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Abstract

The concept of very weak local uniform rotundity (very WLUR) is introduced. It is shown that
if a Banach space E is WLUR, very WLUR, or LUR then its dual E* is smooth, very smooth,
or Frechet differentiable, respectively, on a norm dense subset. This leads to examples of non-
reflexive spaces which are Frechet differentiable at every nonzero point of a (relatively) norm
dense subset of the embedding of E** in the fourth dual. When E is reflexive, necessary and
sufficient conditions for E and E* to be WLUR and LUR are given.

Subject classification (Amer. Math. Soc. (MOS) 1970): 46 B 99.

1. Introduction

The main purpose of this paper is to investigate the differentiability of the norm
of a Banach space E at nonzero points of E* and £**, the embeddings of E* and
£** in the third and fourth duals, respectively. It is well known that if the third
dual of E is smooth (G&teaux differentiable) at every nonzero point of E*, then E
must be reflexive. One of the results given here is that this cannot be weakened,
even in the fourth dual. It is shown that a space can be smooth, in fact Frechet
differentiable, at every nonzero point of a (relatively) norm dense subset of E**
and still not be reflexive. If this norm dense subset is uniformly Gateaux dif-
ferentiable, however, the space must be reflexive.

Firstly, local rotundity at points of E is related to the differentiability of the
norm at points of E*. This is done by using the equivalent definitions of WLUR
and LUR which are given in Lemma 2 of Section 3. These definitions show that
there is a local rotundity condition which lies between WLUR and LUR: this
concept is called very weak local uniform rotundity (very WLUR) here. It is shown
that very WLUR at points of E gives information about very smoothness at points
of E*, or equivalently, smoothness at points of E*.
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Next the problem of trying to reverse these implications is considered. Lovaglia
(1955) showed that, even in reflexive spaces, differentiability of the norm cannot be
used to obtain information about local rotundity, unless an additional condition is
added. The condition added here is similar to Lovaglia's. Section 4 looks at this
problem and applies the results to reflexive spaces. The results given here recover
those of Lovaglia (1955), and extend these results to WLUR spaces.

2. Definitions and notation

Let E be a real Banach space, EM its nth dual (£(0> = E), and S(£<n)) the unit
sphere of EM. The spaces £(1) and £(2) will be denoted by E* and E**,respectively.
For each n let Qn denote the mapping which embeds £(n) in £(n+2). The spaces
Q0E, QXE*, Q2E**, Q2 Q0E and Q3 QXE* will be denoted by E, £*, £**, E
and £*, respectively.

Dixmier (1948) showed that the third dual may be represented as E*+E1, with
£ 1 = kerg5, while the fourth dual has two distinct representations: E**+E*L

and E1X+E*1. Here £*1 = kerQ* and £1X is the range of the linear isometry
Q**:£**-*£<4).

The set-valued mapping DE: E -> 2** which assigns to each xeE the

{/e £*:/(*) = H/ll ||x|| and ||/|| = ||x||}
is called the duality mapping. The duality mappings on £(n), for n > 0, will be
denoted by Dn. The set D(S(E)) will be denoted by D(S); similarly Dn(S(EM)
will be denoted by Dn (S). Elements of D(x) will be represented as fx.

The mapping x-*fx which associates each xeS(E) with one fxeD(x), and has
the property that/Ax = Xfx for all real A > 0, is called a support mapping. A support
mapping is said to be norm to T continuous at xeS(E) if it is continuous at x when
E has the norm topology and E* the T topology.

E is smooth at xeS(E) if the norm of E is Gateaux differentiable (G-differenti-
able) at x; very smooth at x if the norm of £** is G-differentiable at x; Frechet
differentiable (F-differentiable) at x if the norm of £ is .F-differentiable at x.
Equivalently, £is smooth, very smooth, or F-differentiable at x if and only if every
support mapping on E is norm to a(E*, £), norm to o(E*, £**), or norm to norm
continuous at x, respectively. (See Giles (1975.) £is said to be smooth, very smooth
or F-differentiable if it has that property for all xeS(E). E is extremely smooth at
FeS(E**) if the norm of £** is G-differentiable at F in the x direction for all
xeS(E). This is equivalent to saying that if ^,^eD2(F), then ^-^eE1. £ is
extremely smooth if it is extremely smooth at F for every Fe S(£**) (Sullivan
(1975)).

