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Abstract
We study several basic problems about colouring the p-random subgraph Gp of an arbitrary graph G,
focusing primarily on the chromatic number and colouring number of Gp. In particular, we show that
there exist infinitely many k-regular graphs G for which the colouring number (i.e., degeneracy) of G1/2 is
at most k/3+ o(k) with high probability, thus disproving the natural prediction that such random graphs
must have colouring number at least k/2− o(k).
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1. Introduction
For a graph G and p ∈ (0, 1), let Gp denote the random subgraph of G obtained by randomly
including each edge of G independently with probability p. Here, we shall study some basic ques-
tions about properly colouring the vertices of Gp for fixed p ∈ (0, 1). Studying typical colouring
properties of a random subgraph of a graph with given parameters is a very natural setup in the
wide context of random graphs. We are also motivated partly by the following old question of
Erdős and Hajnal [11, 12] that remains frustratingly open: is it true that for every pair t, g ∈N,
there exists a k= k(t, g) ∈N such that any graph with chromatic number at least k contains a sub-
graph with chromatic number at least t and girth at least g? A natural step towards this question of
Erdős and Hajnal – motivated by Erdős’ randomised construction (see [3]) of graphs of large girth
and chromatic number – is to study the colouring-related properties of the random subgraph Gp
of an arbitrary graph G of large chromatic number.

Concretely, we shall focus on the two problems that we next describe. First, we study the follow-
ing ‘chromatic number problem’: for k→ ∞, given an arbitrary graph G with chromatic number
χ(G)= k, what can we say (asymptotically) about the chromatic number χ(Gp) of the random
graph Gp? Second, as a more approachable weakening of the chromatic number problem where
we restrict our attention to greedy colourings, we also study the following ‘colouring number prob-
lem’: for k→ ∞, given an arbitrary graph G with minimum degree δ(G)= k, what can we say
(again, asymptotically) about the colouring number C(Gp) of the random graph Gp? Here and
later, the colouring number C(G) of a graph G is the minimum integer k such that every subgraph
G′ of G has a vertex of degree less than k. Equivalently, the t-core of G is the maximal subgraph
of G in which all vertices have degree at least t; the colouring number is the largest k such that the
(k− 1)-core is non-empty.
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2 B. Bukh et al.

Towards the first of our two primary questions, the main problem – popularised by the first
author, but certainly natural enough to have been independently considered by other researchers–
is the following.

Problem 1.1. As k→ ∞, is it true that for any graph G with χ(G)= k, we have

E[χ(G1/2)]= �(k/ log k)?

The lower bound of k/ log k in Problem 1.1 is natural, and best possible if true; indeed, for the
complete graph G=Kk, the classical result of Bollobás [7] pinning down the chromatic number
of dense Erdős–Rényi random graphs asserts that χ(G1/2)∼ k/(2 log2 k) with high probability.

Problem 1.1 strikes us as a rather basic question; however, not much appears to be known, and
the state of the art is as follows. First, for any graph G with χ(G)= k, since G1/2 and its com-
plement (in G) have the same distribution, it follows from a simple product-colouring argument
that E[χ(G1/2)]≥ k1/2; a similar argument (using a random partition into r parts) shows that
E[χ(G1/r)]≥ k1/r for any r ∈N. The argument in [1] shows that χ(G1/2)= �(k/ log n) holds with
high probability, where n is the number of vertices of G. Finally, Mohar and Wu [16] have settled
the fractional analogue of Problem 1.1 in the affirmative. Specifically, it was proven in [16] that
if G has fractional chromatic number k, then with probability 1− ok(1) the fractional chromatic
number of the random subgraph G1/2 is at least k/8 log2 (4k).

Our primary contribution towards the chromatic number problem is an extension of the work
of Shinkar [17] studying ‘large deviations’ of χ(G1/2). Taken together, our results give bounds
for the entire lower tail of χ(G1/2); the first and the third bounds in the result below are due to
Shinkar, while our contribution here is a proof of the second bound.

