \t\ < 1. (1.4)

The behaviour of solutions of this equation can be deduced by phase plane
methods, the details of which will not be presented here. The general behaviour
is exhibited by the representative curves displayed in Figure 1. Note that, for
small values of e, curves not close to the curves xo(t) satisfying t\x^ — t2) = 0
are extremely steep. Thus any solution which remains bounded lies close to
XQ — t2 = 0 for most values of /. Further, it is for only a very restricted range of
values of x(-l , e) that solutions remain close to this pair of all t in [-1, 1]. It
may be observed that while x0 = - / approximately satisfies the differential
equation everywhere, there is no exact solution close to it even on the open
interval (-1, 1). On the other hand, there are exact solutions close to the other
three heuristically generated trials x0 = t and x0 = ± \t\.

FIG. 1. Displaying solutions of ex = ~t\x2 — I2).

The basis of most of the effective existence proofs for systems like (1.2) is the
establishment of a trial solution X, Y satisfying (1.2) in some appropriate
approximate sense, a linearization of the differential equation about X, Y, and
proof of the existence, with appropriate estimates, of suitable corrections
(x — X), (y — Y). The methods almost invariably utilize the Contraction Map-
ping Theorem, and are thus constructive by nature. However, the example (1.4)
provides two distinct cases where such methods are unhkely to work. There is a
small set of solutions which lies close to x = -\t\ whose range of values of
x{~\, e) is so small that it is unlikely that one could get close to them to contract
onto them. However, dichotomy arguments in association with the continuous
dependence of x(t, e) on JC(—1, e) permit one to show that such solutions do
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indeed exist. Mathematically, such proofs would employ a more general fixed
point theorem with a loss of uniqueness, in general. This feature causes no
problem to a shooting method approach which merely seeks to straddle the
interesting range; but in many solutions the potential nonuniqueness of the fixed
point can cause difficulties. In the example above, there are two families of
solutions, one like x0 = t and the other like x0 = -|f|, whose boundary values
x( - l , e) lie extremely close together. It is clear that, to obtain a practical hold on
both these types of solution, one will have to formulate the problem in such a
way that this over sensitive dependence on x(-l, e) is suppressed. Even further,
it is clear that, for systems of larger order, extremely delicate questions regarding
behaviour of solutions can arise.

It is the principal objective of the present series of papers, of which this is the
first, to provide a mathematical framework which offers some possibility of
investigating the difficulties that may arise in a given stiff system. We hope to
provide guidance regarding the type of difficulties likely to be encountered by
any robust software package in applications to boundary value problems for stiff
systems. To this end, and in view of the above linearization procedure for (1.2),
we see an examination of the basic system

ex = Ax + By + r,,
(1.5)

y = Cx + Dy + r2 J

to be of fundamental interest, and will seek to characterize those equations and
boundary value problems for which difficulties will be encountered. For suitably
strong results about (1.5), we might hope to handle nonlinear systems by
applying some form of fixed-point theorem.

The papers are structured as follows. In the present paper we consider the
completely stiff homogeneous system

ex = Ax, (1.6)

and investigate the nature of the most useful basis for the solution space. In the
second paper, we investigate inhomogeneous systems of the form

ex = ^x + r,, (1.7)

and obtain conditions for the occurrence of behaviour of the kind germane to
the difficulties described above for the simple example (1.4). The relationships
between properties of the linear system and the failures of the nonlinear system
are discussed. These two papers establish the basic methods to be used, and the
third paper extends the results to the more general system (1.5).

There already exists an extensive literature concerning a suitable basis for the
solution space of the homogeneous system relevant to (1.5), with (1.6) as a
special case: see, for example, the review by Wasow in [10, page 3]. The greater
portion of this work is based on the assumption that A is an analytic function of
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t. In the context of the numerical solution of stiff systems, A will derive from
tx(t, X, Y), while X will possess a finite (normally small) number of continuous
derivatives, so that it is necessary to relax the analyticity assumption. In the
work cited, this analyticity assumption is applied in two quite distinct ways. One
use is merely to construct a formal approximation (that is, X, Y) to a solution.
This step is still possible, to a limited extent, in the present context. The other
use, however, involves the path independence of integrals, to obtain tight
estimates on solutions. This step is not assumed to be available here, and we will
show that the existing results may be substantially modified as a consequence.

There turns out to be a significant difference between the results for analytic
and non-analytic systems which has serious implications for numerical integra-
tion techniques. Analytic theory is generally based on the assumption that the
matrix A in (1.6) has an analytic diagonal Jordan form in a sufficiently large
domain in the complex plane. Then equation (1.6) has a basis of solutions of the
form {s, + eVj}exp{e~if' A,}, where s, and \ are independent eigenvectors and
associated eigenvalues of A. If two eigenvalue functions become equal at some
point in the complex plane, in general the above form of the solution basis set
becomes local rather than global. From each such point there will emerge a
Stokes line across which the exponentially dominant order of the corresponding
solution will change. Such is the complexity of the case that no serious effort
appears to have been made to study global properties of solutions on the real
line when the restrictive assumption on eigenvalues in the complex plane is
relaxed. But it may be observed that the global nature of the validity of the usual
basis on the real line no longer necessarily holds. Testable assumptions on the
real axis are not available in the analytic theory for questions of significance in
numerical studies. We show here that, for non-analytic coefficients defined on
the real line, there is a change of exponential dominance of some solutions
wherever there is a change in the order of the real parts of the eigenvalue
functions. The implications of this for numerical integration needs emphasis.
Consider an analytic system (1.6) which has no points where two eigenvalue
functions of the Jacobian derivative become equal on the real line but where the
real parts of eigenvalues change order. Under these circumstances, a lineariza-
tion about a numerical solution will lead to an approximate basis of quite
different form from the exact analytic theory. However, there will certainly be
cases where a Stokes line emerges from a nearby point in the complex plane and
cuts the real axis. Though the non-analytic result will be in error, it could be
equally wrong to assume that the correct result contains no change in exponen-
tial order of the solution basis. Numerical solution techniques for non-linear
analytic systems will provide no information about solutions off the real line.
Hence it is desirable to understand the implications of this phenomenon for the
validity of various numerical or analytic approximations.
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However, we will be invoking the smallness of e to establish the validity of
approximations via the use of the contraction mapping theorem. The process we
envisage is as follows. The numerical approximation has been obtained for a
given small value e. The required coefficients can be estimated and tested to see
whether the contraction mapping theorem could be invoked. It is possible that
this method would never lead to the establishment of the existence of a solution.
But from a numerical viewpoint it is equally impossible to establish uniform
bounds on coefficients for sufficiently small e. We take the view that, in
attempting a practical judgement as to whether to accept the result of a
numerical integration procedure, it is appropriate to test for the validity of the
use of contraction mapping theorem for a given e. We shall insist that the
bounds established for the particular value e0, if applied as uniform in e, must
imply that the result would be true in the limit e tending to zero.

In Part 1 we shall largely present the arguments in terms of appropriate
bounds where substantive results are involved but revert to the standard O(e)
and O(e) notation where the presentation would otherwise become too complex.

There is one further aspect of the present problem that enforces a substantial
departure from the standard asymptotic analysis discussion. For large order
systems, and possibly even for small order systems, the trial solution for the
nonlinear problem will almost certainly be derived by numerical means. This
will happen for a discrete set of values of e, and interest will be centred on what
happens, for a given e, in the limit of step size h tending to zero, rather than as e
tends to zero.

2. Background to the basic assumptions

Suppose that A(t) is a smooth matrix function on a given interval of f-values
possessing n eigenvalues \k, and corresponding eigenvectors s*, that are distinct
at each value of /. Then it is well known that the differential equation ex =
A(t)x has n formal solutions of the form {s* + o(l)}exp(£~'/' \ ) , where o(l) is a
term that vanishes with e. Nayfeh [5, page 332] demonstrates how to generate
further terms in such a formal expansion. When A is analytic in a region of the
complex plane, Wasow [9] demonstrates methods by which these formal solu-
tions may be shown to be asymptotic approximations to exact solutions of the
above system.