E is rotund if x,yeS(E) and || x+_y|| = 2 implies x=y. £ is weakly locally

https://doi.org/10.1017/S144678870001569X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001569X


[3] Differentiability and local rotundity 207

uniformly rotund {WLUR) at xeS(E) in the feS{E*) direction if every sequence
(or net) {*„} in S{E) with || xn+x || -»• 2 has f(xn-x) -»0. E is WLUR at x if E is
WLUR at x in the/direction for every fe S(E*). Eis locally uniform rotund (LUR)
at xeS(E) if every sequence (or net) {*„} in S(E) with ||xn+x||->2 has
\\xn-x\\^0.E is WLUR (LUR) if it is WLUR (LUR) at x for every xeS(E).

E* is weak -* /oca/i> uniformly rotund (W*LUR) atfeS(E*) if £* is WLUR a t /
in the x direction for every xeS(E). E* is W*LUR if it is W*LUR at/for every

3. Local rotundity

This section uses local rotundity methods to investigate the differentiability of
the norm at certain points of S(E), S(E*) and S(E**). In order to do this new
definitions of WLUR and LUR must be given. Firstly, however, an easy lemma is
needed.

LEMMA 1. Let x e S(E) and x-*fxbe any support mapping on E. If{xn} is a sequence
(or net) in S(E) with || xn-x || -> 0, then \\fXa+fx || -> 2.

PROOF. This follows from the equation

2(|| x ||2 +1| y ||2) = (fx+fyXx+y)+(fx-fy)(x-y).

LEMMA 2. Let xeS(E).
(1) E is WLUR at x in thefeS(E*) direction if and only if every sequence (or net)

{FB} in S(E**) with || Fn+x || - 2 has (Fn-x)(f)^0.
(2) E is LUR at x if and only if every sequence (or net) {Fn} in S(E*,*) with

PROOF. (1) Clearly if the condition holds, E is WLUR at x in the / direction.
Therefore, assume there is a sequence {Fn} in S(E**) and an e > 0 such that
\\Fn+x\\-+2, but (Fn-x)(f)^e for all n. For each (fixed) n, let {gnj be a
norming sequence for Fn+x; that is, gnmeS(E*) for each m and

(Fn+x)(gnJ > || Fn+x || - 1/m, m = 1,2,3,....

Let {/„} = {#„,,,} be the diagonal sequence obtained from {gnym}, and Vn denote
the o(E**,E*) neighbourhood of Fn determined b y / , , / a n d \jn. Since S(E) is
a(E**,E*) dense in S(E**\ there is an xne Vn, || xn || = 1, for each «. This gives a
sequence {$„} in 5(£) with the following properties:

(i) 2 5* ||*„+* || ^ (xn+x)(fn) > (Fn+x)(fn)-\jn > || Fn+x | |-2/«,
and

(ii) 0 < 8 < (/;-*)(/•) < (Xn-X)(f)+Iln.
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Thus, although || xn+x || -> 2 as n -* oo, the sequence {f(xn—x)} remains bounded
away from zero for all n. Hence E cannot be WLUR at x in the/direction. The
proof for nets is similar.

(2) Once again it is clear that if the condition holds, E is LUR at x. Conversely,
if the condition does not hold there is a sequence {Fn} in S(E**) and an e > 0 such
that || Fn+x || -> 2, but || Fn-x || ^ E for all «. For each n let }gnj and {knj be
norming sequences for ||/•"„+£ || and \\Fn—x\\, respectively. Denote the diagonal
sequences {#„,„} and {£„„} by }gn) and {kn}, respectively, and let Vn denote the
o(E**,E*) neighbourhood of Fn determined by gn, kn and \jn. Proceeding as in
part (1) gives a sequence {$„} in S(E) such that:

(i) 2 > || xn+x || > (*„+*)(<?„) > (Fn+*)(<7n)-1/« > || Fn+* || -2/«,
and

(ii) 0 < £ < || Fn-x || < (Fn-x)(kn) +1/« < (*n-*)(A:n)+2/H < || * „ - * || +2/n.
Thus the sequence {|| *„ — * ||} cannot converge to zero, even though || xn+x || -> 2
asn->oo. Hence £• is not LUR at x. As in part (1), the proof using nets is similar,
so will be omitted.