Theorem 1.2. For any graph G with χ(G)= k, we have

P
(
χ(G1/2)≤ d

) ≤

⎧⎪⎨
⎪⎩
exp (− �((k1/2 − d)2/k1/2) for k1/2/2≤ d ≤ k1/2,
exp (− �(k/d)) for k1/3 ≤ d ≤ k1/2/2, and
exp (− �(k(k− d3))/d3) for d ≤ k1/3.

Towards the second of our two primary questions, we raise the following problem.

Problem 1.3. As k→ ∞, determine the largest D(k) for which we have

P
(
C(G1/2)≥D(k)

) ≥ 1/2

for all graphs G with δ(G)≥ k.

In other words, Problem 1.3 asks the following: as k→ ∞, what is the best possible lower bound
on (the probable value of) the colouring number C(G1/2) that holds for all graphs G with min-
imum degree δ(G)≥ k ? Problem 1.3 is the ‘degree-analogue’ of Problem 1.1, replacing proper
colourings with (the more tractable) proper greedy colourings, and the chromatic number with
the minimum degree. This is motivated in large part by the degree-analogue – due to Thomassen
[18] and also wide open – of the aforementioned problem of Erdős–Hajnal [11, 12]: is it true that
for every pair t, g ∈N, there exists a k= k(t, g) ∈N such that any graph with average degree at
least k contains a subgraph with average degree at least t and girth at least g ?

Let us point out that Problem 1.3 and its variants arise naturally in some other (non-
mathematical) contexts as well. First, several variants of Problem 1.3 have been studied by
biologists, sociologists and theoretical computer scientists as models of ‘cascading failures’ in net-
works; see [6, 19] and the references therein, for example. Second, we note that Problem 1.3 can
also be recast in the language of bootstrap percolation [9]. Bootstrap percolation on a graph G is
a model – originating in statistical physics – for the spread of infection on G defined as follows:
starting with an initially infected set of vertices A, infection spreads along the edges of G, where
a vertex of G gets infected if the number of its (previously) infected neighbours in G exceeds a
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specified threshold, and A is said to percolate if all the vertices of G are eventually infected. There
is by now a large body of (mathematical) work devoted to understanding the percolating sets for
various graph families (see [4, 15], for example), and Problem 1.3 may also be rephrased in this
language: given a graph G with δ(G)= k, we are looking to understand for what t = t(k) we can
guarantee that the set A of vertices of degree at most t in G1/2 percolates in bootstrap percolation
on G1/2 with the threshold ( deg (v,G1/2)− t) at each vertex v of G1/2 (or in other words, for what
t = t(k) we can guarantee that the t-core of G1/2 is non-empty).

It is clear from considering the complete graphG=Kk+1 that we have the upper boundD(k)≤
k/2+ o(k). On the other hand, if an n-vertex graph G satisfies δ(G)= k, then G has ≥ kn/2 edges,
and so Chernoff bound [3, Theorem A.1.1] implies that Pr [e(G1/2)< kn/4− √

kn/2]< e−2 <

1/2; using this and the well-known fact that any graph of average degree d contains a subgraph of
minimum degree at least d/2, it follows thatD(k)≥ k/4− o(k).

While the upper bound of D(k)≤ k/2+ o(k) seems like the natural guess for the truth, the
following result – our main contribution towards the colouring number problem, and our most
significant result here – shows that this is not the case.

Theorem 1.4. As k→ ∞, we haveD(k)≤ k/3+ o(k).

In more detail, the proof of Theorem 1.4 shows (for all k ∈N divisible by 3) that there exist
large k-regular graphs G for which the t-core of G1/2 is empty with high probability for some
t = k/3+ o(k). Our next result, stated below, serves to illustrate some of the subtleties that arise
in studying Problem 1.3.

Theorem 1.5. For every α > 0, there exists a β > 0 such that for infinitely many k ∈N, there exist
arbitrarily large k-regular graphs G for which the following holds with high probability (as k→ ∞):
any induced subgraph H of G1/2 with δ(H)≥ k/4+ αk satisfies |V(H)|/|V(G)| =O((1− β)k2 ).