Central to these considerations is the assumption that the eigenvalues of A are
distinct; for then a simple diagonal canonical form for A is available. Sibuya [7]
has considered the case where this fails, and has shown that, given an A{t)
analytic in the above sense, a smooth basis exists that reduces A to a canonical
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form on any open interval in which the multiplicity signature of the eigenvalues
remains constant. However, this canonical form is not diagonal in general, and
the smoothness of the basis cannot be guaranteed at the end points of such an
interval.

In the following sections, we propose to consider the solutions of the above
system on intervals in which changes of this multiplicity signature may occur,
but on which a smooth eigenvector basis is maintained throughout. Our motiva-
tion for such a choice of a smaller class of problems lies in a desire to consider
the implications of changes in the multiplicity of eigenvalues, but to avoid the
involved analysis that results from a direct application of the canonical forms of
A constructed by Sibuya to the system above.

With these ideas in mind, we are led to make our first basic assumption
regarding the matrix A occurring in the equation (1.6).

ASSUMPTION 1. For each t on an interval of interest I {which could be [0, T]for
some T > 0, or [0, oo)), and for any given positive e lying in a suitable neighbour-
hood of zero, A(t, e) is a linear map from R" to R", to which correspond n linearly
independent eigenvectors sk(t, e) and eigenvalues Xk(t, e), with both sets of functions
being continuously differentiable as functions of t on I.

Note that we have allowed A(t, e) to depend on e; this should cause no real
alteration to the above arguments regarding motivation for the present ap-
proach.

Assumption 1 assures us that A(t, e) may be written in the canonical form

A{t, e) = S(t, e)A(/, e)S~l(t, e) (2.1)

for each such / and e, where the n X n matrices S and A are defined by

S = [ s , s 2 - - - s ) l ] (2.2)

and

A = diag(A,, X2, . . . , XJ. (2.3)

REMARKS. 1. Complex eigenvalues and eigenvectors are admissible, but they
may be arranged in conjugate pairs. The assumption of n linearly independent
differentiable eigenvectors rules out the possibility of an eigenvector function's
being complex on part of / and not on the rest since, at the changeover point,
the continuous imaginary parts of the pair of conjugate complex eigenvectors
vanish, so that the set of eigenvectors is not linearly independent at such a point.

2. Systems generated from an wth-order differential equation by the standard
means can satisfy this assumption only if all eigenvalues have multiplicity one.
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3. At any point /„ where the multiplicity signature of the eigenvalues changes,
Assumption 1 is restrictive on the behaviour, but only mildly so. Some indica-
tion of the nature of this restriction may be obtained from the following
analysis.

Consider the case of every eigenvalue's being distinct on t > 0, with two real
eigenvalues A, and A2, say, being equal at the endpoint / = 0. Then Sibuya's
results referred to the above show that, in t > 0, there is a basis of eigenvector
functions such that

A = S AS"1, (2.4)

with S and A as defined above.
Differentiation and a little manipulation yields, on t > 0,

AS - SA = SA - AS. (2.5)

If, for each / > 0, we make the substitution

s, = 2 mijSj, (2.6)
j

the /th column in the matrix representation of the right-hand side of (2.5) is

S^-AA (2-7)
j

For given continuously differentiable A and A, the corresponding column of the
left-hand side of (2.5) is given by

2 DlA, (2.8)
J

where DtJ are coefficients defined by A and A from any set of eigenvectors at a
given value of /. Under the assumptions on A and A, these must be bounded
and continuous on / > 0. Moreover, since

%(\ - \) = D.j, (2-9)

it follows that the m^ are bounded on the closed interval t > 0, unless \ = \j.
Thus, under the assumptions above, only mu and w21 (andperhaps mn and m2^)
may be unbounded at t = 0.

If we now restrict attention to the first two solutions of (2.5), and note (2.6),
we may readily derive differential equations for s, and S2 that take the form

(A, - X2)s, = mus, + 5,-1- C,S2 (2.10)

and

(A2 - A,)^ = m ^ + B2+ C2S2, (2.11)

where Bx and B2 are bounded maps whose domains lie in the space spanned by
S3, . . . , sn, while C, and C2 are bounded maps that depend on the properties of
A and A.
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This equation shows that s, and S2 satisfy a pair of differential equations that
display a singular point at / = 0, because of the zero of \ t — \2 there. The
nature of this singular point depends on the nature of this zero, and those of mu

and m22. If mn and m22 are bounded away from zero at t = 0, and the zero of
A, — A2 there is simple, this system may be expected to be dominated by a
regular singular point system, and to behave like one. Thus s, and S2 can behave
like positive or negative powers of t near t = 0, and whether or not Assumption
1 is met there is highly dependent on the detailed structure of the right-hand
sides of (2.10) and (2.11).

The above argument demonstrates that, at such a point, many different cases
can arise, but Assumption 1, as well as others to be made subsequently, leave the
number of cases covered by the material of this paper far from vacuous.

The cases where A is not bounded, even though A is, add further to the great
variety of cases. Thus the form of our assumption is quite unsuited to the
general case. In Section 6 we shall look at appropriate ways of dealing with the
cases not covered.

3. Existence of a basis for the solution space

We now turn to the task of constructing a useful basis for the solution space
of the system (1.6) on a closed interval J Q I, where / is the interval described
in Assumption I. Our choice of J is motivated by the observation that Assump-
tion 1 alone is not sufficient to construct a basis having the properties we desire,
and so we imagine A(t, e) to be further restricted on / . We further envisage that
J could depend on e, although it will become clear that we settle on a particular
value of this parameter for which certain estimates hold.

Our first assumption concerns the behaviour of the eigenvalues and eigenvec-
tors of A on J.

ASSUMPTION 2. For any given e > 0, a set of m < n distinct differentiable
eigenvalue functions \a(t, e) of A may be defined on J such that, for each
eigenvalue \(t, e), we have \(t, e) = \a(t, e) for some a and all t G J.

DEFINITION 1. For any given e > 0, and corresponding to each eigenvalue
function Xa, we define, at each t e J, a vector subspace Ra, spanned by all
eigenvectors sk{t, e) of A corresponding to eigenvalues \k(t, e) such that A*('> e) =

\a(t, e) at the given value of t.

REMARK. We note that, under Assumptions 1 and 2, dim Ra is constant on / ,
for each a, and Ua^?a = R" throughout J.
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Our next assumption concerns the relative properties of the various eigenvalue
functions A,, defined on J.

ASSUMPTION 3. For any given e > 0, and each pair a and fi, the zeros of
Re(Aa — \p) and I m ( \ a — \p) on J are finite in number and of finite order, while
either

(a) Re(Aa — A^) does not change sign on J,
or

(b) Re(Aa -Xp) = 0 while Im(Aa - \p) 5* 0 on J.

REMARK. When, for some e > 0, Assumptions 1, 2 and 3 define such an
interval J, the end-points of J may be identified as the zeros of Re(Aa — \p), for
some a and fi at which there is a sign change, or the boundaries of an interval
on which Re(\, — A )̂ vanishes identically, or points at which the multiplicity of
an eigenvalue changes, or an original end point of /. However, although we have
defined / to be closed, we envisage that the above assumptions could hold on a
semi-infinite interval (when / were infinite), with the relevant properties holding
for the given e as / —> oo.

Related to the behaviour of eigenvalue functions as given above, we will find
it useful to define some terms that will have considerable significance later in
this section.