This lemma motivates the following definition: E is very weakly locally uniformly
rotund (very WLUR) at xeS(E) in the ^eS(Ei3}) direction if every sequence (or
net) {Fn} in S(E**) with || Fn+x || -> 2 has &{Fn-x) -+ 0. E is very WLUR at x if
it is very WLUR at x in the & direction for every #"eS(£<3)). E is very WLUR if
it is very WLUR at x for every xeS(E).

The next lemma is an immediate consequence of Lemma 2: it will be needed in
the proof of Theorem 2(3).

LEMMA 3. Let xeS(E). E is very WLUR at x in the ^eS(E(3)) direction if and
only if every sequence (or net) {x<;4)} in 5(£(4)) with || xf+x || ->2 has

( ^ % ) 0 .
Therefore, E is very WLUR at x if and only ifE is W*LUR at x.

THEOREM 1. Let xeS(E).
(1) IfE is WLUR at x, E* is smooth at eachfxeD(x).
(2) If E is very WLUR at x, E* is very smooth at each fxeD(x).
(3) IfE is LUR at x, E* is F-differentiable at eachfxeD(x).

PROOF. (1) Assume E* is not smooth at one of the fx in D(x). Then there is a
sequence {/„} in S(E*), a g in S(E*), and an c > 0 such that \\fB-fx || ->0, but
\(Ffn-x)(g)\^E for all n. By Lemma 1, | | /B - /J | ->0 implies | | /}n+*||->2.
But the sequence {(Ffn - x)(g)} is bounded away from zero for all«; so, by Lemma
2(1), E cannot be WLUR at x in the g direction.

(2) and (3) are proved similarly.
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Therefore:
(1) If E is WLUR, E* is smooth at each/e D(S).
(2) If E is very WLUR, E* is very smooth at each/e D(S).
(3) If E is LUR, E* is F-differentiable at each/e D(S).
There is another type of local rotundity to be considered when dealing with dual

spaces, namely W*LUR. Cudia (1963) has shown that W*LUR at points of E*
gives information about smoothness at points of E. The following lemma shows
that W*LUR in E* actually gives information about smoothness at points of E**.

LEMMA 4. LetfeS(E*). It E* is W*LUR atf, then E is extremely smooth at each

PROOF. If E is not extremely smooth at FfeDl{f) there is an #"eZ)2(/y), a
yeS(E), and an e > 0 such that |(Jr+/))CP)| > e. Let Vn denote the (E°\E**)
neighbourhood of 3F determined by Ff, y and 1/n. The usual 'weak-* density'
argument gives a sequence {/„} in S(E*) such that

2 > H/.+/H > Gn+fWr) > {P+fXFf)-l/n =2-l/n,
and

0< e < | &F - ?)0>) I < K/. -/)G01 +1/»-

Thus £* cannot be W*LUR a t / . Since FfeD1(f) was chosen arbitrarily, the
result follows.

Now apply Theorem 1 to E*. By using Lemma 4, and the fact that x is always
in /JxC/i), one gets the following result.

COROLLARY 1. Letfx e D(x).
(1) IfE* is W*LUR atfx, E is smooth at x.
(2) IfE* is WLUR atfx, E is very smooth at x.
(3) IfE* is very WLUR atfx, E is smooth at x.
(4) IfE* is LUR at x, E is F-differentiable at x.
An immediate consequence of Corollary 1 is that if E* is PF*LUR, WLUR or

LUR at every / e D(S), then E is smooth, very smooth or F-differentiable, res-
pectively. This gives a (slight) improvement to the results given in Lovaglia (1955),
Cudia (1963) and Diestel and Faires (1974).

Theorem 1(2) shows that if £ is very WLUR then Q^DiS)) is smooth in £(3).
However, combining Theorem 1(3) with Proposition 7 of Yorke (1977) gives a
stronger result: if E is LUR then 5(£(3)) is f-differentiable at each fe Qi(D(S)).
Thus smoothness, or even F-differentiability, on this (relatively) norm dense sub-
set of S(E*) is not sufficient to imply reflexivity.

