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Abstract
Robust design methods have expanded from experimental techniques to include sampling
methods, sensitivity analysis and probabilistic optimisation. Such methods typically require
many evaluations. We study design and noise variable cross-term second derivatives of a
response to quickly identify design variables that reduce response variability. We first
compute the response uncertainty and variance decomposition to determine contributing
noise variables of an initial design. Then we compute the Hessian second-derivative matrix
cross-terms between the variance-contributing noise variables and proposed design change
variables. Design variable with large Hessian terms are those that can reduce response
variability. We relate the Hessian coefficients to reduction in Sobol indices and response
variance change. Next, the first derivative Jacobian terms indicate which design variable can
shift the mean to maintain a desired nominal target value. Thereby, design changes can be
proposed to reduce variability while maintaining a targeted nominal value. This workflow
finds changes that improve robustness with a minimal four runs per design change.We also
explore further computation reductions achieved through compounding variables. An
example is shown on a Stirling engine where the top four variance-contributing tolerances
and design changes identified through 16 Hessian terms generated a design with 20% less
variance.

Key words: robust design, simulation based design, uncertainty analysis, uncertainty
modelling

1. Introduction

1.1. Background

Parametric robust design has been well researched and developed into what has
become the standard experimental robust design method (RDM), making use of
design-of-experiments to reduce the performance variability of a design due to
multiple causes (Taguchi 1986; Phadke 1989; Taguchi & Taguchi 2000; Thornton
2003; Arvidsson & Gremyr 2008; Wu & Hamada 2011; Montgomery 2017). RDM
ismore than a statistical experiment, it involves amultiple step workflow including
identifying possible sources of variability, quantifying their relative contribution
with noise experiments, generating ideas for design changes that may promote
variation reduction and then quantifying the ability of design changes to reduce
this variability through a further set of experiments. Modern computer-based
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methodological updates include use of uncertainty quantification (UQ), surrogate
modelling, global sensitivity analysis (GSA) and optimisation (Chen et al. 1996;
Du & Chen 2001; Jin, Chen, & Simpson 2001; Du, Sudjianto, & Chen 2004; Fang,
Li, & Sudjianto 2005; Allen et al. 2006; Chen, Jin, & Sudjianto 2006; Jiang et al.
2013; Jiang, Chen, & German 2016; Hu & Du 2019; Otto & Sanchez 2019; Otto,
Wang, & Uyan 2019; Nellippallil et al. 2020; Sanchez, Björkman, & Otto 2020;
Yin & Du 2021).

The problem considered here is to reduce the variability in a system response
y= f d,nð Þ, where d are design variables to be chosen and n are manufacturing
noise variables described with known parameters. The noise variable uncer-
tainties give rise to a distribution of uncertainty on the response. We consider
the UQ of forward uncertainty propagation of aleatoric parameter uncertainty,
specifically that from manufacturing parameters. Therefore, here UQ is simpli-
fied to computing the uncertainty induced on the response due to the
manufacturing input variability. Next with the variance of this response uncer-
tainty, GSA is simplified to considering the decomposition of the response
variance into portions from contributing noise variables, to identify which noise
variables contribute most. The problem addressed is to reduce the variance of the
response uncertainty through changes to the design variable values, for example,
the RDM problem.

Unfortunately, executing RDM remains a complex task for many industries,
which has impeded adoption of RDM (Arena et al. 2006; Arvidsson et al. 2003).
This is particularly evident when used in conjunction with simulation tools,
which have prohibitively long manual setup times and long execution times.
While automation can help reduce the burden (Otto & Sanchez 2019; Otto,
Wang, &Uyan 2019), means are needed tomore quickly identify potential design
changes that can reduce variability arising from different contributing noise
variables. Given that at least 30 runs are generally needed to create a reasonable
histogram of a distribution, repeating this for different design configuration
alternatives is prohibitive. Computer-based design of experiments with surrogate
models or otherwise can improve upon this in a more structured exploration of
the design space, but often require dozens of runs for a few design variables each
with several runs over the noise variables.

We explore here using rapidly computed Hessian second derivative terms to
rank potential design changes. We also combine this with computed Jacobian first
derivative terms to enable reshifting the mean to remain on target while reducing
variation.We find that when using this approach, one can estimate in four runs the
variation reduction impact that a design change can have due to a causal noise
variable.

Next, we review related works. Then, we outline a workflow and derive the
calculations to (i) quantify uncertainty rank contributing noise variables using
Sobol indices, (ii) rank design changes using a Hessian derived calculation,
(iii) construct variance and mean prediction equations using as few experimental
runs as possible, (iv) compute a constrained optimal set of design changes that
minimise variance subject to a nominal target constraint and (v) verify the
uncertainty variation reduction at the new design configuration. We demonstrate
the work using an open source data project, a Stirling engine design (Otto &
Sanchez 2019).
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1.2. Related work

Robust design was introduced by Taguchi as an experimental method to study the
effect of different input noise variables on performance variability, and how these
can be reduced through design variable selections (Taguchi 1986; Taguchi &
Taguchi 2000). Arvidsson & Gremyr (2008) provide a review of experimental
RDM research. Thornton (2003) notes that executing RDM early in design is
needed to reduce the risk of noncompliance as a design goes in production. Wu &
Hamada (2011) highlight noise and design variable interactions and design of
experimental arrays meant to highlight such terms. Montgomery (2017) further
derives the response variance as a Hessian terms as is used here but in experimental
design.

On the other hand, in recent years, the need for RDM has increased, since
systems are now increasingly design-optimised for higher performance, higher
efficiency and lower cost; see for example Arena et al. (2006) for a discussion on
trends in defense system programmes. Optimising a system can unfortunately and
unknowingly result in tighter design margins to achieve the higher performance,
leading to costly production problems (Tan, Otto, & Wood 2017). Systems
designed with tighter margins are inherently more prone to variability problems
(Thornton 2003). In summary, using modern design optimisation methods has
increased the need for clarifying and understanding how much performance
variability there will be in a design, to compare the variability distribution against
the targeted design margin and thereby quantify the future manufacturing quality
risks.