DEFINITION 2. For each a, fi and given e > 0, we define
(i) Aa <X0 on J if and only if Re(\0 - Xa) > 0 and Re(\p - Aa) Z 0 for all

t<EJ;
(ii) Aa cz.\p on J if and only if Re(A/3 — Aa) = 0 there.

Further, we define, for the eigenvectors sk of A,
(i) sp -< s,, if and only ifsp G Ra, sq £ R0 and Aa -< A ;̂

(ii) Sp =^ sq if and only if sp G Ra and sq G Rp for some a and fi; for which

K — V

It is clear that the symbol -< defined above defines an ordering on the set of
eigenvalue functions. Note also that the symbols -< and =; have been used to
define a similar relation on the set of eigenvectors. No confusion should result
from this usage.

We may now use the relations of Definition 2 to define some vector sub-
spaces, generated by the eigenvectors, that will greatly assist our notation in
later results.
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DEFINITION 3. Corresponding to any eigenvector sk(t, e), and a given interval J,
we define, for a given e > 0, a partition of R" into two subspaces:

Rkl, spanned by sk and all s,- such that s,- -< sk, and
Rkg, its complement in R".

We also define the subspace Rk^, to be the subspace spanned by sk and all Sy such
that s; ^ st.

REMARK. In view of Definition 2, we see that, for any given k, the elements s,
of Rkl and Rkg are in one-to-one correspondence with terms exp(e~'/' XJ) of
exponential order lower, greater or equal to that of exp(e~1/' A*)-

We now return to the problem of constructing a basis for the system (1.6).
Defining the variables

S,(t, e) = e-lf%(s, e) ds (3.1)

for each / and / e J, where the lower limit can be taken as some point not
strictly interior to J, we see that the heuristics described in [5] imply that SZ
would be a suitable approximate fundamental matrix for this system, where Z is
the diagonal matrix

Z(t, e) = exp diag[{,, f2, . . . , ?„]. (3.2)

Prompted by this observation, and the methods employed in a recent paper by
Chapman and Mahony [2], we attempt to establish the existence of solutions to
(1.6) that have the form

x = SZB, (3.3)

where B(/, e) is a vector-valued function. Because both S and Z are nonsingular
for some e > 0 and all t £ J, there is a one-to-one correspondence between
functions x and B so related.

It follows from the definition of A that

eZ = AZ = ZA, (3.4)

and it is an easy calculation to verify the existence of a one-to-one correspon-
dence between solutions of (1.6) and those of

B = ZXHZB, (3.5)

where H(t, e) is the n X n matrix defined by

H{t, e) = [hik(t, e)] = -S(t, e)-lS(t, e), (3.6)

for given e > 0 and all t G J.
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The equation (3.5) is readily converted to an integral equation on J, of the
form

B = Bo + J 'z - ' / /ZB ds, (3.7)

where Bo, a constant vector (that could vary with e), and one terminal of
integration are, as yet, unspecified.

Solving this equation would generate solutions

x = SZB = SZB0 + SZJ'z~lHZB ds. (3.8)

This equation makes it clear that B occurs only through the combination

b = ZB, (3.9)

while, since all terms are premultiplied by S, we may regard b as the vector
specifying the components of the solution x relative to the basis provided by the
eigenvectors of A. Thus we will find it more convenient to work with b than B,
and to write the system (3.8) as

b = Zb0 + ZJ'zxHb ds, (3.10)

with
x = 5b, (3.11)

for an arbitrary constant vector b0. Obviously solutions to this system provide
solutions to the original system (1.6).

The vector b0 and the terminals of integration in (3.10) may be chosen in
different ways, and each such suitable choice generates a solution x of (1.6).
When the Re \ are one-signed on J for all 0 < e < e0, the simple choice
b0 = 0(1) enables us to show, by means of the contraction mapping theorem,
the existence of solutions x(t, e) of the form

x = SZbo+ 0(e), (3.12)

provided H is assumed 0(1). This result agrees with the predictions of heuristic
theory as given in [5], to the extent that boundary layers may exist at one or
both ends of / , and the solution is small in the interior. However, (3.12) is not
sufficiently precise for many purposes; and, in fact, if Re \ changes sign interior
to J for some /, the estimate is even coarser. To deal with these more general
cases, and to obtain a more useful estimate of the form of (3.12), we will need to
examine the properties of the kernel H in (3.10) more carefully, and to make a
more useful choice of the vector b0.

Regarding this last point, if we choose

bo = e,, (3.13)

the usual basis vector in R", we might expect from heuristic arguments that the
solution we would construct would look like sk(t, e)exp(f^(/, e)). With this in
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mind, we adopt the following organization of (3.10) which, with the choice
(3.12), permits us to establish the existence of a solution bk for which the
solution xk of (1.6), given by (3.11), has this behaviour, in the sense that
bk = Z{ek + o(l)}, which is a considerable improvement on estimates of the
type (3.12).

Choosing, for definiteness,

J=[to,ti], (3.14)

and making the transformation

(3.15)

for a given value of k, we may write (3.10) in terms of /3, using the choice (3.13)
for bo, as

'o j

p, = exp(f/ - Sk)[' exp(?fc - £,) £ K& when / * k and s, e Ru, (3.17)
J'o j

and

/3, = exptf, - Sk) f'
1 exp(?fc - J , )2 fyfi, when / * k and s, 6 Rkg.

J' j

It is apparent from the above that a different set of integral equations is to be
chosen for each solution of the form (3.15), that is, for each choice of ek. The
choice of the terminals of integration in the above has been motivated by an
observation of the asymptotic result that, for small values of e, and for suitable
e-dependence of eigenvectors of A, the integrals in (3.17) and (3.18) are
dominated by the values of the integrand at t. Further examination of these
equations shows that, under the simple hypothesis that the h^ are bounded, the
contraction mapping theorem is not directly applicable, because the right-hand
sides of (3.16) to (3.18) doe not define a contraction on the space Rk=. for each
k, in terms of the usual supremum norm for functions continuous on / . We are
thus prompted to make a suitable choice of the eigenvectors sk of A that gives S,
and hence H, the properties necessary for our construction to proceed. This
choice is defined in the following lemma.

LEMMA 1. Let Assumptions 1, 2 and 3 hold for a given e > 0 and some interval
J. Then, for each t e / and each a, there exists a choice of eigenvectors of A
giving the map H the property that

Ra n H{Ra) = {0}. (3.19)
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PROOF. We begin by noting that, if sk and sy are eigenvectors corresponding to
the same eigenvalue function, then the linear combination ck{t, e)sk(t, e) +
Cj(t, e)sj(t, e) is also an eigenvector corresponding to this eigenvalue, for any
scalar functions ck and c,. We exploit this property by choosing a suitably
combined set of eigenvectors sk(t, e) that will give H the desired property.

Define the n X n matrix M by

M - <Ji&g[Ma, Mfi, . . . ], (3.20)

where Ma, Mp, . . . are square submatrices that map the subspaces Ra, Rp, . . .
into themselves for given e and each ( 6 7 . Further, define the matrix Sx(t, e) by

Sx{t, e) = S(t, e)M(t, e). (3.21)

Differentiating, we obtain

Sf'S, = M-l[S-lSM + M]. (3.22)

If we define (S~lS)a to be the restriction of S^S from Ra to Ra, we will obtain
the desired results for each ( G / o n choosing

Ma + (S~lS)aMa = 0. (3.23)

This is an initial-value problem for Ma (which may be a singleton), that may be
solved over all of / by an appropriate choice of initial value. Obviously, a
nonsingular choice ensures the nonsingularity of M, and hence the validity of
the above procedure. Thus, we obtain the result as stated.

REMARKS. 1. Note that the above construction implies that we can choose the
eigenvectors arbitrarily within the subspace at the initial point, but thereafter,
within J, the eigenvectors are uniquely determined. In the subsequent parts of
this section, we will assume that the above choice of eigenvectors has been
made, and we will use the symbol S(t, e) to denote the matrix given by St(t, e) in
(3.21), while H(t, e) will denote the kernel defined by (3.6) in terms of this choice
of 5.