In other words, Theorem 1.5 asserts (for infinitely many k ∈N) that there exist large k-regular
graphs G for which the t-core of G1/2 is just barely non-empty (i.e., is very small relative to G) for
any t = k/4+ o(k). In the light of this, it seems clear to us that improving on the easy lower bound
ofD(k)≥ k/4+ o(k) sketched above is likely to require some interesting ideas.

This paper is organised as follows. After covering some preliminaries in Section 2, we give the
proof of Theorem 1.2 in Section 3 and the proofs of Theorem 1.4 and Theorem 1.5 in Section 4.
Finally, we conclude in Section 5 with a discussion of open problems and directions for further
work.

2. Preliminaries
We start by establishing some notation and collecting together some tools that we will rely on in
the sequel.

Our graph theoretic notation is for the most part standard; we refer the reader to [8] for
terms not defined here. That said, we remind the reader of a few standard notions that come
up frequently in this paper.

First, recall that the chromatic number χ(G) of a graph G is the smallest number of colours
needed to properly colour the vertices of G, i.e., to colour the vertices in such a way that no two
adjacent vertices share the same colour.

Next, following Erdős and Hajnal [13], the colouring number C(G) of a graph G is the least
number c for which there exists an ordering of the vertices ofG in which each vertex has fewer than
c neighbours preceding it in the ordering; this parameter – also (essentially) called the degeneracy
or the core number – is the number of colours used by the natural greedy algorithm for properly
colouring the vertices of G.

We shall also need two notions of graph boundaries: for a subset S⊂V(G) of the vertices of
a graph G, its vertex boundary ∂S consists of those vertices of G not in S that are adjacent to at
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least one vertex in S, and its edge boundary ∇S consists of those edges of G with one end in S
and the other in S. Overloading this notation slightly, for a subset S⊂V(G) of the vertices of a
directed graph G, its vertex boundary ∂S consists of those out-neighbours of S that are not in S,
and similarly, its edge boundary ∇S consists of those edges of G directed from S to S.

We need a standard bound for the number of connected components in a graph of given
maximum degree; it can be found, e.g., in [5] (see Lemma 2 there), along with a proof.

Lemma 2.1. For a graph G of maximum degree �, the number of connected, t-edge subgraphs of G
containing a given vertex is less than (e�)t .

Another fairly standard fact we utilise is a quantitative connection between eigenvalues and
edge distribution in regular graphs. For a graph G its eigenvalues are those of its adjacency matrix
A(G). The following bound is due to Alon and Milman [2].

Lemma 2.2. Let G be a d-regular graph on n vertices with the second largest eigenvalue λ. Then for
every subset S⊂V, one has

|∇S| ≥ (d − λ)|S|(n− |S|)
n

.

3. Chromatic number
First, following [1], we record (in slightly greater generality) a proof of the fact that for any
n-vertex graphGwithχ(G)= k, we haveχ(G1/2)= �(k/ log n) with high probability (as n→ ∞).

Proposition 3.1. For any n-vertex graph G with χ(G)= k and any 0< p< 1, we have

χ(Gp)≥ pk
2 log n

with high probability (as n→ ∞).

Proof. The probability that there exists a set V ′ ⊂V(G) for which

(a) the induced subgraph G[V ′] has minimum degree at least 2 log n/p, and
(b) V ′ becomes an independent set in Gp,

is at most
n∑

m=2 log n/p

(
n
m

)
(1− p)(m log n)/p ≤

n∑
m=2 log n/p

(
en
m

· 1
n

)m
= o(1).

As every t-chromatic graph contains a subgraph ofminimumdegree at least t − 1 (a colour-critical
subgraph), the above implies that with high probability, any independent set V ′ in Gp induces a
subgraph ofGp of chromatic number at most (2 log n)/p inG. AsGp can be partitioned into χ(Gp)
independent sets (by definition), the result follows. �

We now prove Theorem 1.2.

Proof of Theorem 1.2. As mentioned, our contribution is the second bound in the statement of
the theorem. Let G= (V , E) be a graph with χ(G)= k. Our goal is to estimate from above the
probability P(χ(G1/2)≤ d).