Göhler, Eiffler, & Howard (2016) provide a review of robust design formula-
tions in the literature. Another body of work explores the use of computer-based
experiments over traditional design-of-experiments, leveraging the various forms
of higher discrepancy experimental sampling enabled with computational
methods. UQ and GSA have grown rapidly as an interdisciplinary field (Iooss &
Lemaître 2015). UQ provides the means to quantify the expected variability in a
new design before observing it in production. GSA provides the means to decom-
pose the variation, to identify which tolerances and noises variables are the major
contributors (Saltelli et al. 2008). Main effect and total effect Sobol sensitivity
indices quantify the percent contribution of noise variables to the variance of the
computed performance response uncertainty. Sobol indices typically require large
samples and so surrogate models are used (Jin, Chen, & Simpson 2001). Panda &
Hicken (2018) studied expressing response variance as an expansion usingHessian
terms, similar to a surrogatemodel of variance.We here look for design variables to
reduce this variance (Sanchez Mosqueda & Otto 2021) considering here com-
pounded variables reduction.

Using this UQ/GSA approach, a design concept’s variabilities can be assessed
against design margins for risk of not meeting requirements. There are many
examples in the literature of implementing Latin Hypercube and quasi Monte
Carlo methods for higher discrepancy resolution of robustness optimisation
against design problems (Iooss & Lemaître 2015). These generally apply optimi-
sation search of an objective function computed based on uncertainty. Reliability
based optimisation methods can also be used to solve for the most probable point
solution to the robust design problem (Jiang et al. 2013; Hu & Du 2019; Yin &
Du 2021). Surrogate models of the mean and variance can be fit as functions of
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design variables (Chen et al. 1996; Fang, Li, & Sudjianto 2005; Allen et al. 2006;
Chen, Jin, & Sudjianto 2006). This requires samples of noise variable combinations
at the design variable combinations and can quickly lead to sampling plans with
hundreds to thousands of runs.

For responses computed through computationally expensive simulations,
quasi Monte Carlo sequence sampling is effective, such as Sobol or Halton
sequences (Jin, Chen, & Simpson 2001; Saltelli et al. 2008; Iooss & Lemaître
2015). Unlike Latin Hypercube sampling, any initial sample can be sequentially
incremented with follow-on samples of the sequence. This enables one to start with
a small sample and determine howwell a surrogatemodel can fit, and increase until
a sufficient fit is achieved, thereby needing a minimal number of runs needed to
compute the uncertainty and the variance-decomposition GSA.

Nevertheless, these uncertainty propagation methods generally remain ‘black-
box’ simulators in nature, as they require large numbers of evaluations for
quantifying uncertainty of the response. Combined with uncertainty optimisation,
it becomes computationally expensive for even moderate dimensional problems.
Rather than design of experiments or optimisation formulations, we explore here
interrogating the simulation model using (finite difference) derivatives for
improved understanding of the causes of the uncertainty. We particularly consider
identifying both the causes of variation (noise variables) that contribute to
response variation as well as those whose variation effect can be mitigated by
changing particular design variables.

2. Robustness optimisation estimation
It becomes important for computationally expensive simulations to construct
sampling strategies that can capture the influence of design changes on response
variability efficiently. We consider first identifying the most contributing noise
variables (from the initial UQ/GSA). To study how their impact can change with
potential design changes, we compute Hessian second derivatives to prioritise
design variables for optimisation. Then, we consider the impact of the design
changes on the average response, to enable constraints on any mean shift. First, we
define terminology on the basis of UQ and GSA and explain the overall Hessian-
based robust-design workflow.

2.1. Workflow

We first present a five-step workflow to practically execute an uncertainty reduc-
tion. Typically, one would consider performing an analysis on minimising vari-
ability only after first quantifying the uncertainty (UQ) as a histogram of a
distribution on the response of interest. Often, one would also decompose this
uncertainty into a rank-ordered Pareto chart of noise variables contributors as
a GSA.

First, we quantify response uncertainty and identify input noise variables with
large contribution. Then a Hessian cross-term matrix is calculated to quickly
screen design variables for their variation reduction capability against these
contributing sources of variation. Each proposed design variable needs only four
runs to determine if it can reduce the variation contribution of a noise variable, and
the impact on the mean shift. Having identified design variables to change and by
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how much, a new design is computed as a constrained optimisation, using the
summation of variation reductions predicted by the Hessian analysis and keeping
the nominal constrained on target through the summation of Jacobian terms.
Lastly, an UQ at the new design computes the variation reduction. This is outlined
in Figure 1.

The first step in the workflow is to compute UQ and GSA. We apply the open
source toolchain developed by Otto & Sanchez (2019). The Python-based tool-
chain was developed to screen causal variables, and then apply quasi Monte Carlo
UQ sampling and GSA to quantify response variability and identify input noise
variables with the largest contribution. There are several computational tasks
scripted: first generate UQ samples, then run a standalone simulation code to
compute response values at eachUQ sample point, best-fit a surrogatemodel to the
UQ sample points, and finally perform a GSA with the surrogate model by
generating a large number of Saltelli sample points to compute Sobol indices.
The results are the contribution of each input noise variable. The GSA indicated
which input parameters are the largest contributors to the response variance.

Next in Step 2, we computeHessian and Jacobian terms to reduce the sensitivity
of the high-contributing noise variables ni by considering design changes d j. For
each high-contributing noise variables ni, each design change d j is considered by
computing the Hessian term and Jacobian term. This is only four runs for every
noise and design variable combination.

Next in Step 3, we assemble an overall variation reduction equation as a sum of
computed Hessian terms. We also assemble an overall mean shift equation as the
sum of Jacobian terms. Then in Step 4, we can use these two equations to find the

Figure 1. Five step workflow using Hessian and Jacobian terms.
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changes to the design variables that minimise the variation subject to the mean
fixed to a target. Lastly in Step 5, we recompute the UQ/GSA at the new values of
the design variables. This confirms the variation reduction and the targeting of the
mean response.We next derive theseHessian and Jacobian terms and optimisation
equations.