The usual situation in Banach space is that if a geometric condition gives a
certain property on a space, a weaker condition will give the same (or stronger)
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property on the dual space. This is not the case, however, when considering dif-
ferentiability in E* and £**. Zizler (1969) has shown that any separable dual space
can be renormed with a LUR dual norm. Applying Theorem 1(3) and Proposition 7
of Yorke (1977) to a nonreflexive space with a separable dual shows that this space
admits an equivalent norm with the property that 5(£<4)) is F-differentiable at
every point of Q2(D1(S)). Thus local differentiability conditions on Qi{D(S)) and
Q2(Dl(S)) are too weak to give reflexivity. This leads to considering f/G-differ-
entiability on these sets.

To say that Qi(D(S)) is E/G-differentiable means that every support mapping
on £(3) is uniformly continuous norm to <r(£(4), £(3)) when restricted to Q1(D(S)).

LEMMA 5. If Qi (£>(£)) is UG-differentiable, then E is reflexive.

PROOF. Choose any support mapping on 2?(3) for which ?->Ff; this gives a
support mapping f-*Ff on E*. Let {/„} and {gn} be any two sequences in S(E*)
such that \\fn—gn || -»0 as «-» oo. Since D(S) is norm dense in S(E*) there are
sequences {fxj and {gyj in D(S) such that | |/n-/*JI->0 and H ^ - ^ J I - » 0 .
Now since QX(D(S)) is C/G-differentiable, \\fn-fXn || = \\fn-fXn II ->0 implies

0 for every &eS(E^). Similarly \{Ggn-fn)(<$)\-+0. But

and as all three terms on the right converge to zero, ^(Ggn — Ffi) -»0 as well. Thus
the support mapping /-> Ff is uniformly continuous norm to a(E*, £**) on E*.
Hence E* is very smooth (Giles (1975)), or equivalently, E* is smooth, so E must
be reflexive.

4. Differentiability

This section considers the problem of reversing the implications of Theorem 1.
As in Lovaglia (1955) this cannot be done, even in reflexive spaces, unless some sort
of local rotundity condition is added.

THEOREM 2. Let E* be WLUR atfeS(E*) in the F^D^if) direction.
(1) IfE is extremely smooth at Ff, E* is W*LUR at f.
(2) IfE** is smooth at Ff, E* is WLUR atf.
(3) IfE** is very smooth at Ff, E* is very WLUR atf.
(4) IfE** is F-differentiable at Ff, E* is LUR atf.

PROOF. (1) If E* is not W*LUR a t / there is a sequence (or net) {/} in S(E*), a
yeS(E), and an e > 0 such that ||/B+/|| -* 2, but |(Jn-f){y) \ > s for all n. Let &
be a <r(E°\E**) cluster point of the {/„}. Since the norm is a(E(3\E**) lower
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semi-continuous, \\&\\ < 1. But E* is WLUR at / in the Ff direction. So | | /n+/ | | -> 2
implies /n(F,)-» 1 and hence ^eD2(Ff). However &{$) #/(£)> so E cannot be
extremely smooth at Ff.

(2) If E* is not WLUR at / , there is a sequence (or net) {J^J in S"(F.(3)), an
F?FfeS(E**), and an c > 0 such that | |Fn+/| |->2 but | ( ^ - / ) ( F ) | ^ £ for
all n. Once again, since E* is WLUR in the Ff direction, &n(Ff) -> 1. Now applying
the Bishop-Phelps-Bollobas Theorem (Bollobas (1972)) gives a sequence (or net)
{Fn} in £(£**) such that | | F . - ^ | | - » 0 and || &tn-&„ || ->0 as n->oo. How-
ever, since

0 < e < | ( ^ n - / ) ( F ) | < l l^ n -^F n l l + l(^Fn-/)(f)l,
the sequence (or net) {{!FFn— /)(F)} cannot converge to zero. Thus any support
mapping on E** for which Fn -* SP Fn and Ff -*f fails to be norm to <r(£(3), £**)
continuous at Ff, so E** is not smooth at Ff (Giles (1971)).

(3) and (4) are proved similarly. The proof of (3) uses Lemma 3.