Fix an optimal colouring V =V1 ∪ . . . ∪Vk of G. Equipartition [k]= I1 ∪ . . . ∪ Is with |Ij| ≥
2d2 and s= 
(k/d2). Set Gj =G[∪i∈Ij Vi] for 1≤ j≤ s, and note that χ(Gj)= |Ij| ≥ 2d2. If
χ(G1/2)≤ d, then the chromatic numbers of all the random subgraphs (Gj)1/2 are at most d.
Observe crucially that these events are independent as the graphs Gj do not share any vertices,
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and thus edges. Hence

P(χ(G1/2)≤ d)≤
s∏

i=1
P(χ((Gi)1/2)≤ d) .

Recall that χ(Gj)≥ 2d2. Hence, as explained in the introduction, E[χ((Gj)1/2)]≥
√
2d. Using

the first bound in the statement of the theorem (proved using Doob martingales as outlined by
Shinkar [17]), we get P(χ((Gi)1/2)≤ d)≤ e−cd for some absolute constant c> 0. It follows that

P(χ(G1/2)≤ d)≤
(
e−cd

)s = exp (− 
(k/d)) ,

as required. �
A twist on the above idea also provides a new and fairly simple proof of the third statement

of Theorem 1.2 for the range d =O(k1/4). Here is an outline. For G with an optimal colouring
V =V1 ∪ . . . ∪Vk, fix a collection of subsets I1, . . . , Is ⊂ [k] with |Ij| ≥ 2d2 and s= 
(k2/d4) so
that |Ii ∩ Ij| ≤ 1 for every 1≤ i �= j≤ s; the existence of such a collection is a fairly standard fact in
design theory. LetGj =G[∪i∈Ij Vi], 1≤ j≤ s. The eventsAj = {χ((Gj)1/2)≤ d} are again indepen-
dent, and each happens with probability at most e−cd. It follows that P(χ(G1/2)≤ d)≤ (e−cd)s =
exp (− 
(k2/d3)).

4. Colouring number
Our proofs of Theorem 1.4 and Theorem 1.5 rely on the existence of good expander graphs. Here,
we make use of specific graphs that happen to be Ramanujan, but any family of sufficiently strong
expanders should suffice.

We start with the proof of Theorem 1.4.

Proof of Theorem 1.4. Since D(k) is a non-decreasing function of k, it suffices to only consider
k that are divisible by 3. Given any small 0< α < 1/100 and k ∈N with 3 | k, we shall construct a
k-regular graph G (infinitely many, in fact) with the property that, for t = k/3+ αk, the t-core of
G1/2 is empty with probability 1− o(1) as k→ ∞; clearly, this suffices to prove the result.

We need the following well-known fact: there are positive constants c′, c′′ such that for infinitely
many n there is a 3-regular graphH on n vertices without cycles shorter than c′ log n, and with all
eigenvalues λi but the first one λ1 = 3 satisfying λi ≤ 3− c′′. See [10], say, for a proof of this fact.

Choose H as above, and let G be a (k/3)-blow-up of H, i.e., G is obtained from H by replacing
each vertex of H by an independent set of size k/3 – we call these sets (and interchangeably, the
vertices of H) super-vertices – and by replacing each edge of H by a complete bipartite graph in G
between the corresponding super-vertices.

In order to help the reader to grasp our argument, let us state that it implements and anal-
yses the following bootstrap percolation-type process on H. First, we form a random subset R
of protected edges of H, where an edge e ∈ E(H) is declared protected independently and with
probability p= exp{−
(k)}; protected edges correspond to complete bipartite graphs between
the super-vertices of H in which in the random subgraph G1/2 there is a vertex of degree at least
k/6+ αk/2; clearly the events corresponding to the edges of H becoming protected are indepen-
dent for different edges of H, and happen each with probability exponentially small in k. Then
a random vertex r of H is chosen; in the argument this will be a super-vertex of H all of whose
incident edges get erased in the first round of deletions. Now, consider the following propagation
process. We start with V0 = {r}, and at each step update V0 by adding to it all the vertices of H
outside of V0 that have at least two neighbours in V0, or alternatively have at least one neighbour
inV0 and are not incident to any protected edge from R. We will prove that ifH is a good expander
with logarithmic girth, then typically, the above propagation process ends with V0 consuming all
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the vertices ofH; this corresponds to the random subgraphG1/2 having an empty (k/3+ αk)-core,
as desired.