2. Apart from clearly delineating our choice of eigenvectors, the matrix M
defined by (3.21) is significant in that, for any given k corresponding to sk £ Ra,
the map defined by the integral operators on the right-hand sides of (3.16) to
(3.18) has the property of mapping Ra off itself. As we will see, this property is
sufficient, along with Assumption 4 below, for our contraction proof to proceed.

3. It may also be observed that this process of the selection of M, when
viewed against the background of the heuristic theory for the system (1.6),
provides the appropriate generalization of Green's interpretation of the Liouville
formula for the amplitude of waves in a slowly varying medium.
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Our last assumption describes the properties of the kernel H, a n d is motivated
by the asymptot ic results, as e -> 0, ment ioned above. However, as presented
here, we regard it as being valid for small, bu t not necessarily vanishing, values
of e.

A S S U M P T I O N 4. Let H(t, e) be defined by (3.6), with S generated by the
particular choice of eigenvectors given in Lemma 1. We then suppose that, for given
e > 0 and interval J, there exist positive constants Kn, CrsJ, f^ and Gn and
constants arsJ > 0,for which the following hold:

(i) for all r and s such that \ c^ \s,

max I Fhjyv, e)exp(± /Tjra(w, e)) dw < Kne*-, (3.24)

where

Vrs = Imtt, - Q; (3.25)
(ii) for all r and s for which Re(\ — \) ^ 0 on J,

\Rc(Xr-\)\~CrsJ\t-tnJ\^, (3.26)
for \t — tnJ\ suitably small, where tnj are the zeros o/Re(\. — \ ) on J;

(iii) for all r and s,

jjhjw, e) dw\ < Gr3. (3.27)

REMARKS. The last of the above might appear redundant in the light of the
continuity assumptions regarding H. However, it is a necessary assumption for
the situation in which / is an infinite or semi-infinite interval for the given value
of e.

In the proof and discussion for the existence theorem to follow below, it will
become apparent that Assumption 4 provides a set of conditions that are
sufficient for certain pessimistic estimates to be made, and which allow a
construction based on the contraction mapping theorem. Such estimates may be
obtained by applying the techniques to be found in Erdelyi [3], for example.

We are now in a position to state our basic existence result for this section.

THEOREM 1. Let e > 0 and J = [t0, /,] be such that Assumptions 1 to 4 hold.
Then there exist positive constants C(e), Dk{e) and /t(e) such that, provided e
satisfies the inequality

C(e)e'1 < 1, (3.28)

there exist n linearly independent solutions xk(t, e), k = 1 n, of the com-
pletely stiff systems (1.6) that have the particular form

xk(t, e) = Xk(t, e)exp(k(f, e)), (3.29)
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where

\Xk(t, e) - sk(t, e)\ < Dke> (3.30)

for all t G / , with sk the specially chosen eigenvectors of Lemma 1. Further, we
have

X4(/o, e) - sk(t0, e) G Rkg, (3.31)

and

X*(/,, e) " »,(*„ e) G * w . (3.32)

PROOF. We begin by proving that if there are n solutions of the system (1.6)
generated by (3.16) to (3.18), then these are, indeed, linearly independent. That
such solutions xk generate a basis of solutions to the system (1.6) is then
immediately obvious. Thus suppose that the solutions so obtained were not
linearly independent. Then there exists a set of constants c,, not all zero, such
that

£c,x,(/,e)=0 (3.33)

for all t G J and given e. Now let Xa be the largest eigenvalue in the ordering for
which the corresponding x, in (3.32) has a non-zero multiplier. Then the
restriction of (3.33) to Ra at t = f, yields

2 cA( ' i , e)exptt,('i> «0) = 0, (3.34)

so that c, = 0 follows from the linear independence of the s, in the subspace Ra.
This contradicts the assumed property of Xa and establishes the desired result.

We now write the equations (3.16) to (3.18) in the form

fik = ek + %k(ik, (3.35)

where %k is the linear operator defined by the integrals on the right-hand sides
of these. This may be arranged in the form

%k = 3C + %* + DC2, (3.36)

where, for convenience, we have suppressed an implied subscript k on the
right-hand side, and where the operators D(P, %l and 0<? are defined by their
ranges as follows. Let sk be an element of Ra for some a. Then 3(P is that part of
the matrix representation of %k which has range Ra. Similarly, %x has range
Rk^ ~ R

a> while DC2 is the complementary subspace of these in R". Note that
the upper index 2 is to be interpreted as a power only when applied to the
operator %k.
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By applying Assumption 4, and the methods of [3, page 26], we may readily
show that

C0(e), \\%*\\ < CM, and ||D(?|| < C2(e)eT (3.37)

and

H3C3CH <C3(e)e", IIX'^H < C3(e)e- and \\WW\\ < C3(e)e', (3.38)

where v, T and the C's are all positive constants, while || • || is the usual operator
norm defined with respect to the vector norm

||v| |-max{sup|o,(/ ,e) |) . (3.39)

Of the inequalities (3.37) and (3.38), only the latter are not immediately obvious
from (3.16) to (3.18). This can be proved in the following way. All entries in the
matrix representation of %1 are of the form

[ ,, (3.40)
J'o

so that all entries in 3C1 SC1, for instance, take the form

hrs exp(||iTjrJt)^, (3.41)[

and hur vanishes for those u and r for which -q^ = i\rk. This is a consequence of
our choice of M in Lemma 1, to make H map Ra off itself.

If the order of integration in (3.41) is changed, then the new inner integral is
immediately estimable by applying Assumption 4, and then the stated result
follows readily. The remaining estimates follow in a like manner.

We now note that 5{?!3C? = 0, again from the selection of M, so that we can
write (3.35) as

& = ek + %kek + Wkpk, (3.42)

where, by (3.38), and for e satisfying the condition (3.28) with C(e) and fi
appropriately chosen, 3C£ is a contractive linear operator on the space of vectors
fik(t, e) normed by (3.39). The existence of a unique solution fik(t, e) of (3.42)
may now be established by appealing to the contraction mapping theorem
[4, page 27], and a standard result [8, page 38] ensures that this solution
coincides with that of (3.35). The estimate (3.30) may be obtained by noting that

\\%kek\\ <A(e)£y (3.43)

for suitable positive constants A(e) and y.
We may now deduce the asymptotic result for e - • 0 as a corollary to the

above theorem.
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COROLLARY 1. Let Assumptions I to 4 hold uniformly with respect to e in a
neighbourhood of zero. Then the constants C(e) and Dk(e) of Theorem 1 may be
chosen independently of e for all e in a suitable neighbourhood of zero.

PROOF. The hypothesis of the corollary ensures that the ordering and various
vector spaces defined in this section remain unchanged in the limit as e —* 0,
while, for suitable small e, the constants Gn, Krs, Cnj, /i^ and a^, of Assumption
4 may be chosen independently of e. By repeating the construction of Theorem
1, we arrive at a condition like (3.28), where C(e) is bounded above indepen-
dently of e for all e in a suitable neighbourhood of zero. Thus this inequality
may be satisfied for all appropriately restricted values of e, and the constant Dk

is bounded above independently of e.

REMARKS. 1. For either case considered above, Assumption 4 would appear to
rule out cases in which A has rapidly varying terms, because of the presence of
the term S in (3.6). It is possible that the method of proof used above may be
extensible to some cases where S is large, either locally or globally on J, at the
expense of more careful estimates than those applied here.