2.2. UQ and GSA

We consider here when anUQhas been computed for the initial design. That is, for
a selection of noise variables, a sample was generated and at each sample point the
response evaluated, resulting in a histogram of response values. A distribution
function with statistics against distribution parameters is fit, for example, a normal
distribution function withmean and variance statistics. Nomatter the distribution,
we consider the variance statistic σ2y as a statistic of interest on the response y.

We also then consider the GSA of the total response variance σ2y . Following
Saltelli et al. (2008), we decompose the total response variance into variance
contributors of the noise variables ni. The main effect Vi of a noise variable ni is
the response variance fraction due to the noise variable alone, also expressed as a
percentage as the Sobol Sensitivity Index Si. Higher order effects such as a two-way
interaction, Vi1i2 is the response variance fraction due to both inputs varying.
That is,

σ2y =
X
i

Viþ
X
i1<i2

Vi1i2 þ⋯þ
X

i1<i2<⋯<N

Vi1⋯N , (1)

and Vi is the main effect response variance contribution of ni and the others are
higher order effects. From Equation (1), we can compute Si to indicate the main
effect contribution of ni. Another useful metric is the Sobol Total Sensitivity Index
TSi which computes the effect of all interactions for a noise variable ni as a
percentage contributions of the total response variation σ2y . That is,

Si =
Vi

σ2y
, (2)

TSi = SiþðS1iþS2iþ…ÞþðS12iþS13iþ…Þþ⋯þ
X

i1<::i::<N

Si1::i::N : (3)

This UQ/GSA analysis forms the first step of a proposed robust design variation
reduction workflow. With this, the initial design concept variability is quantified
(σ2y) and the noise variables which contribute most are identified (those with large
Si). We now seek to find design variables that can reduce the impact of noise
variables with large impact.

2.3. Hessian cross terms

To study the impact of changes to different design variables, we consider the
Hessian matrix cross terms of the variance-contributing noise variables and
the design variables of any proposed design changes. Hessian terms will show
the influence that design variable changes have over the uncertainty contribution
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of noise variables. To see this, consider a Taylor Series expansion of the response at
the current nominal,

y= f d,nð Þ= y0þ
∂f
∂n

n�n0ð Þ: (4)

Typically, we compute this only for the large noise variables contributors ni. Now
consider a design variable d j for any proposed design change. We could make the
change and recompute the UQ or similar. However, if d j changes the UQ, it must
be because d j changed the impact of the contributing ni. That is, the sensitivity
term ∂f

∂n changed. Therefore, a nonzero Hessian term indicates a d j can change the
noise variable’s variability influence on the response at a nominal design d0,n0ð Þ:

Find d j such that
∂

∂d j

∂

∂ni
f d,nð Þ d0,n0 6¼ 0:j (5)

Hence, to quickly compute how effective any design variable is at reducing
response variability, one can compute the Hessian cross terms of design and noise
variables denoted by

Hij =
∂

∂d j

∂f
∂ni

=
∂
2f

∂d j
∂ni

, (6)

and search which design variables d j cause a significant change to the sensitivity
term ∂f

∂ni .
Consider for the moment noise variables with symmetric uncertainty such as a

normal distribution and design variables which can be optimised through either
increasing or decreasing changes. Then one can use a central finite-difference
approximation with perturbations hi on a noise variable ni and h j on a design
variable d j. We define the differences of a design or noise variable from nominal
do,nð Þ as

d j� = d j
0�h j d j� = d j

0þh j,

ni� = ni�hi niþ = niþhi:
(7)

The Hessian cross terms can be numerically computed as the central difference
cross term change in response value:

Hij =
f d jþ,niþ
� �� f d jþ,ni�

� �� �� f d j�,niþ
� �� f d j�,ni�

� �� �
4hih j

: (8)

From the engineering perspective of variation reduction from design changes, it is
easier to interpret Hij with the sign of Hij only indicating the directionality of the
design change and not the noise variable change.We therefore apply absolute value
to the noise factor differences since it is inconsequential if f is increasing or
decreasing with changes to ni, and it is very consequential to the differences with
changes to d j. That is,

Hij =
f d jþ,niþ
� �� f d jþ,ni�

� ��� ��� f d j�,niþ
� �� f d j�,ni�

� ��� ��
4hih j

: (9)

The absolute values thereby provide the computedHij effective sign in engineering
terms, a negative Hij indicates variance reduction with increases in d j and a
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positive Hij indicates variance reduction with decreases in d j. Each Hij can
therefore be interpreted in engineering terms as the amount of variation change
possible by making the design variable shift from d� to dþ, for the performance
variation due to the noise variable variation range of n� to nþ.

The four values in the numerator of the Hessian Hij can also be plotted to
visualise the interaction impact on the response variance due to design and noise
variable changes. The interaction plots will show the design change has an impact
on the noise contribution if the lines are nonparallel, and the direction of design
change with reduced variation as the design variable value with closer points. This
is entirely similar to interaction plot studies in traditional factorial design of
experiments (Montgomery 2017), as shown in Figure 2.

For example, Figure 2a shows an interaction plot for a design and noise
interaction where the design change has no impact on the noise variable’s contri-
bution. At d�, d0 and dþ the vertical difference from n� to nþ is the same. The lines
are parallel, and the nominal point is centred. Alternatively, Figure 2b shows an
interaction plot example where the design variable change does impact the noise
variable contribution. At d�, the n� to nþ gap is smaller than at dþ, and the
nominal value remains centered.

When there is a sign difference in the two numerator terms of Equation (8), this
indicates a flip of the directionality of the response change with the noise variable,
as would be seen in the interaction plot as shown in Figure 2c. This is useful to
observe, since it indicates there must be a cross-over value of the design variable
between the limits. In this scenario, there is a point of zero difference across the
noise variations, a most robust value of the design variable. On the other hand,
Equation (9) is still valid as the difference that is observed between the limits of the
design change.