We say that a vertex of G survives or lives if it is present in the t-core of G1/2, and that it dies
otherwise; similarly, we say that a super-vertex ofH dies if none of its constituent vertices survive,
and that it lives or survives otherwise.

We shall, for technical reasons, construct G1/2 by deleting the edges of G in two rounds: in the
first round, each edge of G is independently sampled with probability α/3, in the second round,
each edge of G is independently sampled with probability (1/2− α/3)/(1− α/3)≥ 1/2− α/2,
and finally, all the sampled edges are deleted to form G1/2.

Since n≥ (α/3)−k3 , there is, with high probability over the random deletions in the first round,
some super-vertex for which all the edges incident to it in G are deleted in the first round.
Therefore, let us condition on the event that all the edges incident to some super-vertex are deleted
in the first round; let r be any such super-vertex. Clearly, such an r dies. Let Tr be the connected set
of dead super-vertices containing r; we claim that |Tr| = n with high probability over the random
deletions in the second round. Since the two rounds of deletions are independent, this claim clearly
implies that the t-core of G1/2 is empty with high probability.

The rest of the proof is devoted to the proof of the claim above, namely that for any fixed super-
vertex r, conditional on r dying after the first round of deletions, the second round of deletions
guarantee that |Tr| = n with high probability. In what follows, we fix an arbitrary super-vertex
r, abbreviate Tr by T, and write Pr for the probability over the random deletions in the second
round, conditioned on r dying in the first round.

We now need slightly different arguments based on how large m= |T| might be. Before we
turn to this, we observe that

(1) if m< n, then since H is connected, the vertex boundary ∂T of T in H is both non-empty
and necessarily contained in the set of surviving super-vertices, and

(2) for each surviving super-vertex v ∈ ∂T, there is at least one vertex v∗ ∈V(G) contained in
v that survives.

First, we handle the case where 1≤m< 99n/100 by a union bound over the potential choices
of T. Our task then is to bound, for all choices of T0 with |T0| =m, the probability Pr(T = T0).

Consider any connected set T0 of m super-vertices containing r. Due to our choice of H,
Lemma 2.2, and since |T0| =m< 99n/100, we know that |∂T0| > c1m (for some universal c1 > 0).
Let v1, v2, . . . , v� be a maximal independent set of surviving super-vertices in H[∂T0], and note
that since each vertex in H[∂T0] has degree at most 2, we must have � ≥ |∂T0|/3≥ c1m/3. Next,
note that if T = T0, then there must exist vertices v∗

1 ∈ v1, v∗
2 ∈ v2, . . . , v∗

� ∈ v� of G that also
survive.

For any such choice of vertices v∗
1, v

∗
2, . . . , v

∗
� , we shall now estimate the probability, over the

second round of deletions, that these vertices survive. By virtue of how G is constructed from H,
it is clear that v∗

i is not adjacent to any of the vertices v∗
1, v

∗
2, . . . , v

∗
i−1 for all 1≤ i≤ �. This allows

us to bound

Pr
(
v∗
1, . . . , v

∗
� survive | T0 dies

) ≤
�∏

i=1
Pr

⎛
⎝ at least k/3+ αk edges from v∗

i

to T0 survive the second round

⎞
⎠

≤
�∏

i=1
P

(
Binom (2k/3, 1/2+ α/2)≥ k/3+ αk

)

≤ (1+ c2)−k�, (1)

where c2 > 0 is a constant depending on α alone.
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Using the fact that � ≥ c1m/3, a union bound over all potential choices of v∗
1, v

∗
2, . . . , v

∗
� – of

which there are at most (k/3)2m since |∂T0| ≤ 2|T0| = 2m – yields the estimate

Pr (T = T0) ≤ (k/3)2m(1+ c2)−c1km/3.