2. When we consider limiting behaviour as e -»0, the inequality (3.24) is
guaranteed when hrs has the decomposition

hrs{t, e) = *£>(0 + £^(i) ( / ) e))

with hf® Lebesgue integrable on J, while v > 0 and h^ is uniformly bounded
there. For then, with the earlier assumptions holding as e -> 0, (3.24) is guaran-
teed by the Riemann-Lebesgue lemma, and standard asymptotic techniques (see,
for example, Erdelyi [3]) may be applied to evaluate the constants Kr3 and ju .̂

3. It is apparent that (3.28) imposes a limitation on the values of e for which
the theory works, except under the hypotheses of Corollary 1. Because we are
concerned with small but nonvanishing values of e, relations of the type of (3.28)
will be significant, and will be required in the subsequent sections. To avoid
burdening the text with explicit expressions for the constants C(e) and ;i, we will
in future state that e satisfies a relation of the type (3.28), and interpret this to
mean that appropriate constants C(e) and fi may be found for which the
relationship holds, while the relevant theory is valid.

4. Effects of change of order

It is of interest to examine the suitable approximations to the solutions
constructed in the previous section in a simple case, to gain a more detailed
understanding of the results established. It suffices to consider a simple second
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order system to illustrate these. We note that it is possible to choose the value of
S at a given point in an arbitrary fashion, and to define a variety of local
continuations for each independently chosen value of S. Further, matrices A
may be generated by associating an independent choice of A and applying (2.1).
Thus, we may consider H and A to be chosen with much freedom, at least in
regard to whether they satisfy a local condition. The corresponding assumption
for analytic matrices in unclear in its limitations.

Consider the simple 2 x 2 system which has been reduced, by means of the
transformations of Section 3, to

and let us assume that eigenvalues A, and A2 are real and

A, > A2 on (0, 1),

A, < A2 on (1, 2), J (4"2)

and

for a suitable value of e, with fi independent of e.
The arguments given above indicate that we may totally disregard the matrix

S, and consider only the description of the solution basis to be specified in terms
of the b's.

The solution we have constructed on (0, 1) by the methods of Section 3 to
have exp(f,) behaviour may be denoted by

where

c, = l + / ' A 1 2 c 2 (4.4)
•'o

and

('%xcx, (4.5)

with f = j;, - f2.
These equations may, by the theory of the previous section, be solved by

direct iteration, for initial iterate c\0) = 1 and cf* = 0. The first iterate then
becomes

<f> = 1 and ci" = «-* ('e%x, (4.6)
•'n
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and simple application of the asymptotic estimates to be found, for example, in
Erdelyi [3, page 37], assuming regularity properties of the h's gives

ci'> = K,0, e) + O(e3/2), (4.7)

uniformly on [0, 1], where F,(/, e) is defined by

U2 1(<, e) / (A, - X2) on [0, 1 - e"2J?]

and T is a local variable, defined by

t = 1 - e'/2T, (4.9)

while R is a given positive constant, so that 0 < T < R.
For further iterates, we obtain, from (4.4),

c\2) = 1 + O{e log e) (4.10)

uniformly on [0, 1], while

c<p = c2» and c2
3) = c2

2> + 0(e3 / 2 log e), (4.11)

again, uniformly on [0, 1].
On noting error estimates for this iterative process as given in [4, page 27], for

example, we may write explicitly, for the solution c, and c2,

c, = 1 + O(e log e) (4.12)

and

0 + O(e3/2log£), (4.13)

where now order symbols are uniform on [0, 1].
We may now note, for future reference, the particular result that

c2(l,e)

1 + O(e log e)
l,c) + 0(e3/2loge)

(4.14)

Similarly, one can obtain information about the second solution that takes the
form

(4.15)

and it can be shown that

V2(t, e) + O(e3/2 log e)
1 + O(e log e)

(4.16)
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where V2(t, e) is defined by

-ehi2(t, e)/ (A, - \2) on [0, 1 - el/2R]

Similar analysis may be applied to the second interval [1, 2] to obtain
solutions behaving like c exp(f,) and d exp^j) and which have the end-values

and

[ ° ] (4.19)
respectively, where Vx is defined in an analogous fashion to K, and V2 and is
such that F,(l, e) ~ (constant)el/2 as e -> 0.

The end-values acquired by the first solution at t = 1 thus initiate a solution
in the second interval that is of the form

+ [ K,(l, e) + O(e3/2 log e)]d(t, e)exp(f2)exp(ri(l> e) - f2(l, e)), (4.20)

and thus it is dominated on the second interval by the solution d(f, e)exp(f2),
even when A21(l, e) vanishes.

On the first interval, [0, 1], any solution dominated by an exp(f,) type
behaviour must be of the form

c(/, e)exp(f,) + Ad(t, e)exp({2), (4.21)

where A is a suitable constant value. If we attempt to adjust A to eliminate the
unwanted term on the second interval, we require that A exp(J2(l, e)) shall be
able to cancel a non-zero e1/2 exp(f ,(1, e)) term, which implies that

^ - e ' ^ e x p t t . O . e ) - ^ ! , * ) ) a s e ^ O , (4.22)

and the second term of (4.21) dominates on almost all of the first interval. Thus
we must conclude that there is no solution on the first interval which can match
with a solution having the required properties on the second interval.

Such a result is in no way contradictory to known results for analytic systems.
However, it is already indicated by the above example that similar difficulties
may arise whenever a change of order occurs, even if eigenvalues do not become
equal, but differ only in their imaginary parts.

An analysis of such a case involves, in the above solution, and to the accuracy
of the above calculations, the estimation of integrals

c2=e-i['e%l (4.23)
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and

c24 = -e-< f V/» 2 I . (4.24)

For analytic functions h2i, these differences are exponentially small, and the
problem cannot be tackled directly by considerations of this kind. Thus there is
no demonstrated conflict with previous analytic results.

On the other hand, suppose we had been dealing with a function defined by a
numerical calculation, which was based on an integration formula using piece-
wise analytic functions, but which involved finite step discontinuities in the
values of the derivatives of S. This corresponds to h having step discontinuities.
Then it is apparent that c2 and c2 will differ sufficiently to lead to the difficulty
discussed above. Note that having better regularity properties for S to some
finite order of derivative serves to reduce the algebraic order of the discrepancy,
but this becomes useless in comparison with exponentially larger terms.

We are thus led to expect that significantly different results pertain for
non-analytic systems in contrast to the results previously obtained for analytic
systems. We shall discuss the significance of this difference for the numerical
solution to stiff systems later in this sequence of papers. For the moment we turn
our attention to elucidating the nature of optimal bases for linear systems when
changes in the ordering of the eigenvectors occur.

5. Continuation of solutions

The results of Section 4 serve to motivate the procedure we adopt for
attempting to construct a single useful basis for the solution space of (1.6) on
two abutting intervals / and / , for each of which the assumptions and results of
Section 3 apply.

For definiteness, we will represent J and J by [t0, /,] and [/„ fj . respectively.
To cope with cases where there is a multiple change of ordering of eigenvalues at
/,, we find it convenient to define some terms as follows.

DEFINITION 4. Let J = [/0, tx\ and J = [f,, t2] be two abutting subintervals of I,

for which we may, for each k and a given e > 0, define the subspaces Rk~, Rkl, Rkg

and Rk~, Rk/, Rkg on J and J respectively, where these quantities are as defined in
Definition 3 for J and J, respectively.

Then, for each k, we define the crossing set at tx, Qk, to be the set of integers k
such that

sk G Ru - (Ru U Rk^). (5.1)
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Then elements of Qk are in one-to-one correspondence with those eigenvec-
tors which, as / passes through tv go from below sk in the ordering to above sk.

We may now state our first main result for this section.