Following Equation (5), the approximate change in response standard devia-
tion due to the change in a noise factor standard deviation at a design point in the
direction of d j isHijσi. Therefore, scalingHij by the range of the standard deviation
of the noise factor and by a shift in design variable by δ j shows how the response
standard deviation changes

Δijσy =Hijσiδ j: (10)

Δijσy is the change in the one-sigma response variation with a design variable
change δ j from d j

0.
Squaring Equation (10) and preserving sign, it follows that the expected change

in the total variance of the response σ2y with a design change δ j from d j
0 is given by

Figure 2. Example Hessian Interaction Plots.
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Δijσy
� �2 = σ2i H

ijδ j

�� �� Hijδ j
� �

: (11)

Equation (11) includes the absolute value form to preserve directionality of the
design change. A negative Δijσy

� �2
indicates making a positive δ j change to

nominal design variable d j
0 towards dþ will reduce noise variable ni contribution

to response variance, whereas a positive Δijσy
� �2

indicates making a negative δ j

change towards d� will reduce noise variable ni contribution to response variance.
By definition of Si as the normalised variance, dividing Δijσy

� �2
by the UQ total

variance σ2y results in the expected change in a noise variable’s Sobol index Si by a
design variable d j changes. This provides a more informative percentage change.
Therefore, the expected change in a noise variable’s Sobol index ΔSij by making a
design change from nominal is computed as

ΔSij =
σ2i
σ2y

Hijδ j

�� �� Hijδ j
� �

: (12)

A large value of ΔSij indicates changing towards d jþ increases Si by ΔSij
(a possibly negative amount) and that changing to d j� decreases Si by ΔSij (again
a possibly negative amount). Thus, whatever the sign of ΔSij is, you would change
d j in the opposite direction to achieve a reduction in Si.

The impact of any oneΔSij change to a Sobol index does not simply scale σ2y, for
example, a 10% change in Si does not mean a 10% change in σ2y . This is because
ΔS= σnew�σoldð Þ2=σ2old, so rather the change in σ2y from a variation reducing
design change δ j can be computed as

σ2new�σ2old
σ2old

=
Δijσ2y
σ2y

= 1�
ffiffiffiffiffiffiffiffiffiffiffi
ΔSij
�� ��q� �2

�1: (13)

Further, the overall change in the Sobol indices to multiple design variables
changed in the direction of reducing variance is the sum over the design changes,

ΔSi =
1
σ2y

X
j

Hijσiδ j

 !2

: (14)

Similarly for a set of noise variables, the overall change in the sum of a set of
Sobol indices from M noise variables is a sum. However, each noise term is
computed with the noise variable value set at a number of standard deviations
from nominal, and so to maintain that over multiple noise variables the sum needs
to be reduced by the square root of the number of noise factors summed. That is,

ΔS j =
1

Mσ2y

X
i

Hijσiδ j

 !2

: (15)

Then the new response variance due to multiple design variables changed in the
direction of reducing variance is computed as before using Equation (13).

2.4. Central, forward and backward differencing

The central differencing derivation of Equation (9) is not adequate in all cases. For
example, not all noise and design variables can be changed in both positive and
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negative directions. For example, geometric tolerance variations such as flatness,
roundness, concentricity and so on, have only positive variations from a desired
nominal of zero. Further, some noise variations are nonmonotonic and cause
increasing performance drift with either a positive or negative input variation. For
example, mis-alignments can cause worse performance with any deviation from
nominal, positive or negative. These noise variables should therefore not be studied
with central differencing. Similarly, certain design variables may only have feasible
increases or only feasible decreases. With these variables, forward or backward
differencing is needed, with associated changes to Equation (9).

Consider noise variables which can only be positive, the only allowed values are
in the domain nio,n

i
þ

� 	
. Then Equation (9) becomes

Hij =
f d jþ,niþ
� �� f d jþ,ni0

� ��� ��� f d j�,niþ
� �� f d j�,ni0

� ��� ��
2hih j

, (16)

which is a combination of central differencing on d j and forward differencing on
ni. Similarly, Equation (9) would switch for design variables which can only be
positive and noise variables which can be negative or positive,

Hij =
f d jþ,niþ
� �� f d jþ,ni�

� ��� ��� f d j0,niþ
� �� f d j0,ni�

� ��� ��
2hih j

: (17)

And similarly for a selection of design and noise variables neither of which can be
negative becomes

Hij =
f d jþ,niþ
� �� f d jþ,ni0

� ��� ��� f d j0,niþ
� �� f d j0,ni0

� ��� ��
hih j

: (18)

For the variable types that cannot use the central differencing Hessian
approach, the Hessian-indicated variation reduction using central differencing
would not materialise when the design variable is changed and a new UQ is
executed at the new design. Further, the central differencing Hessian term alone
will not identify when this is the case.

Instead, additional checks are needed to highlight when the central differencing
form Equation (9) needs expansion with additional runs using Equations (1–1). To
identify such cases where central differencing fails, the Hessian numerator terms
must be compared with the nominal value result y0 = f d0,n0ð Þ. If the y0 value is not
bounded by the Hessian terms, there is a nonmonotonic quadratic nature to the
response f . This is well known in traditional factorial experimentation
(Montgomery 2017) and applies equally here. So instead of just four Hessian
points to evaluate f , one should also include the nominal value point and ensure the
nominal falls within the bounds of the Hessian points. This is shown as interaction
plots in Figure 3.

When the nominal value falls outside of the Hessian term response values, the
central differencing domain must be split into two regimes, the upper and lower
range on either d j, ni or both. Typically, an engineer expects quadratic behaviour of
certain variables andwhether the cause is from the d j, ni or both can be self-stated a
priori. Whichever it is, the four central differenced Hessian points must be
augmented with two more axial points on that variable. Then backward differenc-
ing is used between the negative points and nominal points, and forward
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differencing on the nominal points and positive points. This results in two Hessian
terms that can be considered for the impact of a design change. If the source of the
quadratic behaviour as d j or ni cannot be self-stated, then the axis points on both
will need to be evaluated, at the expense of four additional function evaluations.

Overall, the central differencing evaluation of the Hessian ought first be used
for bilateral problems, as it is more accurate about a nominal point. In this initial
calculation, it should be checked against the nominal point for quadratic behaviour
of the response. If the nominal point is not bounded by the central difference
points, then the central difference Hessian is incorrect, Figure 3a. In such cases, the
central difference domain needs to be split to include the two nominal axial points
and then two Hessian terms computed, the upper and lower. The two results are
then the different impact in variability with a positive or negative change for
quadratic response design variables, or the different impact in variability of a
design change on the upper and lower variations for quadratic response noise
variables.