Finally, the number of connected sets T0 of size m that contain the fixed root r is, by Lemma 2.1,
at most (3e)m. Thus, it follows again from the union bound that

Pr (1≤ |T| < 99n/100) ≤
99n/100∑
m=1

(
ek2/3

)m
(1+ c2)−c1km/3 = o(1), (2)

with the last asymptotic estimate holding in the limit of k→ ∞.
Next, we deal with the possibility that 99n/100≤m< n. In this case, note that (by the definition

of T), every super-vertex v ∈ T sends at most one edge to T, and hence has at least two neighbours
in T. Let S be a connected component in H[T] and put s= |S|; since S has minimum degree 2,
it contains a cycle, and since H has girth at least c′ log n (for some universal c′ > 0), this implies
that 0.01n≥ s= |S| ≥ c′ log n. Observe that since S is a connected component of H[T], it must be
the case that ∂S⊂ T. As |∇S| ≥ c′′s for an absolute constant c3 > 0, again due to our choice of H
and Lemma 2.2. Since |S| = s≤ 0.01n, and since each super-vertex of S has at most one neighbour
outside S, we conclude that at least c′′s super-vertices in S have a neighbour in T, so |∂T ∩ S| ≥ c′′s.
As before, we may find a set I ⊂ ∂T ∩ S of c′′s/3 super-vertices that are independent in H[∂T]. As
we argued for (1), the probability of the super-vertices in I all surviving conditional on T dying is
at most

(
(k/3)(1+ c2)−k

)c′′s/3
,

where c2 > 0 is, exactly as before, a constant depending on α alone. Then, again invoking
Lemma 2.1, by a union bound over the choice of a connected S inH of size s, and I ⊂ S (which can
be chosen in at most 2s ways), we get

Pr (99n/100< |T| < n) ≤
n/100∑

s=c′ log n
n(3e)s2s

(
(k/3)(1+ c2)−k

)c′′s/3 = o(1), (3)

with the last asymptotic estimate holding in the limit of k→ ∞. The desired claim, namely that
Pr(|T| < n)= o(1), follows from (2) and (3), and the proof is complete. �

The bottleneck in the proof of Theorem 1.4 that we just saw comes from the tension between
graph expansion and the impact of having dead neighbours. Specifically, instead of starting with
3-regular graphs and looking at the (k/3+ αk)-core, if we started with �-regular graphs and
looked at the t-core, then having a dead super-neighbour would be a serious mortality risk only if
t > 1

2 (1− 1/�)k. Improving the argument would require using 2-regular expanders, which clearly
do not exist.

To prove Theorem 1.5 we turn to directed expander graphs instead. There do exist directed
expander graphs all whose in-degrees are equal to 2. A downside to this approach is that the
gadgets we now use to form the super-vertices are more complex than mere independent sets; see
Figure 1. Consequently, these gadgets contain high-density subgraphs which have a non-neglible
chance of surviving in the last phase of the deletion process when 99n/100≤m< n; this explains
why a tiny number of vertices survive in Theorem 1.5.

We call a directed graphd-regular if the in-degree and out-degree of each vertex are d. The
following lemma follows from a standard probabilistic construction.
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Lemma 4.1. For all sufficiently large n, there exist 2-regular directed graphs H on n vertices that, for
every non-trivial subset S⊂V(H) of vertices, satisfy

|∂S| ≥ c3 min ( |S| , n− |S| ),
where c3 > 0 is a universal constant.

Proof. A uniformly random 2-regular directed graph on n vertices has this property with high
probability as n→ ∞. A proof of this fact is, at this point, a routine argument using the config-
uration model; see [14], for example, for a similar argument in the context of undirected graphs
(that extends to the directed case as well). �
Proof of Theorem 1.5. Given any small 0< α < 1/16, fix an integer 2/α ≤ s≤ 4/α, and let k be
any large positive integer that is divisible by 2s. We shall construct, for infinitely many n ∈N, a
k-regular graph G on nk(s+ 3)(1/2− 1/2s) vertices with the property that, for

t = k/4+ 2k/s,

the t-core of G1/2 has density at most (1− δ)k2 with probability 1− o(1) as k→ ∞, where δ > 0
is a constant depending on α alone; clearly, this suffices to prove the result.