THEOREM 2. Let e > 0 be given, and let J = [t0, /,] and J = [/,, t2] be intervals
for which J u J C I for the given e, and for each of which Assumptions 1 to 4 and
the hypotheses of Theorem 1 hold. Then, for such e, there exists a basis {xk(/, e)}
for the solution space of (1.6) over J u J = Uo> h] tn°t has the form

X*(t, e)exp(^(/, e)) for t e / ,

X?(/, e)exp(^(r, e))

+ 2 <W('>

(5-2)

Here {X*(/, e)exp(fr)} and {X*(/1e)exp(Q} are sets of n linearly independent
solutions of (1.6) defined on J and / , respectively, and satisfying the conditions

\X*(t, e) - sr(t, e)| < Mr(e)e* onJ, (5.3)

and

|Xr»(/, e) - sr(t, e)| < Mr(e)e'^ on / , (5.4)

for positive functions Mr(e) and A/r(e) and constants /^ and JL̂ .. Further, we have

Xr*(/o, e) - sr('o, «) G ** (5.5)

and

X;(/2, e) - sr('2. £) G *w U R^. (5.6)

The rfkr(e) are constants satisfying a condition

K ( )l < ^(£)e"- , (5.7)

for positive constants Dkr(e) and vkr.

PROOF. By Theorem 1, there exist linearly independent sets of solutions of
(1.6), {Xk(t, e)exp(^)} and {XA(/, e)exp(ft)} on J and/ , satisfying conditions of
the form (3.30) as well as end conditions of the form (3.31) and (3.32) on their
respective intervals.

The linear independence of these sets, together with their properties (3.3),
allow us to deduce the existence of constants Ckr such that

**('.> e) - ** ( '„ 0 = 2 CkrXr(tu e) + 2 Xr(/,, e), (5.8)
r£o tea

https://doi.org/10.1017/S0334270000000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000047


40 j . j . Mahony and J. J. Shepherd [24 ]

where

ICUOI < Qkr(e)e^ (5.9)

for appropriate positive constants Qkr and 8kr, and where a and a is a partition-
ing of the integers {1, . . . , / ? } . We ensure that e, and hence the left side of (5.8),
is sufficiently small by imposing a condition like (3.28), which may be absorbed
into the hypotheses of Theorem 2.

From (4.8), we obtain

X*('i, «0 " 2 CMh, «0 = X4(/,, e) + 2 QrXf(/,, e), (5.10)

which is a condition that solutions J and / , having these end-values, should
match at /,. The solution on the appropriate interval may be obtained by
continuation of these end-values into that interval. Thus we will obtain a
solution valid over/ u / t ha t is continuous at tx.

Continuing the left-hand side of (5.10) into / , we obtain

Xk(t, e)exp(£fc(*, e)) - 2 QA( '> e)exp(ffc(/, eflexpfe-1 f'(Kr - Xk)l (5.11)
/•So L •'/i J

while the continuation of the right-hand side into J is

Xk(t, e)exp(£fc(/, e)) + 2 QA('> e)«p(ft(/, e^xpfe"1 f'(X, - \ ) 1 . (5.12)

So far, we have left the choice of a and d arbitrary. We now choose a to be
the set of integers r such that

sr e /?*g, (5.13)

with d its complement, namely the set r such that

s, G *«. (5.14)

Two distinct cases now arise, namely, whether or not Qk is empty. When, for
selected k, Qk is empty, we have the condition

Rkl C Rkl u Rkae, (5.15)

so that the exponential factors in the expressions (5.11) and (5.12), namely

exp̂ e"1 J\\ - Xk)j and exp̂ e"1 f'(\k - \fj

are uniformly bounded by unity on their respective intervals of application.
Because we have ensured that the Ckr are suitably small, the additional terms
may be absorbed by defining

Xr* = X, + 2 CkrXr cxp(e-if'\\k - \)\ (5.16)
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and

X* = Xk + 2 CkrXr exp(e-'/ '(\ - Xk)\ (5.17)
red V J'i I

The results (5.3) and (5.4) are immediate consequences of these definitions,
since, when Qk is empty, no constants dkr are involved. Note that, in this case,
there exists a solution of the type described in Theorem 1, that is, of the form

(s* + w*}exP(f*) m b° t n J a n d J- _ _
When Qk is not empty, there are elements of Rkl that do not lie in Rkl U Rk~,

so that there is no continuation that has the specific form of (5.12) which leads
to uniformly bounded exponential functions. In this case, we rearrange (5.12) in
the form

Xk expaj - f 2 + 2 I C*Xr exp(^)exp[e-1/'(Xr - Xk)l (5.18)

If we were to define

s-ek

and choose dkr = Ckr, we would have results substantially in the form as stated
in the theorem. However, for any r that was an element of 6^ for some k, we
would have both Xr and X* involved in describing the solution set on / . Thus
more than n solutions would be involved, and they would not be linearly
independent.

We therefore proceed as follows. Arrange all those Xk for which the Qk are not
empty, into sets Ss such that any two \ and Xk are in the set if and only if
\(f,, e) = At(/,, e) for the given value of e. It follows that, for any given k, the
set of eigenvalues corresponding to &k is contained in the particular set Ss

containing Xk. Thus we can arrange those solutions with non-empty &k into
distinct sets Â , where elements are in one-to-one correspondence with those of
the sets 5,. Within each of these sets, there may be a number of eigenvalue
functions involved and, of these, there will be one which is largest on J. For any
j such that A, is equal under the ordering to this eigenvalue function, the
previous proof applies, and there is an X? defined as in equation (5.17).
Consider now the next largest eigenvalue function. We now define the set
{X^(/, e)} by replacing all Xy by XJ, whenever Xj is equivalent to the largest
eigenvalue function in the corresponding set 8S. All others are as before. It
follows from the constructive procedure described above that we may find
constants Ckr, for all Xk equivalent to the second largest eigenfunction, such that

X*Oi> e) - 2 CjXr{tv e) - 2 C j ^ C , e) - Xt(/,, e) + 2 ^Xr(/,, e).
o-ek ek o
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This equation can be continued into the respective subintervals and the results
of the theorem will be established as before for all such solutions. It is obvious
that any set Ss can be exhausted by applying the above algorithm, after
successively replacing Xr by X*. The linear independence of the n solutions
follow from Abel's identity, and the fact that the matrices formed with Xr(f,, e)
and X*(/,, e) are obtainable from each other by multiplication by a suitable
matrix of the form (/ + small terms).

COROLLARY 2. Under the conditions of Theorem 2, the basis {xk(t, e)} may also
take the form

xk(t, e) = •

; ( / , e)exp Sk(t, e)

X;(/,e)exp £,(/, e) for t G / , (5.19)

where the vectors X'r(t, e) and X'r(t, e) and the scalars fkr{
£) satisfy conditions

analogous to those satisfied by X*(/, e), X*(f, e) and dkr(e), respectively.

PROOF. The proof proceeds exactly as that for Theorem 2, but this time we
choose a to be the set of integers r such that

sr e Rkl U Rk^, (5.20)

with a its complement.
Corresponding to Corollary 1 we have a similar result for Theorem 2, for the

case where e —» 0.

COROLLARY 3. Let the assumption of Theorem 2 hold uniformly with respect to e
in a neighbourhood of zero. Then the constants Mr(e), Mr(e) and D^e) of that
theorem may be chosen to be independent for e for all e in a suitable neighbourhood
of zero.

PROOF. The proof is an elementary application of the results of Corollary 1 to
the construction procedure described above.

REMARKS. Here, we see the generalization of the phenomenon noted on
Section 4, namely the occurrence of a solution that, on / , behaves like
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which continues into / in such a way it is dominated, apart from a small

neighbourhood of /,, by

' f'(\ -
when there is a change in ordering at /,.

Precisely which \ are involved in the exponential factors are determined by
the choice of the crossing set Qk corresponding to the solution considered. The
choice of a to correspond to Rkg — Rk=. leads us to define Q.k to correspond to
Ru U Rk~ — Rki U ^*~> which is a bigger set than that defined by (5.1). This
leads us to suggest the choice (5.1) to be an improvement, though it would be
premature to regard it as optimal.