2.5. Jacobian mean shift term

The design changes suggested by the aboveHessian calculations can result not only
in variance reduction, but also in mean shift. Often this is undesirable, as the
nominal performance y is targeted. In this case, the Jacobian can similarly be used
to compute means shifts, to shift the mean back to target while reducing the
variation.

Again, consider a Taylor Series expansion of the response at the current
nominal (d0, n0),

y= f d,nð Þ= y0þ
∂f
∂n

n�n0ð Þþ ∂f
∂d

d�d0ð Þ: (19)

When changing a design variable d j to reduce variation, the Jacobian can
indicate howmuch the mean will shift. Further, we can use a variable d j which has
no influence on the Hessian to shift back the mean to its original value. Here,

J j =
1
2
∂f

∂d j≈
P

d j = dþy

N
�
P

d j = d�y

N
, (20)

and half are at d�. Equation (2) computes the half-effect of moving from the
nominal center to either of the end points dþ or d�.

Figure 3. Non-monotonic interactions requiring backward and forward differences.
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The overall change in responsemean is then approximately a linear summation
of the design variable changes,

Δp dð Þ=
X
j

J j
� �

Δd j, (21)

where again Δd j is the amount of change to d j in a new design configuration
considered.

In combination with the variation reduction as computed by Equation (13) and
the mean shift as computed by Equation (21), one can select design variable
changes to reduce the variation while constraining the mean to a target. Design
variables that reduce variation can be determined and set using Equation (13). The
associated mean shift from those changes can be computed using Equation (21),
and different design variables changed to shift the mean back to the desired target.
In this way, variation can be minimised subject to a constrained mean. Further-
more, the reasons for the variation reduction are made explicit. The identified
design variables that can reduce the impact of identified noise variables will be
clear, rather than a black box experimental optimisation approach.

3. Stirling engine design example
In previous work, (Otto & Sanchez 2019; Otto, Wang, & Uyan 2019) workflows
were developed applying UQ and GSA methods to identify root causes of
manufacturing quality problems and in Sanchez, Björkman, & Otto (2020), a
workflow was developed using design of experiments to achieve robustness
improvement, and in Sanchez Mosqueda & Otto (2021), we introduced using
Hessian terms. Here, we build on these previous works to now consider the greater
insight and fewer runs offered by the Hessian approach and in conjunction with
compounded variables.

3.1. Stirling engine case study

In these previous works, we introduced the example of aminiature Stirling engine
case study. At Aalto University students fabricated, assembled and tested Stirling
engines as part of the senior level machine design course. Students measured the
speed at which the crank shaft rotates when there is no torque load applied, the
no-load speed. The no-load speed tests demonstrated 25% variation in speed
across the fabricated engines, due to variations in fabrication. This outcome
exposed the high sensitivity of the Stirling engine to manufacturing and assembly
variations. Here, we follow the approach of Figure 1 to explore if the variability of
the design could be reduced through parametric design changes. We also com-
pare the insights and speed of the approach with traditional robustness optimi-
sation.

The geometric input variables of the Stirling engine are shown in Figure 4.
There is a hot side cylinder heated externally with a transfer piston that exchanges
air from the hot side to the cold side. There is a cold-side power cylinder and piston
that extracts mechanical power from the air as it expands and contracts due to the
transfer pistonmovement. The pistons are connected by a shaft with an offset angle
of 90°.
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3.2. Step 1 UQ/GSA

Following Figure 1, the first step of the workflow is to quantify the uncertainty at
the original design and determine noise variable contributors through a GSA. We
used a toolchain developed in Otto & Sanchez (2019), which creates UQ samples
using Latin Hypercube sampling and runs an external Matlab code (Sanchez
Mosqueda & Otto 2021) to compute the engine power at each point. Executing
the UQ also requires a number of evaluations, independent of the evaluations
needed to compute the robust design variance reduction discussed here. We take
the approach discussed in Section 2.1, where we start with a small sample and
compute the UQ and also fit a surrogate model to the UQ sample points for use
with the GSA analysis.We sequentially increase the UQ sample size until surrogate
model fits well. In the Stirling engine case, this required 40 samples to fit a
distribution and surrogate model with under 2% error (r2 of 98%). Figure 5 shows
the histogram of the thermodynamic power response. The average power is 1.63W
with a standard deviation of �0.09 W.

A surrogate model is fit through the UQ sample points for use in the GSA. A
vast selection of machine learningmethods are available in the Python code library
scikit-learn (Ureili 2010) and used in our toolchain. Here, we applied Kernel Ridge
Regression with a cross-validated grid search routine implemented for hyperpara-
meter tuning. The resulting surrogatemodelmatched the simulation with r2= 0.98
on the test data. With this surrogate model, Saltelli samples were generated and
Sobol indices computed. Figure 6 shows the resulting variance contribution to the
power variability by each noise variable alone and by higher-order interactions,
where all higher-order interactions among the small noise variations were negli-
gible.

Figure 4. Stirling Engine Geometry.
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Figure 5. Uncertainty of engine powerat the nominal design.

Figure 6. Sobol sensitivity analysisof the power variability at the nominal design.
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The GSA indicates variation of the cold-side clearance volume, outer transfer
cylinder diameter, swept volume of the expansion piston and swept volume of the
compression piston as the largest contributors to power variability.

3.3. Unconstrained minimisation

The second step in the workflow is to construct Hessian cross terms to quickly
compute the effect of any design change on reducing contributions to response
variability. First, design variables are proposed. We make use of input volumetric
variables compounded from dimensional geometry of the engine. Clearance and
swept volumes from compression and expansion sides V clc,V swc,V clh andV swhð Þ
were selected as design variables d j. From the GSA the largest contributors to
engine power variability were ΔV clc,ΔV swc,ΔV swh andΔdoutð Þ and so used as
noise variables ni. Then �4σ ranges were defined for the noise variables and a
reasonable �20% range of optimisation for the design variables.