Let H be a 2-regular directed expander on n≥ (α/6)−k3 vertices as promised by Lemma 4.1.
To describe the blow-up process we use to construct G from H, we need to be able to distinguish
the in-edges at each vertex of H; to that end, two-colour the edges of H (with colours red and
blue, say) so that the two in-edges at each vertex are coloured differently. We then build G fromH
according to the procedure illustrated in (1) as follows; it is routine to verify that this construction
indeed produces a k-regular graph.

(1) Replace each vertex v of H by a disjoint union of s+ 3 independent sets of size k/2− k/2s
each; denote these independent sets by I1(v), . . . , Is+3(v).

(2) For each vertex v of H, place a complete bipartite graph between the sets Ij(v) and Ij+1(v)
for each 1≤ j≤ s+ 2.

(3) For every red directed edge u→ v in H and each 2≤ j≤ s+ 2, place an arbitrary (k/2s)-
regular bipartite graph between the sets Ij(u) and I1(v).

(4) For every blue directed edge u→ v in H and each 2≤ j≤ s+ 2, place an arbitrary (k/2s)-
regular bipartite graph between the sets Ij(u) and Is+3(v).

To orient the reader, let us say that what follows is an analysis of the following bootstrap
percolation-type process on H. We form a random subset R of the vertices (namely, those termed
‘resilient’ in the sequel) by placing every vertex v ∈V(H) into R independently with probability
exp

(−
(k2)
)
. Then, a random initial vertex r ∈V(H) is chosen, and at this point, we consider the

following propagation process. We start with V0 = {r}, and at each step, we update V0 by adding
to it every out-neighbour u of V0 that satisfies u /∈ R. The goal is to prove that typically V0 grows
to contain all but an exponentially small (in k2) proportion of the vertices of H.

As in the proof of Theorem 1.4, we delete edges of G in two rounds: we sample the edges
in the two rounds independently with probabilities 1/3s≥ α/6 and (1/2− 1/3s)/(1− 1/3s)≥
1/2− 1/2s respectively, and then delete all the sampled edges. With the same notions of ver-
tices and super-vertices surviving and dying as in the proof of Theorem 1.4, we assume that some
super-vertex – we write r for such a super-vertex – dies in the first round with high probability;
this is justified since n≥ (α/6)−k3 is large enough to ensure this. We then write Pr to denote the
probability over the random deletions in the second round, conditioned on r dying in the first
round.
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Figure 1. From H to G: thick edges are complete bipartite graphs of degree k/2− k/2s, and thin edges are bipartite graphs
of degree k/2s.

Note that the s+ 3 independent sets inside a super-vertex form a path; call a pair of adjacent
independent sets Ij(v) and Ij+1(v) inside some super-vertex v resilient if either the set

{v∗ ∈ Ij(v) : at least k/4 edges from v∗ to Ij+1(v) survive the second round}
or the set

{v∗ ∈ Ij+1(v) : at least k/4 edges from v∗ to Ij(v) survive the second round}
has size at least k/s.

Call a super-vertex v nearly dead if each of the sets Ij(v) for 2≤ j≤ s+ 2 contains fewer than k/s
surviving vertices. Note that each dead super-vertex is also nearly dead, and that if v is nearly dead,
then the vertices in the sets I3(v), I4(v), . . . , Is+1(v) all die since each vertex therein is adjacent to
fewer than

k/s+ k/s+ k/2s+ k/2s< k/4

surviving vertices (with room to spare).
Writing T for the set of all nearly dead super-vertices that can be reached along a directed path

starting at r in H, we observe the following.