Such consideration aside, we can see that, if this is a genuine effect, and not
merely a consequence of the construction technique applied, it has the most
important implications. On the first subinterval, a fundamental matrix for (1.6)
exists, having the form SZ(I + w) (where we may assert, by arguments similar
to those used in Section 4, that w is only algebraically small (that is, is
dominated by e" for some v > 0) as e -»0), in all cases except those involving
the most extreme restrictions on the hky The continuation of this into the second
interval, however, has two columns which differ, apart from a constant multi-
plier, by terms which are exponentially small in comparison with the dominant
terms in the solution.

To investigate this further, we show below, under conditions that are quite
reasonable in the light of Section 4, every fundamental matrix must exhibit such
a change when there is a genuine crossing of eigenvalue functions. However, in
general it is not true that the position is as bad as would be the case if the results
of Theorem 2 were optimal in the sense described above. We will show that the
best form of results depends on the detailed structure of the changes of order of
the eigenvalues and that, therefore, any general discussion would be of excessive
complexity. We are content, therefore, to show, under simple assumptions, the
nature of the results to be expected. The discussion provides the basis for an
algorithm to treat any specific case.

We first show that it is sometimes possible to have less change in exponential
dominance than arises from the construction of Theorem 2.

THEOREM 3. Let Xa and \p be eigenvalue functions of multiplicities ma and m^,

respectively, on J u J which satisfy \p -<\a on J and \ a •< \p on J, and let no

other eigenvalue function be equivalent in the ordering on either subinterval.

Let Dap be the ma X m^ matrix, of rank r, whose entries are the constants d^it)

of Theorem 2, where \ = \a and X,- = \p. Then there exist at least (nta — r)
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solutions xk(t, e) of (1.6) onJyj J which are of order unity at tg, and for which

xk(t,e)exp -e-'f \ J
L Jt0 J

is bounded in modulus uniformly on J u J by a term of the form B(e) not
exponentially large in e. When the hypotheses of Corollary 3 hold, B(e) may be
chosen to be independent of e in an appropriate neighbourhood of zero.

PROOF. Let g be any ma-vector in the Qtli) null space of Dafi. Then the
solution

2 &XJ «p(&(/, e)) f o r / e y

has, as its continuation into / ,

2 gkX*k exp(&) + 2 & 2 d*rV exp{W/, e) + &(/„ e) - £(/„ e)},

by Theorem 2, and the assumption on g implies that this is

/, e)).

Since the null space has dimension (ma — r), there are at least (ma — r)
linearly independent solutions of this form, obtainable in the above manner. A
suitable scaling of the X* and Xjf gives us the result as stated (or, alternatively,
we may define the $k from t0).

COROLLARY 4. The solutions of Theorem 3 cannot behave like

on the second interval J.

PROOF. Such terms as are given above are specifically excluded by our
definition of g.

REMARKS. The results of Theorem 3 demonstrate the truth of our earlier
statement regarding the optimally of the results of Theorem 2 in that such
results are not optimal in any case, as above, where mp < ma.

The estimates of Section 4 indicate that the entries in D^ are of the form
C(e)e", and hence behave algebraically as e -» 0 for e satisfying inequalities like
(3.28). Thus it will normally be possible to find independent sets of constants ga

which are of unit order or at worst algebraically small.
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It may also be noted that the above selection of linear combinations of
solutions with the same eigenvalue function is equivalent to a particular choice
of eigenvectors s,(0, e) within that space. The discussion in the proof of Lemma
1 shows that this choice of basis was quite arbitrary, and hence is available
within the present context. If, in order to remove the terms which are exponen-
tially larger on 7, it is necessary to select a basis in Ra which has dimension less
than ma for some e in a neighbourhood of zero for which all the other
hypotheses hold, one is faced with a choice between two alternatives. Either one
accepts on algebraic degeneracy on J or an exponential one on / . Which
difficulty is least unacceptable will be a matter for decision in a specific context.

Our last result for this section shows that this rank condition is, at least under
certain assumptions, optimal, in a case for which ma, m^ and r are all 1, and
which is a direct generalization of the results of Section 4.

THEOREM 4. Let \ and Xk be simple eigenvalue functions equivalent to no other
eigenvalues under the ordering on J \j J, and such that

\ < \k for t £ J,)
and _ (5.21)

\k < \ for t e J. J
Let dkiz* be the non-zero constant as determined in Theorem 2, where /i is some

positive constant such that \dki\ is bounded above and below in the sense that
d < \dki\ < D, with e satisfying a relationship of the form (3.28). Then there exists
no solution \k(t, e) of (1.6) on J u J such that

xk(t, e)exp{-$k(t, e)}

is bounded in modulus uniformly with respect to t by a term of the form T(e) that is
not exponentially large in e.

PROOF. It is sufficient to show that there do not exist solutions x(l) and x(2),

defined, with the above property, on J and / , respectively, and such that

x<'V,, e) = x<2>(/,, e) - du*> «*(&(/„ e)). (5.22)

Any solution on / may be obtained as a linear combination of the basis
solutions of Theorem 2, and we may arrange such a combination in the form

x(1)(<,«0= 2 fjx;«MSj)+ 2 jgx;exP(i)), (5.23)

where fj and fj are suitably chosen constants. Similarly, we may introduce the
representation

', e) = 2_ &X"; exp(fy) + 2_
s, e RU sy e Rkt
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We note here that there is no need to include the fk term (5.24) since it merely
serves to scale X£ exp(ffc), which is irrelevant in a linear problem. We will make
this assumption implicitly in what follows and thus setfk = 0.

The property of the Xf implied by equation (5.3) enables us to show the
exponential property required by the theorem is possible only if

fj = exp(k(/,> e) - Sj(to, e))fj on Rk,

and

I = exp(k(/,, e) - Sj(tu e))fj on Rkg,

where the constants^' are not exponentially large in e. Similarly,

gj = exp(k(f,, e) - £,(/„ e))gj on Rkl

and

g, = exp(^(;2, e) - Sj(t2, e))gj on Rkg.

If these estimates are now used in equation (5.22), these results, at / = /,, after
cancelling a factor exp(ffc(f„ e)),

/**** + S JPV + *(f) = 2 g,'X; + g'kX*k + *(g') - due>XT, (5.25)
Rkg Rk,

where $ and SP are linear operators from R" to R" which have the exponentially
small norms

||*|| = max {exp(-[&(/, e) - f/f, e)])S (5.26)

and

IÎ H = max {exp(-[f//, e) - Sk(t, e)]),'|}. (5.27)
**«

Thus we have n equation in terms of 2« unknowns, namely the constants fj
and gj, so that the problem given above is not well set in the usual sense.
However, if we define a vector v by

-g'k ioTJ = k>
dkie" f o r 7 = '.
fj torSjGRkg, (5-28)

gj fors,. eRu- {sk},

the equation (6.30) may be arranged as

5(7 + 7 > = *(gO " * C ) , (5-29)

where T is a linear operator from R " into itself, such that

\\T\\ < W(e)e> (5.30)
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for some positive W(e) and v; when e satisfies an inequality of the type (3.28),
the above equation (5.29) may be solved iteratively, with the result that any
solution v must be exponentially small in e. This leads to a contradiction to the
above definition of «,..

It should be apparent that the proof extends to the case considered in
Theorem 3, since we can utilize that fact that all components in Ra lead to
disposable pairs (Jj — gj) to cancel the (ma — r) combinations of the null space,
but no other improvement is possible. Some reflection on how the above proof
works provides the key to its extension. The only fj which arise are those for
which s, are in Rkg and the only gj are those for which s7 G Rkl U Rk~- Thus
there will be freedom of choice within the range of those elements which occur
twice. As an illustration, consider the case where, on the first subinterval,
\k -< Xj -< Ay, whereas, on the second subinterval, A, -< \f -< A*. Then the con-
struction forming the basis of Theorem 2 leads to a solution X£ exp(fA) on
[/0, t2], and Xf exp(£.) on the first interval, continuing as

X* exptf.) + dik exp{&(/, e) + ?,(/„ e) - &(/„ e)};

while Xj exp(^) on the first subinterval is continued as

Xf exp(*)) + djk exp{&(/, e) + $)(*„ e) - fk(/,, e)}

+ dJt exp{£,(', e) + ?,('i' e) - £,(/„ e)}.