The Hessian cross terms are constructed in terms of the 4 noise variables and
4 design variables, 16 combinations requiring a total of 64 runs. Table 1 shows how
making a design variable increase by þ20% changes the �4σi thermodynamic
power range (W), using Equation (10). It shows, for example, that when changing
the design variable V clc þ20%, the variability in thermodynamic power due to the
manufacturing variationΔV clc will go down by�0.01W, a significant reduction of
the �0.09 W standard deviation. Table 1 also shows that the contribution to
thermodynamic power variation due to ΔV swc and ΔV swh are not significantly
affected by any of the proposed design changes, since rows 2 and 3 all have small
terms.

Improved understanding can be provided by normalising the results of Table 1
into percentages as Sobol indices, using Equation (12). Table 2 shows the change to
a noise variable’s Sobol index Si by changing a design variable byþ20%. Note these
are the additive increments to eachmain effect Sobol index, they are notmultipliers
on the total variance. Therefore, they do not show how much the total variance is
percentage reduced. Rather, Equation (13) is needed, with results shown in Table 3.

The interaction impact on response variance indicates making an increase of
20% to the nominal V clc will reduce the contribution of ΔVclc variance by 21%,
whereasmaking a decrease of 20% to the nominalV swh will reduce the contribution
of ΔVclc variance by 22%. Overall, Equation (13) indicates that in combination
making the two design changes together will show a 39% power variance reduction

Table 1. Twenty percent increase design variable change impact on standard deviation contributions

Δijσy (W)

Design

Vclc V swc V clh V swh

Noise

ΔV clc �0.010 0.005 �0.002 0.009

ΔV swc �0.001 �0.002 0.000 0.004

ΔV swh �0.002 0.003 0.000 0.000

Δdout �0.008 0.005 �0.001 0.008
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due to the input noise variation onΔV clc alone, and a 43% reduction due to all four
input noise variations. Note that the design changes had little impact on the
thermodynamic power variation caused byΔV swc orΔV swh input noise variations,
rows 2 and 3 are small. This Hessian approach provides insight into how and why
design changes reduce response variation.

Figure 7 shows theHessian calculation results graphically as amatrix plot. Each
column is a design variable and each row is a noise variable. Each plot therefore has
a design variable as the x-axis and thermodynamic power as the y-axis, and two
lines of the response with the noise variable high and low. Therefore, parallel lines
indicate no impact of a design change over a noise contribution, and highly
nonparallel lines show a strong ability of the design variable to reduce the impact
of the noise variable. Design variable values are sought which bring the two lines
together. The upper left plot indicates a large change to design variable V clc will
reduce ΔV clc variability contribution to power. The upper second plot indicates a
large change to design variable V swc will have no impact on the ΔV clc variability
contribution to power. Overall, the plots show design variables Vclc and V swh can
reduce variation (bring the two lines closer together), that Vclc, V swc and V swh can
shift the mean (lines have non-zero slope) and that V clh affects neither the mean
nor variance (lines are flat and parallel).

Table 2. Twenty percent increase design change interaction impact on Sobol indices

ΔSij (%)

Design

Vclc V swc Vclh V swh (V clc, �V swh)

Noise

ΔV clc �1.21 0.35 �0.03 1.13 �4.68

ΔV swc �0.03 �0.06 0.00 0.26 �0.47

ΔV swh �0.04 0.13 0.00 0.00 �0.04

Δdout �0.93 0.28 �0.03 0.88 �3.63

All �1.49 0.53 �0.04 1.58 �6.08

Table 3. Twenty percent increase design change interaction impact on variance percent

Δijσ2y (%)

Design

Vclc V swc Vclh V swh (V clc, �V swh)

Noise

ΔV clc �20.8 12.2 �3.7 22.4 �38.6

ΔV swc �3.4 �5.0 �0.6 10.5 �13.2

ΔV swh �4.1 7.2 �0.7 �0.6 �4.1

Δdout �18.4 10.8 �3.2 19.7 �34.5

All �27.9 14.0 �4.1 23.6 �43.2
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Having identified new design values for V clc and V swh, we proceed to compute
UQ/GSA at the new design. Figure 8 shows the uncertainty of engine power at new
design configuration. The standard deviation went down from�0.09 to�0.06 W,
indicating a (squared) variance reduction by 49%, similar as the Hessian reduction
predicted 43% given by Equation (13).

Figure 7. Interaction Hessian graphs.

Figure 8. Uncertainty change of engine power at the new unconstrained configuration.
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Next, we continue with Step 4 of the workflow and recompute aGSA to confirm
total response variance contributions. Figure 9 shows how the power variance was
reduced, and that it was due to the ΔV clc noise variable Sobol index being reduced
by 4.5% which is close with that shown previously in Table 2 of 6%. This is as
expected from theHessian analysis which showed the design changes onlymitigate
the impact of the ΔV clc noise contribution.

3.4. Constrained variation reduction

Although a 49% reduction on variance was achieved at the new design, the mean
powerwas shifted down to 1.21W from1.64W.To constrain themean power from
shifting, the Jacobian terms can be used to shift back themean closer to themean at
nominal design. We therefore revert back to Step 2 of the workflow and following
Equation (21), we computed the change in power due to changes in design variable
d j. This is shown in Table 4. The values indicate the average power would shift
down by (�0.31–0.6)/2 = 0.45 W with the 20% design changes to V clc and V swh,
which agrees with the observed shift to 1.21 W.

Similar to Figure 6, one can create variable plots of the power response values
versus each design variable. Figure 10 shows how average power changes when
each design variable changes by�20%. TheHessian calculation showed that design
variables Vclc, V swc and V swh influence on variance response, whereas design
variable V clh does not. Changing design variables V clc by þ20% and V swh, by

Figure 9. Sobol sensitivity analysis of the model computed power variability at the new design.

Table 4. Normalised Jacobian terms for mean shift from nominal

ΔP (W) Vclc V swc Vclh V swh

�0.31 0.49 �0.05 0.60
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�20%, as suggested by the Hessian calculations, will cause not only a reduction in
response variance but also a shift in response mean. Hence, V swc and Vclh can be
changed to compensate and shift back average power.