COROLLARY 2. Let fx<=D(S), and assume E* is WLUR at fx in the St direction.
(1) IfE is smooth at x, E* is W*LUR atfx.
(2) IfE is very smooth at x, E* is WLUR atfx.
(3) IfE is smooth at $, E* is very WLUR atfx.
(4) IfE is F-differentiable at x, E* is LUR atfx.
This follows immediately from Theorem 2 since E is smooth at x if and only if E

is extremely smooth at x, £ is very smooth at 5 if and only if E** is smooth at x,
E is smooth at x if and only if E** is very smooth at £, and E is .F-differentiable at x
if and only if E** is F-differentiable at x (Yorke (1977), Proposition 7).

Now apply Theorem 2 to E*, and use the fact that

COROLLARY 3. Let xeS(E), and assume that E is WLUR at x in thefx direction,
for at least one fxeD(x).

(1) IfE* is smooth atfx, E is WLUR at x.
(2) IfE* is very smooth atfx, E is very WLUR at x.
(3) IfE* is F-differentiable atfx, E is LUR at x.
According to Lovaglia (1955), page 241, E is weakly locally uniformly convex

(weakly l.u.c.) at xeS(E) if every sequence {xn} in S(E*) with || xn+x \\ -»• 2 has
fx(xn—x)-*0 for each fxeD(x). This expression is not used here. Notice that the
conditions given in Theorem 2, Corollary 2, and Corollary 3 are somewhat weaker
than Lovaglia's weak local uniform convexity.

COROLLARY 4. Let Ebea reflexive space. IfE is WLUR at x in thefx direction, for
at least onefxeD(x), then

(1) E is WLUR if and only ifE* is smooth;
(2) E is LUR if and only ifE* is F-differentiable.
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PROOF. Since E is reflexive, D(S) = S(E*) (James (1964)), so (1) follows from
Theorem 1(1) and Corollary 3(1), while (2) is a consequence of Theorem 1(3) and
Corollary 3(3).

COROLLARY 5. Let E be a reflexive space. IfE* is WLUR at eachfeS(E*) in the
x direction, for at least one xeDl(f), then

(1) E* is WLUR if and only if E is smooth;
(2) E* is LUR if and only if E is F-differentiable.

PROOF. (1) follows from Corollary 2(1) and Corollary 1(1). (2) follows from
Corollary 2(4) and Corollary 1(4).

Part (2) of Corollary 4 is essentially Theorem 2.5 of Lovaglia (1955), while
Corollary 5(2) recovers Theorem 2.7 of Lovaglia (1955).

Since smoothness and rotundity are dual concepts in reflexive spaces, Corollary
4(1) shows that a reflexive space is WLUR if and only if it is rotund and WLUR
at each xeS(E) in \hefx direction, for at least one fxeD(x). The following example
shows that this extra condition cannot be removed.

EXAMPLE. (Smith (1978).) Consider l2 with its usual norm ||-||2. For each
x = (xux2,x3,...) in l2 let x = (0,x2,x3,...), and define ||x||0 = |*i | + ||x||2.
This is an equivalent norm for l2. If {an} is a sequence of positive real numbers with
an-»0, define T: I2^l2 by T(xltx2,x3,...) = (a2x2,a3x3,...), and let

111*111=(ii *ns+raD*.
This is also an equivalent norm for l2.

Let E = {12, III-|||). A straightforward calculation shows that the norm and
a{E, E*) topologies agree on S(E), and that E is rotund. Thus, since E is reflexive,
E* is smooth. Lety^ -»x be the unique support mapping on E*. Since E* is smooth,
if {fXn} is a sequence in S(E*) such that \\fXn-fx\\-*0, then f(xn-x)-*0 for all
feS(E*). But the norm and o(E,E*) topologies agree on S(E), so || xn—x\\ -»0;
that is, E* is actually F-differentiable.

Now let x = (1,0,0,...) and xn = (0,...,0,1,0,...), where xn has the " 1 " in the
nth position. An easy calculation shows that

111*111 = 1, IHx n | | | -> l and | | | x 1 1 +x | | | — 2 .
But since xn -* 0 in the a(E, E*) topology, E cannot be WLUR at x in thefx direction
for any fxeD(x).
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