It is apparent that, if djk ¥= 0, we can find a solution

x, - (dik/djk)xj exp(- {?,.(/„ e) - £,(/„ e)})

which is uniformly exp(f,) on the two subintervals. However, the order change
still introduces a change of exponential order in the solution xy.

While the generalization of the above approach leads to entirely algebraic
questions about systems for which answers may be calculated to sufficient
accuracy to permit precise estimates, there are some points which need further
consideration. In our examples, we have not considered equivalent eigenvalue
functions. If one has f, = e"'/o(^ + 'Ih)' then it becomes a matter of definition
as to whether a solution which is dominated by s, exp(J,) in J and s2 exp(f j) in /
is a satisfactory continuation. If it is, then one will have more freedom to reduce
the incidence of exponential order change. For the present we are content to
point out that any such decision ought to be based on context in application,
and not on arbitrary decision within the mathematics.

To this stage, we have considered only the continuation across one point
where the ordering varies. However, we draw attention to the fact that the
continuation process is essentially algebraic, and that it is possible to calculate
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the continuation matrices, or at least dominant approximations to them. Fur-
ther, if we start at t = 0, we can construct a basis X* exp(fA) on the first interval,
a basis X* exp(Jt) on the second, and a connecting matrix relating them. Using
Xjf exp(^) on the second interval and the original basis \ k exp(ffc) on the third,
we obtain new solutions x£* exp(fA) on the second interval, obtainable from the
originals by matrix multiplication. Thus the process is continuable conclusively
if / is the union of a finite number of intervals Jt for which the theory of Section
3 holds. The process is routine, if tedious, the most important objection being
that it may lead to excessive round-off error if computation were attempted.

It is also of interest to note that, where multiple eigenvalue functions occur,
there exists the possibility of selecting initial eigenvectors to achieve further
simplification. Thus, in the case of Theorem 3, one might treat cases where
nip > 1 by selecting those initial eigenvectors so that the continuation of a
solution of the form X£ exp(^) will take the form X£ exp(ft) + dkrX* exp(fr),
where only one X* is involved. Alternatively, one may accept some behaviour at
the first crossing to gain desirable freedom at a subsequent crossing to suppress
more troublesome behaviour. In such circumstances there seems little point in
attempting a general description of the way the fundamental matrix varies in
behaviour.

6. Discussion

The presentation of the proof in Section 3, designed to alleviate the burden of
calculation, may tend to obscure the underlying motivation for the proof itself.
Further, we believe that this motivation may be of considerable use in circum-
stances where the assumptions of this paper do not hold. Work by Doust
(private communication) on the case where the eigenvectors span a space of
dimension less than n shows that a re-interpretation of this motivation is useful.
It would appear that the basic idea is that on a subspace associated with an
eigenvalue function \ , the crudest level of variation of the solution is like
exp(f,). In the present paper, our method of generating the integral equations
(3.16) to (3.18) led essentially to order one terms which were integrated (via the
M matrix here) so that, with these terms removed, an iterative procedure could
be applied to solve these equations. Where our assumptions fail, the matrix H
may be unbounded, but Dourst has shown that a further refinement, using
dominant behaviour, may eventually lead to integral equations for which itera-
tion is possible.

We note that if A has rapidly varying entries in the neighbourhood of an
endpoint t0, our assumptions will fail there. Suppose the scale of these variations
was e'. Then the matrix H will take the form e~"H0, and the integral equation for
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the vector /3 becomes /3 = e + E"ZS'Z'1H0{T, /)/3, where T = e~"(t - t0). Now
Ho will be 0(1) only locally in a zone of extent e", and the form of the
nonvanishing (in the limit as e —» 0) contribution to /3 may possibly be deducible.
This better estimate of the form of solution may provide the basis of generating
a more useful integral equation for /3. Thus there is a possibility that the method
may be extended to matrices A having entries which are locally rapidly varying.

Even if this hope proves to be unbounded in such cases, we believe that the
results will be useful in dealing with the problem of locating boundary layers in
nonlinear systems. Thus the assumptions regarding the size of the derivatives of
S should apply to zones away from the boundary layers, where the so-called
outer solution is dominant. In such circumstances, the exponential variations
will apply almost everywhere, and so the solutions obtained here permit an
examination of the stability of an outer solution under perturbations at either
endpoint, thus offering a means of separating the treatment of nonlinear
boundary layers at either end of an interval.

To illustrate this, consider a system in which no change of order of eigenval-
ues occurs on an interval [0, T], and define

ft(r, e) = Re [\(s, e) ds.

If ju, achieves its maximum at t = 0, the corresponding solutions, as con-
structed here, are available to adjust to boundary conditions arising from a
boundary layer at t = 0. On the other hand, if the solution to the system were
forced by boundary conditions at / = T, the component corresponding to ju;

would be exponentially larger than at its 'origin', t = T. Analogous statements
apply when i\ achieves its maximum at / = T. It is of interest to note that the
sign of Re \ may change without affecting the above statements. If n, has its
maximum at an interior point, then the solution corresponding to /i, will be
exponentially larger in the interior than at either endpoint, and hence exponen-
tially larger than boundary values imposed at these points. This phenomenon
reminds one of the so-called resonance of Ackerberg and O'Malley [1], and is a
point we shall take up in greater detail in Part II. If the maximum of JU, is taken
at both 0 and T, then data at either end may contribute to determining the
solution of a boundary-value problem, and in this case, consistency may prevent
the boundary layers' being treated separately.

Where a change of order takes place, accompanied by a change of sign of the
real parts of the eigenvalues involved, the situation may be much more difficult.
Here we content ourselves with a brief discussion of one illustrative example
which indicates the nature of results to be expected. Let the (real) eigenvalue
functions be Aa of multiplicity one and Xfi of multiplicity (n — 1). Let \p be
negative on [0, 2] and Xa be less than Xfi on [0, 1] and greater on [1, 2]. Further,
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let the inequalities

J0 J] JQ

hold. Then it is possible to construct a basis for the solution space of vectors of
the form:

one solution: (sa 4- o{\))&-Ap\E~x / ^

(n — 2) solutions: (s,- + o^jexple"1 J X Ĵ,

where the vectors s, have been selected in Rp so that dia = 0, and the remaining
solution:

{s + o(l)}exp(e-} f'Xg) for 0 < t < 1
and

where the vector sy lies in Rp and is not uniquely determined. The first (n — 1)
solutions describe boundary layer behaviour with the boundary layer located at
/ = 0, while the last solution, when rescaled, describes a boundary layer at / = 2.
It is curious that the eigenvector function sa is associated with two independent
boundary layers, as is suggested by the crudest heuristic arguments concerning
the sign \a, but there is an element of Rp which is not compatible with uniformly
bounded solutions if invoked by the boundary condition at / = 0 where it
appears natural. A more detailed discussion is deferred to Part II where
boundary value problems for stiff systems will be discussed.

We further note that where the dimensions of the eigensubspaces change, our
results indicate that there may be significant changes in the solution behaviour.
However, we have already simplified matters there, by our assumptions that S is
nonsingular and that S exists. Where these fail, the behaviour is possibly much
worse. The only feasible approach to the numerical treatment of general large
order stiff systems would appear to be that, in the neighbourhood of such points,
the integration step size should be reduced locally to a size where the system
ceases to be stiff.
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