3.5. Constrained optimisation using Hessians and Jacobian
formulas

The Step 4 in the workflow is to solve an optimisation to calculate the amount of
change required for each design variable to produce the same response as the
nominal design variables but with a reduced standard deviation. The objective
function was set to minimise variation and constraints were added to maintain an
average power change of zero and a design space from �20% to 20%.

Equation (13) for the power variance and the Jacobian derived Equation (21)
can be simultaneously solved in a constrained optimisation

Find d∗ = arg min
d

σ2p

subject to p�1:6≥0

0:8di0 ≤ di ≤ 1:2di0

(22)

The result is a new design configuration shown in Table 5, along with the Hessian
predicted change in variance and Jacobian predicted change in average power. The
solution showed an expected 13% reduction in variance with no change in mean.
Notice the solution drove Vclc to the largest þ20% given the Sij coefficients, but it
did not drive V swh to the smallest �20% since that is not possible with the

Figure 10. Average Power Changes with design variable changes.
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constraint on the allowed mean shift. The terms V swc and V clh can shift the mean
but do not change the variation much, accounting for approximately þ0.25 W
increase in mean. This restricts the extent of the V swh shift.

3.6. UQ at the new design

To confirm a variation reduction and a mean power similar to the nominal design,
we proceed with Step 5 to quantify uncertainty at the new design. Figure 11 shows
the standard deviation and mean power of the new design. The new design
configuration shows a standard deviation of �0.08 W and an average power of
1.64W. This result shows a (squared) reduction of 20% in variance and no change
in average power in relation to nominal design. This actual is in agreement with the
variation reduction predicted with the Hessian terms of 13%.

4. Compounded variables
Equation (9) computed the Hessian terms in four runs for each combination of
significant noise factor and each hypothesised design variable. The complexity of
this approach grows as four times N, the number of design variables timesM, the
number of noise variables. While better than other approaches, 4 NM can still be
prohibitive. However, if one has engineering knowledge of the slope of the noise
variables contribution to the response, they can be compounded (Taguchi &
Taguchi 2000). Further, a similar compounding approach can be taken with the
design variables.

4.1. Compounded noise variables

Consider a noise variable with positive slope in the response, and a second with
negative slope. Then instead of executing runs over both noise factors with the
design variables, a single compound noise variable set can be used where each is
varied simultaneously and, in this case, in opposite direction. In the limit of
compounding all noise factors, this will reduce the number of evaluations from
4 NM to 4 N.

As an example, in the Stirling engine example, the noise variables ΔV clc had
negative slope whereasΔV swc andΔd had positive slope andΔV swh had zero slope.
Therefore, a single compound noise variable could be used composed of

Table 5. New design configuration

% Change

V clc 20.0

V swc 11.4
V clh 20.0
V swh 0.0
ΔV �13.0

ΔP 0.0
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n= ΔVclc,ΔV swc,ΔV swh,Δdoutð Þand the two values to use are n� = þ, � ,0,�ð Þ
and nþ = �, þ ,0,þð Þ.

With compound noise variables, the width between the upper and lower limit
responses grows with the number of variables. Therefore, similar to previously, to
keep the result at a fixed number of standard deviations the computed compound
variable Hessian terms need to be scaled by the square root of the number of noise
variables compounded,

Hn,j =
1ffiffiffiffiffi
M

p Hij, (23)

where here Hij is as computed using Equation (9) with a single but compounded
noise variable.

The results of this compounding are shown inTable 6, and show the same results
as before, larger Vclc and smaller V swh reduce power variability. This here is
computed with less runs (16 runs), 25% run-time of the noncompounded (64 runs).

Figure 11. Uncertainty change of engine power at the new constrained design configuration.

Table 6. Compound noise variable impact on variance

Δσ2y (%)

Design

Vclc V swc Vclh V swh

ΔNoise �24.9 �11.8 �4.5 �24.0
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In the workflow of Figure 1, compounding noise variables is an easy simplifi-
cation to make, since in the first step a UQ is performed and the results can be
plotted against each noise variable and the nominal slope direction determined.

On the other hand, while reducing calculations, the noise factor compounding
also reduces information provided. It is not clearly highlightedwhich Sobol index is
being reduced, and therefore which noise factor contribution in the compounded
variable is being reduced.While it is highlighted the response variance is reduced, it
is not highlighted that the reductions are contributions from noise factors ΔV clc
and Δdout being reduced. It is not highlighted that the contributions from noise
factors ΔV swc or ΔV swh are negligibly changed. Overall, compounding is more
efficient, but at the expense of less engineering insight on how the design changes
are impacting which noise factor contributions.

4.2. Compounded design variables

Similar to noise variables, design variables can also be compounded. Unlike with
noise variables, though, doing so requires a priori engineering knowledge of how
the response changes with design variable changes. As with noise factors, if two
design variables have the same slope, they can be varied the same, and if they have
opposite slopes they can be varied in opposition.

For example, with the Stirling engine we may have knowledge that decreases in
the cold side volume V clc reduces power, and increasing the swept volume V swh
increases power. These could be varied as a single design variable d= V clc,V swhð Þ.
Then the compounded values would be d� = þ,�ð Þ and dþ = �:þð Þ. The results
of this are shown in Table 7, larger V clc and smaller V swh reduce power variability,
and impact the ΔV clc and Δdout noise contributions most. This is similar to as
computed before but with less runs, (16 runs), 25% run-time of the noncom-
pounded (64 runs).

In the workflow of Figure 1, there are no steps to provide any indication on how
to compound design variables. Without a-priori knowledge, one factor at a time
runs could be done (axial points), but at added expense of more evaluations.

Finally, notice that if it were possible to be equipped with a priori knowledge of
both design and noise variable directionality then all variables could be com-
pounded, on both the design and noise variables. This reduces the entire 4 NM set
of runs down to a mere four runs. The sign of the one term of Equation (9) would
indicate which direction to change the compound design variable to reduce
variability from the compounded noise variables.