Claim 4.2. Each v ∈ ∂T contains a resilient pair. �
Proof. Let u ∈ T be a nearly dead in-neighbour of v, and consider the directed edge from u to v;
without loss of generality, suppose that this edge is coloured red. Let 1≤ � ≤ s+ 3 be the smallest
index for which I�(v) contains at least k/s surviving vertices; by the definition of v not being nearly
dead, such an � exists and satisfies � ≤ s+ 2.

Suppose for the sake of contradiction that the sets I�(v) and I�+1(v) do not form a resilient pair.
Then I�(v) contains a surviving vertex v∗ incident to fewer than k/4 edges into I�+1(v) that survive
the second round of deletions; such a vertex v∗ then has to be incident tomore than t − k/4= 2k/s
surviving vertices outside I�+1(v). We cannot have � = 1 because the sets I3(u), I4(v), . . . , Is+1(u)
are all dead, and the sets I2(u) and Is+2(u) contain fewer than k/s surviving vertices each, leav-
ing v∗ with fewer than k/s+ k/s= 2k/s surviving neighbours outside I�+1(v). We cannot have
2≤ � ≤ s+ 2 either because such a v∗ is adjacent to at most k/2s vertices inside each of the two
out-neighbours of v, and fewer than k/s vertices in I�−1(v) since this set contains fewer than k/s
surviving vertices (by the minimality of �), leaving v∗ with fewer than k/2s+ k/2s+ k/s= 2k/s
surviving neighbours outside I�+1(v). Hence the sets I�(v) and I�+1(v) form a resilient pair, as
desired. �

Call a super-vertex resilient if it contains a resilient pair, and let R be the set of resilient super-
vertices. Since resilience of a super-vertex depends only on the edges of G inside the super-vertex,
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events of the form {v ∈ R} are mutually independent for different super-vertices v. It is also clear
that for each super-vertex v, we have

Pr(v ∈ R)≤ (s+ 2)
(
k/2− k/2s

k/s

)
P( Binom (k/2− k/2s, 1/2+ 1/2s)≥ k/4)k/s

≤ (1+ c4)−k2

for some constant c4 > 0 that depends on s (and thus α) alone.
This gives us a way to estimate the size of T: if |T0| ≤ 99n/100, then

Pr(T = T0)≤
(
(1+ c4)−k2

)|∂T0| ≤ (1+ c4)−c3|T0|k2/100,

from which it follows (as in the proof of Theorem 1.4) that

Pr( |T| ≤ 99n/100)≤
99n/100∑
m=1

(3e)m(1+ c4)−c3mk2/100 = o(1)

as k→ ∞.
To see that the size of T must be very nearly n (and not just at least 99n/100), we analyse

its complement. By the definition of R and (4.2), we have ∂T ⊆ R. By Markov’s inequality, |R| <
n(1+ c4/2)−k2 with high probability as k→ ∞. By our choice of H satisfying Lemma 4.1, for
every T with n/2≤ |T| ≤ n− n(1+ c4/2)−k2/c3, we have |∂T| ≥ n(1+ c4/2)−k2 . This tells us that

∣∣∣T∣∣∣ /n≤ (1+ c4/2)−k2 )/c3 = (1− β)k
2
,

with high probability as k→ ∞, where β > 0 is again a constant depending on α alone; this
completes the proof. �

5. Conclusion
A large number of interesting open problems remain; below, we highlight a few that we find
particularly appealing.

First, in the context of the chromatic number of problem, all the lower bounds on χ(G1/r)
in terms of χ(G) that we currently have rely crucially on r being an integer. It would be very
interesting to prove any lower bound forE[χ(G0.499)] that is (asymptotically) better than χ(G)1/3.

Second, in the context of the colouring number of problem, we have been unable to prove
any interesting lower bounds for D(k). We would not be surprised if the truth is that D(k)=
k/3+ o(k) as k→ ∞, but even showing that D(k)≥ k/3.99+ o(k) appears to be a challenging
problem, as evidenced by Theorem 1.5. In fact, we (somewhat embarrassingly) do not know if
there exists a function f (k)→ ∞ as k→ ∞ such thatD(k)≥ k/4+ f (k).
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