Table 7. Compound design variable impact on variance

Δσ2y (%) Design

ΔV clc �28.5

ΔV swc �6.7
ΔV swh �1.8

Δdout �18.3
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For example, with the Stirling engine, compounding the noise variables into a
single compound noise variable and compounding the two V clc and V swh design
variables into a single compound design variable, the results of this are shown in
Table 8, and compute most compactly the same as before. Making a 20% change to
the two design variables (Vclc larger and V swh smaller) reduces the variation from
the four noise factors by 46%. This is similar to as computed earlier but with much
less evaluations (4 runs), 6% run time compared to the non-compounded
(64 runs).

While one cannot compute constrained variation reduction of Equation (22),
this compounded variable Hessian approach is nonetheless substantially more
efficient in comparison to many alternative optimisation formulations with exten-
sive computational requirements. It does, however, require engineering knowledge
of how the noise and design variables change the response. In comparison to the
rich literature on probabilistic optimisation methods and robust design of exper-
iments, it demonstrates a substantial limit case of computational simplifications
that are possible in solving unconstrained variability minimisation. All other
known probabilistic optimisation methods apply more than four evaluations.

5. Discussion: comparison with uncertainty
optimisation

The approach successfully computed a new design with less variability, and
successfully found a new design with less variability constrained to target the
nominal average power. Further, the approachmade use of only 64 runs to quantify
the individual impact potential of 4 design variable changes on the contributions of
4 significantly contributing noise variables. Insight was provided that only two of
the four most contributing noise variables can be impacted by the proposed design
changes.

The results can be compared against a more comprehensive exploration of the
design and noise space using robust optimisation. In earlier work (Sanchez,
Björkman, & Otto 2020) an RDM UQ minimisation approach was undertaken
using traditional surrogate-model probabilistic optimisation (Chen et al. 1996;
Fang, Li, & Sudjianto 2005; Allen et al. 2006; Chen, Jin, & Sudjianto 2006; Jiang,
Chen, & German 2016). One hundred sample points were used over the design
space and 40 sample points used in a UQ to cover the noise space. This resulted in
4000 runs total. At each design space point, a 40-point UQ was executed and the
mean and variance of the power computed. The two statistics were computed at
each sample point in the design space, and surrogatemodels were fit. Then a Pareto
optimisation was solved to show the best combinations of surrogate model
estimated mean and variance of power over the �20% domain of the design

Table 8. Compound design variable impact on compound noise variance

Δσ2y (%) Design

Noise �45.9
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variables. This is shown in Figure 12, where the red line represents all computed
Pareto optimal solutions between minimising variance and maximising the nom-
inal power.

As can be seen, the Hessian approach solved the problem well despite using
much less runs than either a traditional RDM design of experiments or optimisa-
tion approach. The unconstrained Hessian solution solved to the same design
variable outcomes as the probabilistic optimisation result. Also shown is the
unconstrained solution when varying only the most significant two design vari-
ables by 20%, as found with only the Hessian terms. Finally, the constrained
solution found by the Hessian plus Jacobian approach solved to the same design
variable combination solution as the full probabilistic optimisation approach. The
Hessian approach is approximate, it relies on a single-numerical derivatives and so
finding the optimised results should not be expected in all cases. However, the
approach will positively identify useful design variables to change to reduce
response variability.

The probabilistic optimisation approach compared here is but one of many in
the rich literature of robust design optimisation. The design of experiment
approach (Taguchi 1986; Phadke 1989; Taguchi & Taguchi 2000), surrogate
modelling approaches to robust design (Jin, Chen, & Simpson 2001; Chen, Jin,
& Sudjianto 2006) and optimisation of quantified probabilistic uncertainty (Allen
et al. 2006) would all produce the same optimised results as shown. The compar-
ison of sample basedmethods with purely optimisation formulations such asmost-
probable-point reliability based design has been done elsewhere (Du, Sudjianto, &

Figure 12. Pareto optimal solutions and Hessian results.
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Chen 2004). Optimising quantified uncertainty has least approximations at the
expense of computational burden; surrogatemodelling introduces approximations
but provides significant reductions in calculations. Design of experiments sim-
plifies the calculations even further to regression models, with further approxima-
tion.We here simplify even further to consideration ofmerely theHessian terms, at
significant reduced calculations but also increased approximation.

As such, the Hessian approach here cannot determine an optimal solution
when the search function has multiple optima; the previously mentioned methods
ought be considered. However, when a design engineer must compute the
UQ/GSA for verification purposes, this approach also allows a rapid manner to
identify design variables to consider and their direction of change to reduce
response variance.

Overall, we find the Hessian approach to variation reduction exploration
intuitive and insightful. It allows one to quickly screen design variables for their
ability to reduce response variance and with a clear indicator of how the design
variable is doing this variance reduction, in terms of interaction contributions of
significant noise variables.

6. Conclusion
The traditional and well-researched RDM has a wealth of research and techniques
to compute design changes that reduce performance variability. Such optimisation
of uncertainty can sometimes become computationally difficult, whether through
direct optimisation of quantified uncertainty as an objective function or through
Taguchi type robust design of experiments.

Here, we made use of the more easily computed Hessian matrix cross terms
between the variance-contributing noise variables and the variables of any
proposed design changes. Design variable changes with large Hessian terms
against noise variables are design changes that can reduce variability. Further,
the Jacobian terms of these design changes can indicate which design variables
can shift the mean response, to maintain a desired performance target. Using a
combination of the more easily computed Hessian and Jacobian terms, design
changes can be proposed to reduce variability while maintaining a targeted
nominal.

We relate here the Hessian predicted reductions to the associated reductions in
Sobol indices that indicate the percentage contribution of noise variables. We also
relate these to the percentage reduction expected in the response variance. This
allows for rapid interpretation of the impact of different design variable changes in
a modern UQ/GSA optimisation workflow.

Themost basic industrial RDMworkflow is to estimate the variance of a design
concept, propose design changes and then estimate the reduced variance after
making the design changes. We applied this workflow to computational practice
through UQ and GSA as a first and last step. An example was shown on a Stirling
engine design where the impact of the top three variance-contributing tolerances
were studied for variation reduction. The approach quickly identified two signif-
icant design variables, and found a new design with 20% less variance and no
change in nominal average power. Overall, we find this Hessian-based RDM
approach useful for classes of problems with high-computational burdens.
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